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The main aim of this paper is to examine the variability of some dynamic properties of concrete
composite panels to in-plane eccentric compression loads via static and dynamic impact testing. First,
experimental tests were performed in order to obtain the dynamic and static properties of concrete
composite panels. In-plane eccentric loads were statically applied to a couple of panels in ten uniform
steps. For each step, dynamic impact testing was performed and the modal damping, peak amplitude
and natural frequencies obtained. Second, a ‘hybrid’ model, based on the concepts of modal analysis and
the Finite Element Method, was developed in order to obtain the natural frequencies and corresponding
normal modes of the composite panels within the frequency range 0–200 Hz. For this model, an initial
warp of the panel middle surface was incorporated into the formulation in order to represent the applied
flexural moment provoked by the eccentric in-plane loads. The accuracy of the ‘hybrid’ model was verified
by comparison with the experimental results. Third, comparison is made between predictions (using on
the ‘hybrid’ model) and experimental results.
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1. Introduction

The influence of in-plane loads on the dynamic
behavior of plates has been studied for several years
(Mamou-Mani et al., 2007; Ilanko, Tillman, 1985;
Kielb, Han, 1980). Many researches have presented
the results of investigations into the reasons for the
observed discrepancies. Measurements were made on
rectangular plates to obtain initial geometrical imper-
fection profiles. It was assumed that the plates were
free of residual stress. The plates were loaded axially
in-plane. The stress distribution and deflection pro-
files at particular load values were measured together
with the corresponding natural frequencies. It was seen
that the vibration response of practical in-plane loaded
plates can differ significantly from the response pre-
dicted theoretically on the basis of a uniform in-plane
stress distribution. It was shown that this difference
was due, at least in part, to the redistribution of in-
plane stress that occurred in practical plates due to
the growth of initial geometrical imperfections with
increasing applied load.
Kang and Shim (2004) presented an exact solution

procedure for the free vibration analysis of rectangu-
lar plates having two opposite edges simply supported

that were subjected to linearly varying normal stresses
causing pure in-plane moments.
Non-linear equations of large amplitude vibrations

have been derived for a laminated plate in a gen-
eral state o non-uniform initial stress (Chen et al.,
2002). The effects of transverse shear strain and ro-
tary inertia were included. In this paper the frequency
response showed not only sensitive to the vibration
amplitude but also to an arbitrary initial state of
stresses. The linear natural frequencies were calculated
by neglecting the non-linear terms on the differen-
tial equations. It was observed that the effect of non-
linearity increased when the initial stress was compres-
sive. In other words, the compressive initial stress pro-
duced a hardening effect on the frequency ratio (non-
linear frequency to linear frequency). Therefore, the
ratio of frequency (non-linear frequency to linear fre-
quency) increased as the compression loads increased.
The basis of the method presented by (Hilmerson

et al., 2008) is that the audible impact response from
a cracked component sounds different than that of
a non-cracked component. From each set of data,
the natural frequency, peak magnitude and damping
ratio were extracted for each of the four dominant
modes.
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Experimental tests were carried out to study the
strength and behaviour of Ordinary Portland Concrete
(OPC) and Geopolymer Concrete (GPC) panel panels
(Ganesan et al., 2013). A total of 20 panel panels were
tested under uniformly distributed axial load in one-
way in-plane action. The main variables considered in
this study were slenderness ratio (SR) and aspect ra-
tio (AR) of the panels. The equations available in the
literature for predicting the ultimate load of RC (Re-
inforced Concrete) panel panels were found to be con-
servative and a new method was proposed to predict
the ultimate load of GPC panel panels.
InRamachandra and Panda (2012) buckling and

dynamic instability of composite plates subjected to
dynamic loads were investigated. It is seen that the
instability regions depends on the in-plane load vari-
ation. The boundary conditions of the plate had an
influence on the dynamic instability regions.
A study of the buckling behaviour of masonry pan-

els subjected to vertical loading was investigated by
Sandoval and Roca (2012). The purpose was to de-
termine the effects of the slenderness ratio, the eccen-
tricity of applied load, the stiffness of the panel and the
tensile strength of the unit-mortar interface on the load
bearing capacity of masonry panels. It was observed
that the slenderness and the flexibility of the panel had
some influence on the strength capacity of the panels.
As far as the authors are aware, this paper appears

to be the only experimental and numerical study to
date on the relationship between natural frequency and
in-plane compressive load for composite light concrete
panels.

2. Methodology

Firstly, some of the material properties of light con-
crete panels considered herein were obtained from the
literature, others obtained from experimental measure-
ments. The density of each concrete panel was equal to
611 kg/m3. This value was found in the literature. Al-
ternatively, static and dynamic tests were performed
in order to obtain the Young’s Modulus EL and the
total loss factor η respectively.
Secondly, a ‘hybrid’ theoretical model was devel-

oped and implemented in order to simulate the effect
of in-plane eccentric loads on the natural frequencies
of isotropic thin plates. The physical and mechanical
properties used on the simulations were measured (e.g.
η and EL) and obtained in the literature. The ‘hybrid’
model was based on the concepts of modal analysis and
the Finite Element Method.
Thirdly, experimental tests were performed on a

couple of light concrete panels in order to validate
the ‘hybrid’ model. The tests were made using impact
testing. Frequency response functions (FRFs) were
recorded and the natural frequencies extracted and
compared to those obtained using the ‘hybrid’ model.

2.1. Experimental tests

Each panel sample was built using three concrete
panels bounded together around a particular edge us-
ing polyurethane foam adhesive (see Fig. 1). This did
not provide ideal tied edges, as it was dependent on

a) b)

c)

d)

Fig. 1. Photographs of the production of a building panel
sample using concrete panels; a) concrete panels bounded
by polyurethane foam; b) detail of a joint between two
concrete panels; c) panel surface preparation using fabric
net and gypsum; d) pinned top edge of the panel.
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the stiffness and strength of the adhesive. However,
it did provide a reasonable constraint on the flexural
displacement. As mentioned previously, experimental
tests were performed in order to obtain EL and η and
two samples (see Fig. 1). Experimental tests were made
on concrete panels (122×272×9 cm) simply-supported
along the top and bottom edges (see Fig. 2). It is seen

a)

b)

Fig. 2. Set-up of the apparatus used on the static
experimental tests; a) photograph of the exper-
imental set-up for the static compression test;
b) schematic representation for the compression

test.

that the boundary conditions along the lateral panel
edges were free. A set of two panels was used in this
study.
Dynamic and static tests were made on each spec-

imen. The tests were made at the Structural Engi-
neering Research Laboratory (LAEES). Each panel
had the cross-section area equal to 122×9 cm. The
concrete panels were tested in the vertical position
in a compression testing machine of 200 tons capac-
ity. Pinned end condition was provided at the both
supporting ends and uniformly distributed load along
panel thickness hw was applied at a large eccentric-
ity of 30 mm. This value was greater than the central
region limit hw/6 = 15 mm. Thus, the central region
concept defined on the theory of material strength was
used herein in order to reflect possible eccentric load
in practice.
Figures 2a and 2b below show the photograph and

schematic diagram of the static test set up. Vertical
alignment of the panels was ensured by a plumb-bob
and a levelling ruler was used to ensure the proper
levelling of the panels. The loading was gradually in-
creased in stages up to failure. It was applied on
the panels by pressing a rigid I-section steel beam
on the top edge of them using a hydraulic-jack. Al-
though the loading steps were applied manually, the
rate of loading could be estimated and was equal to
2.0 ton per minute. At each stage, lateral deforma-
tion at mid-height point was measured using LVDT
sensors. The experimental ultimate loads were also
recorded. A statistical model was considered using
the least-square fitting method. The slope of the tan-
gent drawn to the stress-strain curve at a given stress
value was calculated and the tangent modulus EL ob-
tained.
The damping η is known as total loss factor. The

values of damping η are sometimes termed structural
damping, to identify that the damping is dependent
on both the damping inherent in the material and that
which comes from other mechanisms including dissipa-
tion losses at the boundary which might be significant.
In other words, the total loss factor is equal to the sum
of the internal loss factor of the material, the coupling
loss factor to the adjacent structures and the radiation
loss factor to the surrounding media (Fahy, 1985).
The apparatus set-up used on the dynamic experi-

mental tests is shown in Fig. 3 below.
First, the impulse responses were obtained using

the impact testing procedure described as follows. On
impacting the panel sample by an instrumented ham-
mer, the analyzer was triggered and started record-
ing the response signal at the receiving point, where
accelerometers were attached and connected to the ac-
quisition equipment (National Instruments data acqui-
sition module type NI-9233). The input signal was fil-
tered by conveniently configuring the channel param-
eters.
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a)

b)

Fig. 3. Set-up of the apparatus used on the dynamic tests;
a) photograph of the experimental set-up for the dynamic

test; b) schematic representation.

The signal s(t) received at the receiving point is
given by (Meirovitch, 1967; Cremer et al., 1988)

s(t) =

t∫

−∞

f(τ)h(t − τ) dτ, (1)

where f(t) is input excitation force and h(t) is the
impulse response of the system. For an impulse at time
ti one has

f(τ) = Foδ(τ − ti), then s(t) = Foh(t− ti), (2)

where Fo is the input excitation force amplitude.
Second, the aim was to measure the natural fre-

quencies of the concrete panel using the frequency
response functions (FRFs) defined by (Sandoval,
Roca, 2012)

Hji =
Sij

Sii
[m s−2/N], (3)

where Sij and Sii are the cross-spectral density func-
tion (for a force applied at point i and the correspond-
ing velocity measured at point j) and the autospectral
density function (for a force applied at point i and
the corresponding velocity also measured at point i)
respectively.
These functions were obtained via Fourier trans-

forms of the measured quantities. These functions are
also named mobilities or velocity transfer functions.
A frequency range of 0–200 Hz was considered on the
experimental tests. The vibration source was a plastic-
headed hammer. It was used to hit the concrete panel
at different locations (in order to obtain the Hji) over
a period of 8 seconds.
The point mobility of the system was obtained by

measuring the impact force and the acceleration which
was later integrated in order to obtain the velocity. The
average transverse vibration level of each panel was
measured for a ‘no in-plane loading’ condition and for
ten distinct in-plane load steps. The velocities were de-
termined by integrating the accelerations at every fre-
quency line. The FRF ‘sweeps’ using the instrumented
hammer resulted in 6 FRFs which were acquired over
three response and two excitation test points as a ref-
erence (see Fig. 3).
Alternatively, a simple technique used in (Cremer

et al., 1988) helps the selection of frequencies which
may correspond to the modes of vibration. Thus, an-
other simple parameter named Mode Indicator Func-
tion (MIF) and denoted as |Hj,sum(ω)| can be defined.
It is the sum of the moduli of all measured FRFs. It is
given by (Pavic, Reynolds, 2003):

|Hj,sum(ω)| =
∑

i

Hji(ω). (4)

Then, the peaks corresponding to the coupled natural
frequencies were identified on each PSD curve.
Third, once the resonance frequencies fn were iden-

tified from the measured impulse responses, the corre-
sponding half-value bandwidths b could be determined.
The total loss factor was calculated as

η =
b

fn
. (5)
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Finally, the data from the measurements were anal-
ysed in order to assess the variation of natural fre-
quency, peak magnitude, and mode bandwidth with
eccentric in-plane load values. The findings were con-
sistent with the expected dynamic behaviour of con-
crete panels under in-plane eccentric loads.

2.2. Numerical simulations

Numerical simulations are presented for a simply-
supported panel under eccentric in-plane loads, com-
monly found on the process of building construction.
A FE model was considered in order to find the cor-
responding normal modes for specific loading condi-
tions. Ten loading steps were considered for the in-
plane loaded panels. A frequency range of 0–200 Hz
was considered on the numerical simulations.
The analyses were performed on two distinct stages

as follow.
Firstly, the commercial FE (Finite Element) soft-

ware, namely ABAQUS (ABAQUS/CAE – User’s
Manual v6.7), was used in order to obtain the mode
shapes φp(z, y) (and their corresponding natural fre-
quencies) for the ‘no in-plane load case’, and conse-
quently to validate the FE model against its analytical
counterpart. A convergence criteria based on energy
was used. A tolerance value of 10−3 was considered.
Secondly, the equation of motion for rectangular

thin plates with two simply-supported edges was de-
rived considering the combined action of uniform lat-
eral load and uniform tension.
Finally, a modal model based on the equations

of motion was developed and implemented in MAT-
LAB in order to simulate the effect of in-plane eccen-
tric loads on the natural frequencies of isotropic thin
plates.
The concrete panels considered herein had a bend-

ing stiffness equal to B′ and were pre-stressed with
an eccentric compression stress. In other words, the
panel did experience bending under the action of in-
plane compression forces. This is equivalent to the
effect of a fictitious initial curvature on the deflec-
tion.
In this study the applied flexural moment, which

was provoked by the eccentric in-plane loads, was rep-
resented by some initial warp of the panel middle sur-
face. This procedure is justifiable if at any point of
the panel there was an initial deflection wo which was
small in comparison with the thickness of the plate
(Timoshenko et al., 1959). If such a panel is submit-
ted to the action of transverse loads, additional deflec-
tion w1 will be produced and applying the principle of
superposition, the total deflection at any point will be
w1 + wo. Hence, for the case of an initial curvature,
the equation of motion is given by Timoshenko et al.
(1959) and Blevins (1995)

B′∇4w1 − T ′
y

∂2

∂y2
(wo + w1) + c

∂w1

∂t

+ m′′ ∂
2w1

∂2t
= f(xy, t), (6)1

wo =
−Moy

2 + νMox
2

2B′(1− ν2)
,

w1 = w1e
j(ωt−kxx−kyy),

(6)2

where T ′
y is the normal in-plane load per unit length

of edge (in the y direction), c is the viscous damping
coefficient per unit area of the plate, m′′ is the mass
per unit area of the plate, w1 is the complex ampli-
tude of the panel deflection w1 into the air, ω is the
frequency of the applied harmonic force, kx and ky are
structural wavenumber components in the x and y di-
rection respectively, ν is the Poisson’s ratio, f(xy, t) is
the externally applied harmonic point force excitation
per unit area, Mo [N m/m] is the applied moment per
unit width in the panel edge x.
The thickness of each panel sample was 90 mm.

The basis of the criterion for ‘thinness’ adopted was
kbhp < 1, where kb is the free structural wave number
and hp is the panel thickness. Each panel was assumed
to be free and simply-supported mounted in the x and
y direction considering a plane of the Cartesian co-
ordinate system. A typical basis function that might
be used as a modal expansion for the panel deflection
must ensure a vanishing normal displacement on the
contour of the panel in the y direction and a unit nor-
mal displacement in the x direction. It satisfies the
free and simply supported boundary conditions and in
vacuo, is given by

φp(x, y) = cos (kxx) sin(kyy),

kx =
rπ

Lx
, ky =

sπ

Ly
.

(7)

Lx is the width of the panel, Ly is the length of the
panel, and r, s represent the panel mode numbers.
The response (normal displacement to the plate

surface) of the plate to a harmonic point force ex-
citation fo at position (xoyo) and at frequency ω is
given by

w1(z, y, ω) =

P∑

p=1

wpφp,

Fp =

∫

S

f(x, y)φp(x, y)ds,

(8)

where P is the total number of structural modes con-
sidered.
Then, Eq. (8)1 may be an expression for the con-

crete panel displacement in terms of a summation of its
assumed-modes. The modal response (displacement) of
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panel was represented by wp. Substituting Eqs. (8)1
and (8)2 into Eq. (6)1, multiplying by φp and integrat-
ing over the partition surface yields the modal equa-
tions
{
−ω2 + jωβp + ω2

p +
T ′
y

m′′

·
(
k2y +

Mo

B′(1− ν2)

)}
wp =

Fp

Λp
, (9)

where ω is the excitation frequency in radian/s and Fp

is the generalized force applied on the concrete panel.
The term jωβpwp is added on the left-hand side of
Eq. (9) in order to represent the damping of the flex-
ible panel. βp is the generalized modal damping coef-
ficient, which is given by ηpωp for the panel; Λp is the
modal mass of the structural mode p; ωp represents the
p-th natural frequency of the panel. The value of T ′

y in
Eq. (9) is negative for compressive loads. The struc-
tural modes φp used herein were obtained from the
FE simulations. Alternatively, they might have been
calculated using Eqs. (7)1 and (7)2.
The numerical model was validated and used to

perform a parametric study involving the variation of
applied static loads (flexural moment and compression

Fig. 4. Variation of normal stress with normal strain for sample 1 subjected to compression loading.

