**44**, 1, pp. 105–116, 2019

**10.24425/aoa.2019.126357**

### Hybrid Artificial Boundary Conditions for the Application of Blunt-Body Aerodynamic Noise Prediction

**Keywords**: cylinder aerodynamic noise; non-reflecting boundary conditions; large eddy simulation; FW-H acoustic analogy; acoustic damping layer

**Full Text:**PDF

#### References

Appelö D., Colonius T. (2009), A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems, Journal of Computational Physics, 228, 11, 4200–4217.

Arcondoulis E.J.G., Doolan C.J., Zander A.C., Brooks L.A. (2013), An experimental investigation of airfoil tonal noise, Proceedings of Acoustics, Victor Harbor, Australia.

Bayliss A., Turkel E. (1982), Far-field boundary conditions for compressible flows, Journal of Computational Physics, 48, 182–199.

Bogey C., Bailly C. (2002), Three-dimensional non-reflective boundary conditions for acoustic simulations: far field formulation and validation test cases, ACTA Acustica United with Acustica, 88, 463–471.

Brentner K.S. (1987), Prediction of helicopter rotor discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation, NASA-TM-87721.

Christopher K.W.T. (1998), Advances in numerical boundary conditions for computational aeroacoustics, Journal of Computational Acoustics, 6, 4, 377–402.

Collis S., Lele S. (1996), A computational approach to swept leading-edge receptivity, Aerospace Sciences Meeting & Exhibit, Reno, NV.

Colonius T.I.M., Lele S.K., Moin P. (1993), Boundary conditions for direct computation of aerodynamic sound generation, AIAA Journal, 31, 9, 1574–1582.

Colonius T., Ran H. (2002), A Super-Grid-Scale Model for Simulating Compressible Flow on Unbounded Domains, Journal of Computational Physics, 182, 1, 191–212.

Curle N. (1955), The Influence of Solid Boundaries upon Aerodynamic Sound, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 231, 1187, 505–514.

Dong S., Karniadakis G.E., Ekmekci A., Rockwell D. (2006), A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake, Journal of Fluid Mechanics, 569, 185–207.

Farassat F. (1981), Linear Acoustic Formulas for Calculation of Rotating Blade Noise, AIAA Journal, 19, 9, 1122–1130.

Fosso P.A., Deniau H., Lamarque N., Poinsot T. (2012), Comparison of outflow boundary conditions for subsonic aeroacoustic simulations, International Journal for Numerical Methods in Fluids, 68, 10, 1207–1233.

Gennaro M.D., Kuhnelt H., Zanon A. (2017), Numerical prediction of the tonal airborne noise for a NACA0012 aerofoil at Moderate Reynolds number using a transitional URANS approach, Archives of Acoustics, 42, 4, 653–675.

Germano M., Piomelli U., Moin P., Cabot W.H. (1991), A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, 3, 7, 1760–1765.

Gill J., Fattah R., Zhang X. (2017), Towards an effective non-reflective boundary condition for computational aeroacoustics, Journal of Sound and Vibration, 392, 217–231.

Granet V., Vermorel O., Léonard T., Gicquel L., Poinsot T. (2010), Comparison of Nonreflecting Outlet Boundary Conditions for Compressible Solvers on Unstructured Grids, AIAA Journal, 48, 10, 2348–2364.

Hayder M.E., Turkel E. (1995), Nonreflecting boundary conditions for jet flow computations, AIAA Journal, 33, 12, 2264–2270.

Hixon R., Shih S.-H., Mankabadi R.R. (1995), Evaluation of boundary conditions for computational aeroacoustics, AIAA Journal, 33, 11, 2006–2012.

Howe M.S. (1998), Acoustics of Fluid–Structure Interactions, Cambridge University Press. Cambridge.

Huet M. (2015), One-dimensional characteristic boundary conditions using nonlinear invariants, Journal of Computational Physics, 283, 312–328.

Inoue O., Hatakeyama N. (2002), Sound generation by a two-dimensional circular cylinder in a uniform flow, Journal of Fluid Mechanics, 471, 285–314.

Koupper C., Poinsot T., Gicquel L., Duchaine F. (2014), Compatibility of characteristic boundary conditions with radial equilibrium in turbomachinery simulations, AIAA Journal, 52, 12, 2829–2839.

Kravchenko A.G., Moin P. (2000), Numerical studies of flow over a circular cylinder at ReD=3900, Physics of Fluids, 12, 2, 403–417.

Leer B.V. (1979), Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, Journal of Computational Physics, 32, 1, 101–136.

Lighthill M.J. (1952), On Sound Generated Aerodynamically I. General Theory, Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences, 211, 1107, 564–587.

Lighthill M.J., F.R.S. (1954), On Sound Generated Aerodynamically II. Turbulence as a Source of Sound, Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences, 222, 1148, 1–32.

Liu Q., Vasilyev O.V. (2010), Nonreflecting boundary conditions based on nonlinear multidimensional characteristics, International Journal for Numerical Methods in Fluids, 62, 1, 24–55.

Lodato G., Domingo P., Vervisch L. (2008), Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, Journal of Computational Physics, 227, 10, 5105–5143.

Mimani A., Prime Z., Doolan C.J., Medwell P.R. (2015), A sponge-layer damping technique for aeroacoustic Time-Reversal, Journal of Sound and Vibration, 342, 1244-151.

Motheau E., Almgren A., Bell J.B. (2017), Navier–Stokes Characteristic Boundary Conditions Using Ghost Cells, AIAA Journal, 55, 10, 3399–3408.

Ong L., Wallace J. (1996), The velocity field of the turbulent very near wake of a circular cylinder, Experiments in Fluids, 20, 441–453.

Parnaudeau P., Carlier J., Heitz D., Lamballais E. (2008), Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900, Physics of Fluids, 20, 8, 85–101.

Pirozzoli S., Colonius T., (2013), Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations, Journal of Computational Physics, 248, 109–126.

Poinsot T.J., Lele S.K. (1992), Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, 101, 1, 104–129.

Richards S.K., Zhang X., Chen X.X., Nelson P.A. (2004), The evaluation of non-reflecting boundary conditions for duct acoustic computation, Journal of Sound and Vibration, 270, 3, 539–557.

Reo P.L. (1986), Characteristic-based schemes for the Euler equations, Annual Review of Fluid Mechanics, 18, 1, 337–365.

Sandberg R.D., Sandham N.D. (2006), Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound, AIAA Journal, 44, 2, 402–405.

Tam C.K.W., Webb J.C. (1993), Dispersion-relation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics, 107, 262–281.

Tam C.K.W., Dong Z. (1994), Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics, Theoretical and Computational Fluid Dynamics, 6, 5–6, 303–322.

Thompson K.W. (1987), Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics, 68, 1, 1–24.

Thompson K.W. (1990), Time dependent boundary conditions for hyperbolic systems, II, Journal of Computational Physics, 89, 2, 439–461.

Williams J.E.F., Hawkings D.L. (1969), Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 264, 1151, 321–342.

Yoo C.S., Im H.G. (2007), Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects, Combustion Theory and Modelling, 11, 2, 259–286.

DOI: 10.24425/aoa.2019.126357

Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN)