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This paper proposes a speech enhancement method using the multi-scales and
multi-thresholds of the auditory perception wavelet transform, which is suitable for
a low SNR (signal to noise ratio) environment. This method achieves the goal of noise
reduction according to the threshold processing of the human ear’s auditory masking
effect on the auditory perception wavelet transform parameters of a speech signal.
At the same time, in order to prevent high frequency loss during the process of noise
suppression, we first make a voicing decision based on the speech signals. Afterwards,
we process the unvoiced sound segment and the voiced sound segment according to
the different thresholds and different judgments. Lastly, we perform objective and
subjective tests on the enhanced speech. The results show that, compared to other
spectral subtractions, our method keeps the components of unvoiced sound intact,
while it suppresses the residual noise and the background noise. Thus, the enhanced
speech has better clarity and intelligibility.

Keywords: speech enhancement, low SNR, auditory perception wavelet transform,
unvoiced enhancement, masking effect.

1. Introduction

In all kinds of practical applications in speech processing systems, the decreas-
ing of speech quality due to background noise is a very common phenomenon. For
example, we hope that the SNR of a speech signal is as high as possible in mobile
communications and speech recognition. Therefore, we try to remove the uncor-
related noise and improve the SNR in the speech signal. Speech enhancement
has thus become an important issue for researchers. The common technology
for dealing with bandwidth noise is spectral subtraction (Boll, 1979). However,
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this will produce an annoying “musical noise”. This musical noise is the residual
noise that exists in the enhanced speech through spectral subtraction. This is
similar to the sound of rhythmic music. The modified form of spectral subtrac-
tion (Ephraim, Malah, 1984) aims to change the subtraction parameters in
order to reduce the noise and trade off between speech distortion and musical
residual noise. It is also limited by hybrid optimization parameters. In order
to solve this problem, researchers such as Berouti (1979) (Ephraim, Malah,
1985) (Lockwood, Boudy, 1992) propose one method which solves the prob-
lem of residual noise. This method, however, has difficulties in the selection of
gate-thresholds. When the SNR is low, there is still much residual noise.
In recent years, algorithm models related to peripheral auditory effects have

been proposed. They have made some progress in speech enhancement. The re-
searchers (Virag, 1999) (Tao et al., 2005). N. Virag (1999), for example, make
use of the human ear’s auditory masking effect to modify the spectral subtrac-
tion. This method effectively suppresses the residual noise, while improving both
the speech SNR and the auditory quality of speech. But when the SNR is low,
the high frequency suffers a great loss. Countering the unvoiced enhancement,
many researchers argue that the wavelet transform can solve it. Wavelet theory
is a newly developed time-frequency analysis, especially fit for non-stationary
time-varying signals. Xu et al. (1994) first proposed the idea of removing the
noise by making use of different scales in the signal space during the process of
wavelet transform decomposition;Mallat, Zhong (1999) states that by finding
the maximum point of the wavelet transform coefficients, and then reconstruct-
ing the signal, it can better approximate the original signal before the noise
pollution, i.e., we are able to suppress the noise when conducting the threshold
processing of the polluted wavelet transform parameters of the signal. Donoho
(1995) proposes a new wavelet-domain denoising technology based on the notion
of threshold processing. When improving the speech SNR, his method can better
keep the unvoiced components of the speech signals.
The use of the wavelet transform and the wavelet-packet transform to analyse

a speech signal reveals the signal features. As we know, signal features cannot
be detected in a number of sub-spaces with different resolutions. This point,
however, is unimportant for speech analysis because the auditory perception
itself consists of extra information. Moreover, whether it is a binary transform,
a wavelet-packet transform or an M-band wavelet transform (Zhu et al., 2003;
Seok, Bae, 1997; Shen, Jin, 2000), the division between frequency domains is
that of one octave. It does not exactly coincide with the human ear’s inherent
perceptual characteristics in the frequency domain.
Therefore, this paper proposes a speech enhancement based on the auditory

perception wavelet transform (Tao et al., 2008; Tao et al., 2010). Its basic func-
tion is the best way to overcome the uncertainty in the time-perception frequency.
Furthermore, its expansion and contraction of the analysis scale changes accord-
ing to the concept of critical band, which makes bandwidth a “frequency group”
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in every scale. The wavelet transform obtained by this kind of construction un-
doubtedly has analysis features that are in good agreement with the auditory
system. The enhanced speech has better clarity and a higher intelligibility. How-
ever, the effect is not ideal if we directly make use of threshold processing because
of the uniqueness of the speech signal. This is because the voiceless section of
speech contains relatively large high-frequency components. It will thus be re-
garded as noise and be removed when doing the threshold processing. Taking
this reason into account, we first make a voicing decision before the threshold
processing. If the speech is voiced sound, we make use of an auditory masking
threshold to process it, and if the speech is unvoiced sound, we make use of a soft
threshold function to process it. This will keep the important information in the
unvoiced sound while suppressing the noise. The experimental results show that
this combination can improve the SNR of a speech signal, suppress background
noise, and protect the high frequency components in the speech signal as well.

2. The principles of speech enhancement

Assume that the noisy speech signal y(n) can be expressed as: y(n) = s(n)+
d(n), where s(n) is the clean speech signal and d(n) is the additive noise. As
the enhancement is carried out according to the frame, the above model can be
written in the form of the frame:

y(m,n) = s(m,n) + d(m,n), m = 1, 2, . . . , N, n = 0, 1, . . . , N−1, (1)

where m is the number of the frame and N is the length of the frame. Applying
the Fourier transform to the formula, we get:

Y (m,k) = S(m,k) +D(m,k). (2)

Suppose that the estimate energy of D(m,k) is Pn(m,k), and smooth the
noisy speech frame by frame

∣∣∣Y (m,k)
∣∣∣
2
= ρ

∣∣∣Y (m− 1, k)
∣∣∣
2
+(1− ρ) |Y (m,k)|2 , (ρ ≤ 0.9). (3)

The obtained enhanced spectrum amplitude of the speech is then:

∣∣∣Ŝ(m,k)
∣∣∣ =





√
β(m,k) · Pn(m,k),

if |Y (m,k)|R(m,k) ≤
√
β(m,k) · Pn(m,k),

|Y (m,k)| ·R(m,k), else,

(4)

where R(m,k) = 1 −
√
α(m,k)

Pn(m,k)

|Y (m,k)|2
. α(m,k) and β(m,k) are the func-

tion of the time and frequency, respectively. α(m,k) (α(m,k) > 1) is the over-
reduction factor. The increase of α(m,k) can increase the signal to noise ratio
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of the processed speech, but it also increases the musical noise and hearing dis-
tortion at the same time. β(m,k) is the factor of the background noise. It can
easily mask the residual music noise by introducing the appropriate background
noise. The formula is:

α(m,k) =
T (m,k)

Γ(λ/2 + 1)
∣∣∣(ξ(m,k) − ρ(m,k) + 1)E|D2

m,k|
∣∣∣
, (5)

β(m,k) = 1 +

(
α(m,k) − 1

α(m,k)

)
ξλ/2(m,k), (6)

where ρ(m,k) = E[Y 2
m,k]/E[D2

m,k ] is the posterior SNR of the speech signal and

ξ(m,k) = E[X2
m,k]/E[D2

m,k] is the prior SNR of the speech signal. T (m,k) is the
auditory masking threshold.

3. Speech enhancement based on the multi-scales and multi-thresholds
of the auditory perception wavelet transform

3.1. Auditory perception wavelet transform

Existing research and experimental results show that the human ear’s base-
ment membrane has the role of frequency selection and tuning to external sound
signals. In different center frequencies, the signal will cause the basement mem-
brane’s to vibrate at different locations that correspond to the critical band.
The hearing threshold between 20 Hz and 16000 Hz consists of 24 critical bands.
These kinds of critical bands have a stable bandwidth on the Bark scale. This is
related to perception effects such as the masking effect. If we regard b as the crit-
ical band rate for the reason that the scale is a Bark scale, then its relationship
with the frequency can be regarded as (Traunmuller, 1990):

b(Bark) = 13 arctan[0.76f(kHz)] + 3.5 arctan [f(kHz)/7.5]2 , (7)

where b is the Bark frequency and f is the linear frequency.
Figure 1 shows the auditory perception wavelet cluster diagram of the linear

frequency domain.

Fig. 1. The auditory perception wavelet cluster diagram of the linear frequency domain.

The required selection form of the wavelet mother-function used to construct
the auditory perception wavelet transform wavelet is W (b) = e−c1b2 , where c1 is
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taken as 4 ln 2 if the unit bandwidth is defined as 3 dB. The bandwidths of
the mother wavelet are all unit bandwidths on the Bark scale, i.e., 1 Bark.
At the same time, this mother-function meets the demand that the bandwidth
is the smallest found in the Bark domain. Suppose that the linear frequency
bandwidth of the speech signal s(t) ∼ S(f) to be analyzed is |f | ∈ [f1, f2] and
the corresponding Bark frequency bandwidth is [b1, b2]. We can then define the
wavelet function in Bark fields as:

Wk(b) =W (b− b1 − k∆b), k = 0, 1, . . . , k−1, (8)

where ∆b is the translation step length of Wk(b). According to the bandwidth
features in the Bark domain, it is always the case that ∆b = (b2 − b1)/K−1,
where K is the scale parameter.
We can transfer Wk(b) to the form of the auditory perception wavelet trans-

formWk(f) in the linear frequency according to the formula (10), so as to obtain
the auditory perception wavelet transform in the definition of the frequency do-
main.

sk(t) = BWk(t) =

∞∫

−∞

S(f)Wk(f)e
j2πftdf, (9)

where S(f) is the spectrum of the speech signal s(t). Figure 2 shows the system
block diagram of the auditory perception wavelet transform.

Fig. 2. The system block diagram of the auditory perception wavelet transform.

3.2. Voicing decision

The actual waveform of a speech signal is complex. It contains both the
components of voiced sound and unvoiced sound and the “silent zone” of pure
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noise. As we know, voiced sound has a large amplitude, which displays an obvious
periodicity in the time domain and it also has a resonant peak structure in the
frequency domain. Otherwise, unvoiced sound has a small amplitude, which does
not show clear characteristics in the time and frequency domains, but it has
features similar to random noise. During speech enhancement, we can make use
of the periodicity of voiced sound to extract the speech component or suppress
the noise by using the comb filter. Thus, unvoiced sound cannot be distinguished
from broadband noise.
After applying the auditory perception wavelet transform to the noisy speech

signal, it is difficult to separate them during threshold processing, because it
contains many high frequency components and the random noises are mixed to-
gether. This is what causes the decline in the quality in the speech enhancement,
realizing the possibility that the method suppresses the noise while keeping as
much of the unvoiced information intact as possible. According to the different
distribution of wavelet transform coefficients of unvoiced and voiced signals at
different scales, the method of judging voicing is as follows (Hu, 2006):
1. Calculate the average energy band distribution of speech signal. The unvoiced
speech has a strong energy in the higher frequency domain, while the voiced
speech is mainly distributed in the lower frequency domain. This is an impor-
tant feature when we make voicing decision. After decomposing the wavelet
of each sub-frame of the speech signal, the frequency band can be divided
into two parts: the low frequency part [0–2 kHz] and the high frequency part
[2–4 kHz]. This will produce two sets of parameters: low frequency coefficients
and high frequency coefficients. We can then make use of the two sets of co-
efficients to calculate the average energy of the low frequency part and of
the high frequency part, respectively. This makes it possible to calculate the
energy ratio of the low frequency part and of the high frequency part for each
frame. The ratio value can be defined as Ei.

2. The high frequency components of the speech signal have a higher zero cross-
ing rate, while the low frequency components have a lower zero crossing rate.
Because of this, the zero crossing rate of unvoiced speech is high, while the zero
crossing rate of voiced speech is low. We then calculate the short-time zero
crossing rate of each frame speech signal. The value is defined as Zi. Then, we
regard the median of all the frames’ zero crossing rate in the speech segment
as a threshold and define the threshold as Th. This gives us Th = median(Zi).

3. When Ei ≤ 0.3, we can judge this frame as voiced speech; when Ei ≥ 0.9, we
can regard this frame as unvoiced speech.

4. If Ei does not meet the demands of (3), we then perform a sub-judgment.
If Zi > Th, we can regard it as unvoiced speech, otherwise it is voiced speech.

5. As voiced segment and a non-voiced segment often overlap in the speech sig-
nal. Thus, the above algorithm sometimes will produce errors and we need
to do some post processing. As we know, the short non-voiced segment can-
not appear in consecutive sections. For example, if the decision result is
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· · ·V V V UV V · · · , where V represents a voiced segment and U stands for
a non-voiced segment, then the result should be modified as · · ·V V V V V V · · · ,
or vice versa.

3.3. The auditory mask thresholding of voiced sound

After the analysis of applying the auditory perception wavelet transform to
the speech signals, we first get the power spectrum E(m,k) of the speech sig-
nal using FFT and then divide the frequency domain of the speech signal into
different critical frequency bands. The speech’s energy in each critical frequency

band is Mi =
mhi∑

k=mli

E(m,k), where mhi and mli represent the upper limit and

the lower limit of the critical frequency band i, respectively. i = 1, 2, . . . , imax is
the number of the frequency band. Taking the mutual masking effect of each fre-
quency band into account, we define the following spread function (Johnston,
1998) which is given to estimate the effects of masking across the critical band.

SFij = 15.81 + 7.5(∆ + 0.474) − 17.5
√

1 + (∆ + 0.474)2, (10)

where ∆ = i−j, i, j = 1, 2, . . . , imax, and |∆| ≤ imax.
Taking the effected energy between the frequency bands into account, we

define:

Cj =

imax∑

i=1

Mi · SFij , j = 1, 2, . . . imax, (11)

where Cj is the power spectral of the expanded Bark domain.
Because of the different masking characteristics between noise and tone, we

should first determine whether each frequency band is noise or tone. This can
be determined according to the spectral flatness SFM = µg/µa, where µg and µa
represent the geometric mean value and the arithmetic mean value of the power
spectrum in every frequency band and SFM ∈ [0, 1]. When the value of SFM is
0, it shows that it has the characteristics of pure tone and the masking threshold
offset of the pure tone is (14.5+ i) dB. When the value of SFM is 1, it shows
that it has the characteristics of white noise and the masking threshold offset of
the white noise is 5.5 dB. According to the definition of SFM, we define the tone
coefficient as φ = min(SFMdB/−60.1). The relative masking threshold offset
is then Oi = φ(14.5+ i) + 5.5(1−φ) dB. At this point, the masking threshold
is T (m, i) = 10lg(Cj−(Oi/10)), where Cj is the power spectral of the expanded
Mel domain and Oi is the masking threshold offset. In every Mel frequency
band, the speech signal has the same masking features. T (m, i) is then expanded
to every frequency band, written as T ′(m,k). The final masking threshold is
thus T (m,k) = max(T ′(m,k), Ta(m,k)), where Ta(m,k) is the absolute hearing
threshold.
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3.4. The thresholding of the soft threshold function of unvoiced sound

The main information of a speech signal is stored in the unvoiced sound,
while most of the unvoiced sound’s energy is distributed in the high frequency
part. Once the unvoiced sound is damaged, even if most of the speech’s energy
can be maintained, the intelligibility of a sentence can still be reduced. In order
to solve this problem, this paper makes use of a threshold function to process the
threshold of the unvoiced sound. There are two schemes to select the threshold
function: the hard threshold function and the soft threshold function. They are
as follows:

THY(X,T )h =

{
X, |X| > T,
0, |X| < T,

(12)

THY(X,T )S =

{
sgn(X)(|X| − T ), |X| > T,
0, |X| < T,

(13)

where X represents the noisy speech signal and T represents the removed-noise
threshold. The method using the hard threshold function to denoise mainly
keeps the low frequency components of the signals. Though it effectively elim-
inates the noise parts that display the high-frequency signals, it also removes
a large number of the unvoiced information from the speech signal. Thus, the
selection of the threshold T during the denoising process directly affects the
results. Although the unvoiced speech can be retained when the threshold T
increases, the residual noises in the reconstruction signal increase. In order to
better denoise and keep the unvoiced sound, we make use of a new threshold

Fig. 3. The flow chart of the speech enhancement system in each critical band.