Fig. 5. Variation of normal stress with normal strain for sample 2.

load) in order to assess the influence of them on the
panel dynamic stiffness.

3. Results and discussion

As mentioned previously, the determination of the
concrete panel properties was obtained experimentally.
The longitudinal Young’s modulus EL was obtained
by a static experimental test. Figures 4 and 5 below
show the slope of the straight line in a stress-strain
curve. The results presented are shown for two panel
samples. Figure 4 below shows the variation of normal
stress with strain obtained via experimental test for
sample 1. The determination coefficient R2 found for
this model was equal to 0.98. The Young’s modulus
was determined using the first part of the curve. Its
value was equal to 4.5 GPa.
Figure 5 below shows the variation of normal stress

with strain obtained via experimental test for sam-
ple 2. Likewise, the statistical model presented was
obtained via curve fitting. The determination coeffi-
cient R2 found for this model was equal to 0.99. The
Young’s modulus was determined using the first part
of the curve. Its value was equal to 4.9 GPa.
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Next, the average loss factors obtained via impact
testing are presented on Table 1 below. Table 1 shows
the values of η obtained only for the first 3 structural
modes. It is due to the high damping values of com-
posite concrete panels considered herein.

Table 1. Total loss factor of the concrete
panel.

Vibration Mode Number η

1 0.22

2 0.1

3 0.07

Afterwards, static loads were applied to the panel.
Ten static load steps were considered (see Figs. 6a
and 6b).
As mentioned before, the loading steps were ap-

plied manually. It is seen on Fig. 6a that each applied
load was relaxed after few minutes. The rate of load-
ing could also be estimated and was equal to approx-
imately 2.0 ton per minute. Figure 6b shows the time
averaged values of the static load for each step.

a)

b)

Fig. 6. Variation of applied static loads with time; a) rate of applied static loading, b) mean values of applied static load
on each step.

Next, impact testing was again performed for each
static load step. The first seven load steps led to crack-
free panels. Table 2 below shows a comparison between
groups of structural natural frequencies obtained ex-
perimentally, numerically using the FE model and an-
alytical formula (Blevins, 1995).

Table 2. Comparison between groups of natural frequencies
of an unloaded concrete panel obtained experimentally, nu-

merically (using FEM) and analytically.

Number
Mode

FN [Hz]
(Measured)

FN [Hz]
(FEM)

FN [Hz]
(Blevins, 1995)

1 13.8 14.6 11.6

2 45.5 45.5 41.1

3 63.5 55.5 46.9

4 95.0 103.4 91.9

5 111.5 123.8 106.4

6 156.0 157.9 159.5

7 183.0 179.1 –

8 225.2 226.0 –
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a) f1 = 14.6 Hz (1st mode) b) f2 = 45.5 Hz (2nd mode)

c) f3 = 55.5 Hz (3rd mode) d) f4 = 103.4 Hz (4th mode)

e) f5 = 123.8 Hz (5th mode) f) f6 = 157.9 Hz (6th mode)

Fig. 7. Set of structural displacement modes for a particular concrete panel sample. It shows the first 6 simply-supported
modes. The FE model was statically unloaded.
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Table 3 shows that there is a highly significant
relationship as the significance value is less than
0.01.
Figure 7 presents the set of structural displacement

modes for a concrete panel sample obtained via a FE
model. It is shown that the first 6 two-edge simply-
supported modes were at frequencies below 160 Hz. All
modes in the frequency range 0–200 Hz were consid-
ered.
The results on Tables 4 and 5 are consistent with

the findings suggesting that the measured and numer-
ical results did not present significant variation. The
paired samples statistics for the natural frequencies
corresponded to the first 8 (measured and FEM values)
and 6 (Blevins’ values) modes of the system. Paired

Table 3. Correlation between groups of natural frequencies
of a concrete panel.