Speech Enhancement Based on the Multi-Scales and Multi-Thresholds. . . 527

Tj = σ̂
√

2 ln(N log2(N))/ ln(j2+1) with the changing of scales to denoise the
unvoiced sound, where j is the decomposition scale of the auditory perception
wavelet. With the increase of j, this threshold decreases according to the non-
linear approach. In the high frequency band that contains a lot of unvoiced
information, the threshold reduced by the non-linear approach is very benefi-
cial to keeping the unvoiced components of the high-frequency signals. Figure 3
shows the flow chart of the speech enhancement system in each critical band.

4. Results and performance evaluation

We make use of the standard speech database CASIA (http://www.chinese-
ldc.org/). The noise data is from the noise database NoiseX-92 (http://www.speech.
cs.cmu.edu/comp.speech/Section1/Data/noisex.html), and the sampling frequen-
cy of the signal is 8 kHz, 16 bit. The length of the frame is 256. The window
sliding is 128. We use a Hamming window as the data window.

4.1. Voicing decision

In order to show the effectiveness of voicing classification using this paper’s
algorithm, we can compare the results produced by our proposed algorithm
(MMWT), that of the short-time energy method (STE), the short-time zero
crossing rate (STZ) and the energy-zero combination decision method (E-Z).
As for the algorithm performance, we can adopt the decision accuracy of silent,
unvoiced speech, voiced speech (S/U/V) and all kinds of misjudged rates to
measure it. When evaluating the performance of an algorithm, two problematic
situations may occur. One is that voiced speech is misjudged as unvoiced speech
(V/U misjudge). In the other situation, unvoiced speech is misjudged as voiced
speech (U/V misjudge). From the experiment, we can see that the algorithm
proposed in this paper produces more accurate results.

Table 1. Results of voicing decision.

Methods S/U/V decision accuracy
[%]

V/U misjudge
[%]

U/V misjudge
[%]

Silence/Speech misjudge
[%]

STE 87.21 5.32 4.16 8.21

STZ 78.34 3.11 4.73 11.32

E-Z 90.87 1.78 3.53 7.73

MMWT 94.57 0.45 0.58 5.21

4.2. The improvement of SNR

The experiment adopted the clean speech of the standard speech database
CASIA. The background noise was the white noise of NoiseX-92. We made use of
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spectral subtraction, modified spectral subtraction, auditory imitating spectral
subtraction, and the method presented in this paper as the speech enhancement
method. The input SNRs respectively were −6 dB, −3 dB, 0 dB, 3 dB, 6 dB,
9 dB. We also compared the improvement of the output SNRs. We used the
common segmented SNR SNRseg, the formula as follows:

SNRseg =
1

N

N−1∑

i=0

10 log





N∑
n=0

x(iN + n)2

N∑
n=0

[x(iN + n)− x̂(iN + n)]2




, (14)

where x(n) and x̂(n) are the time domain signals of the clean speech and the
denoising speech.
We can see from the experimental results in Fig. 4 that the method in this

paper is superior to spectral subtraction, improved spectral subtraction, and
auditory imitating spectral subtraction in terms of improving the SNR. When
the input speech has a low SNR, the improvement effect of SNR presented in
this paper is more obvious.

Fig. 4. The improvement comparison of the speech’s SNR after the enhancement using
the different methods.

4.3. The spectrogram

The objective test cannot indicate the details of the residual music noise,
while the spectrogram can better display the details of the residual noise. In
order to enhance the effect, this paper makes use of spectral subtraction, modified
spectral subtraction, auditory imitating spectral subtraction, and the method of
this paper, respectively. Figure 5 shows the spectrogram of the noisy speech “ta
qu wu xishi wo dao Heilongjiang” (the SNR is −5 dB), and Fig. 6 shows the
spectrograms after the enhancement using the different methods.
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a) b)

Fig. 5. The spectrograms of pure speech (a) and of noisy speech (b).

a) b)

c) d)

Fig. 6. The spectrograms after the enhancement using the different methods: a) spectral sub-
traction, b) modified spectral subtraction, c) auditory imitating spectral subtraction, d) the

method of this paper.
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After comparing the spectrograms after the enhancement using the different
methods, we can see that the basic spectral subtraction introduces large amounts
of residual musical noise and that the modified spectral subtraction has a slight
improvement. The auditory imitating spectral subtraction reduces the noise and
the residual noise significantly, but this method results in a serious loss in the
unvoiced sound, so as to cause a decline in the speech enhancement’s quality.
The method of this paper can better make up for this shortfall. From Fig. 6d,
we see that the unvoiced sound can mostly be kept in the high frequency.

4.4. The subjective evaluation

In addition to the objective evaluation, we also did a subjective evaluation
of the enhanced speech. The test was conducted with 20 listeners (10 males and
10 females), with the aim being to understand the residual noise, the background
noise, and the distortion of the speech. We adopted the mean opinion score
(MOS) to evaluate the speech quality after the enhancement using the different
methods. The test results are shown in Fig. 7.

Fig. 7. Subjective hearing tests (MOS points).

The test results show a definite improvement in the auditory quality of the
speech enhancement proposed by us in this paper. The speech enhancement’s
effect is also better than those of the other spectral subtractions. In the case of
lower SNR, the speech’s interferences affected by the residual noise are smaller
than that of the other methods, and the quality of the enhanced speech has
greatly improved.

4.5. Intelligibility test

In order to verify the audio quality of the speech enhancement algorithm, we
make use of PESQ (Perceptual Evaluation of Speech Quality) as the speech qual-
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ity’s evaluation criterion when conducting the intelligibility test of the enhanced
speech. The PESQ is most relevant for the sound quality assessment of the algo-
rithm in the objective and subjective evaluation, and is here able to reflect the
overall quality of speech. The PESQ represents the contrast speech quality of
the tested speech and of the reference speech by a value between −0.5 and 4.5.
If the quality of the tested speech is very close to the reference speech, the score
of the PESQ is close to 4.5, if not, the score is very low. Table 2 compares the
SNR of the output speech produced by the 4 algorithms and their PESQ scores.
We see that speech quality after applying the suggested algorithm is better than
the quality produced by ordinary spectral subtraction (SS), modified spectral
subtraction (MSS) or auditory imitating spectral subtraction (AISS).

Table 2. PESQ scores of the intelligibility test.

Additive speech’s
SNR [dB]

PESQ scores

Noise SS MSS AISS MMWT

−10 1.075 0.714 1.031 1.142 1.537

−5 1.234 0.876 1.269 1.345 1.785

0 1.387 1.039 1.546 1.612 2.014

5 1.585 1.368 1.923 2.014 2.412

10 1.669 1.902 2.127 2.453 2.746

5. Conclusion

When the SNR of noisy speech is very low, it will produce an annoying “musi-
cal noise” as we conduct speech enhancement using spectral subtraction. In order
to solve this problem, we propose a speech enhancement method based on the
multi-scales and multi-thresholds of the auditory perception wavelet transform.
By decomposing the noisy speech using the auditory perception wavelet trans-
form, we achieve the goal of noise reduction while combining the speech signal’s
voicing identification and multi-thresholds processing. Simulation results show
that the method of this paper has both a better denoising effect on voiced noise,
and can also better keep the unvoiced signal in the high frequency band. Under
the different conditions of input SNRs, the algorithm of this paper has a higher
output SNR than other spectral subtractions, while the auditory quality of the
enhanced speech also has been improved significantly.
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