Measured FE Blevins

Pearson Correlation 1 .996∗∗ .994∗∗

Measured Sig. (2-tailed) .000 .000

N 8 8 6

Pearson Correlation .996∗∗ 1 .992∗∗

FEM Sig. (2-tailed) .000 .000

N 8 8 6

Pearson Correlation .994∗∗ .992∗∗ 1

Blevins Sig. (2-tailed) .000 .000

N 6 6 6
∗∗ Correlation is significant at the 0.01 level (2-tailed).

Table 4. The paired samples statistics for the natural frequencies of the unloaded concrete panel corresponded to the first 8
(FEM and measured) and 6 (Blevins’s results) modes of the system. Correlation between groups of natural frequencies of

a concrete panel.

N Minimum Maximum Mean Std.
Deviation

Skewness Kurtosis

Measured 8 13.8 226.0 111.788 72.3875 0.295 0.752 −0.945 1.481

FEM 8 14.6 225.2 113.125 72.4350 0.164 0.752 −1.077 1.481

Blevins 6 11.60 159.50 76.2333 53.59305 0.526 0.845 −0.423 1.741

Valid N (listwise) 6

Table 5. The paired samples test for the natural frequencies corresponded to the first 7 modes of the system.

Paired Differences

t df
Sig.

(2-tailed)Mean
Std.

Deviation
Std.

Error Mean

95% Confidence
Interval

of the Difference

Lower Upper

Pair 1 Measured – FEM −1.3375 6.4547 2.2821 −6.7337 4.0587 −0.586 7 0.576

Pair 2 Measured – Blevins 4.65000 6.60144 2.69503 −2.27779 11.57779 1.725 5 0.145

Pair 3 FEM – Blevins 7.21667 6.74401 2.75323 0.13926 14.29407 2.621 5 0.047

samples correlation for the natural frequencies was cal-
culated. They corresponded to the modes of the struc-
tural concrete panels. The correlation coefficient varied
from 0.992 to 0.996. The results were statistically sig-
nificant as p < 0.01.
Figures 8 and 9 show the relative variation of the

natural frequencies with load. It is seen that all investi-
gated modes have their corresponding natural frequen-
cies increased as the in-plane load increases. Besides,
Table 6 presents the descriptive statistics for each nat-
ural frequency.
Figure 10 shows the relative variation of mode am-

plitude with load. It is seen that the peak amplitudes
do not vary in a predictable pattern. Table 7 presents
the descriptive statistics for each peak amplitude.
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a)

b)

Fig. 8. Relative variation of eigenfrequencies with load; a) eigenvalues f1 − f7; b) eigen values f8 − f14.

Fig. 9. Confidence interval (95%) of averaged natural frequencies obtained via impact
loading. The mean values of all loading steps are also showed.
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Table 6. Descriptive statistics for each natural frequency.

N Minimum Maximum Mean Std. Deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.
Error

Statistic Std.
Error

f1 11 13.80 18.30 16.8455 1.58137 2.501 −1.090 0.661 −0.229 1.279

f2 11 17.00 20.00 19.6091 0.90604 0.821 −2.852 0.661 8.499 1.279

f3 11 22.00 23.50 22.9273 0.47768 0.228 −0.448 0.661 −0.182 1.279

f4 11 23.30 27.80 26.6182 1.40201 1.966 −1.572 0.661 2.113 1.279

f5 11 45.50 48.80 48.0273 1.08728 1.182 −1.713 0.661 2.071 1.279

f6 11 63.50 68.20 67.2182 1.31363 1.726 −2.676 0.661 7.723 1.279

f7 11 95.00 103.50 101.6909 2.59710 6.745 −2.046 0.661 4.225 1.279

f8 11 111.50 113.00 112.3091 0.47213 0.223 −0.690 0.661 −0.453 1.279

f9 11 156.00 170.80 165.8364 5.00425 25.043 −1.150 0.661 0.118 1.279

f10 11 183.50 187.00 185.9000 0.97673 0.954 −1.580 0.661 3.171 1.279

f11 11 211.50 223.50 221.0818 3.45625 11.946 −2.472 0.661 6.812 1.279

f12 11 226.00 227.40 226.8727 0.45407 0.206 −0.535 0.661 −0.553 1.279

f13 11 240.00 250.50 244.4364 3.75959 14.135 0.498 0.661 −1.034 1.279

f14 11 243.00 253.50 250.8273 3.22028 10.370 −1.807 0.661 2.789 1.279

Valid N

(listwise)
11

Fig. 10. Relative variation of mode amplitude with load.

Table 7. Descriptive statistics for each peak amplitude.

N Minimum Maximum Mean Std. Deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.
Error

Statistic Std.
Error

Amplitude1 11 83.00 89.30 87.0273 1.76867 3.128 −1.207 0.661 1.773 1.279

Amplitude2 11 86.30 95.00 92.9000 2.59923 6.756 −1.875 0.661 3.830 1.279

Amplitude3 11 84.00 92.00 86.7182 2.13861 4.574 1.412 0.661 3.521 1.279

Amplitude4 11 82.50 89.00 85.5182 2.10752 4.442 0.356 0.661 −0.846 1.279

Amplitude5 11 93.80 96.50 95.3000 0.90554 0.820 −0.252 0.661 −0.737 1.279

Amplitude6 11 88.20 91.00 89.7000 0.90664 0.822 −0.482 0.661 −0.595 1.279

Amplitude7 11 85.00 94.30 92.3182 2.65323 7.040 −2.376 0.661 6.655 1.279

Amplitude8 11 79.00 83.00 81.2455 1.34266 1.803 −0.837 0.661 −0.508 1.279

Amplitude9 11 83.50 85.50 84.3455 0.60227 0.363 0.665 0.661 −0.263 1.279

Amplitude10 11 81.00 85.00 82.4636 1.09843 1.207 0.950 0.661 2.244 1.279

Amplitude11 11 79.50 86.30 84.5182 2.36170 5.578 −1.568 0.661 1.317 1.279

Valid N

(listwise)
11
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Fig. 11. Relative variation of modal damping with load.

Table 8. Descriptive statistics for each modal damping.

N Minimum Maximum Mean Std. Deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.
Error

Statistic Std.
Error

Damping1 11 .06 .25 .1500 .06527 .004 .377 .661 −1.227 1.279

Damping2 11 .05 .23 .0909 .05770 .003 1.852 .661 2.845 1.279

Damping3 11 .03 .07 .0455 .01036 .000 1.173 .661 2.623 1.279

Valid N

(listwise)
11

a)

b)

Fig. 12. Variation of the FRFs with frequency for the composite panel: a) H11, b) H12.
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Figure 11 shows that the relative variation of the
first three modal damping decreases with load. In high
frequency ranges, the damping could not be estimated
using the half-power bandwidth method due to broad-
band modes and high modal density. Table 8 shows the
descriptive statistics for each modal damping.
Figure 12 shows the variation of the FRFs with

frequency (Equation 8) for a simply-supported con-
crete panel. The results obtained are fairly similar, and
consequently provide the validation of the FE model
against its experimental counterpart. The structural
modes are shown in Fig. 7.

4. Conclusions

The natural frequency of prestressed concrete pan-
els increases as the prestressing force in the load stage
increases, but the existing theoretical analysis formulas
do not reflect this trend of change. In addition, there
are some defects for the existing formulas to adopt
uniform modality to calculate the frequencies of lin-
early distributed external prestressed panels. Using the
modified formula to calculate the natural frequency of
prestressed panels, one can obtain results which are
close to the experimental results. However, the applica-
bility of the formula need to be validated with more ex-
periments. After the panel was loaded, its stiffness was
altered substantially. According to the formulation, it
depends on the type of loading. Larger pre-stressing
force caused a greater axial compressive force, result-
ing in a decrease in natural frequency. Comparison of
the damping factors before and after the load indi-
cated that, unlike the natural frequency, which showed
a distinctive tendency, the damping factor shows varied
tendencies. The damping factor did not show any sig-
nificant change. The increases in flexural stiffness and
the decreases in damping factor are related. Since the
natural frequency increased, it is assumed that the ap-
parent flexural stiffness of the panel increased. Further
experiments are needed for higher modes of vibration.
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