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In this article Acoustic Emission (AE) measurement results for five different com-
positions differing in compression strength are presented. Thermal stresses occuring in
concrete samples during their cooling after heating up to 150°C in controlled conditions have
been the source of AE signals. The influence of structure of frequency spectra of recorded AE
signals is described. An automatic recognition procedure of the recorded AE waveforms
using neural network is discussed and the details of the learning process of the neural
network are shown.

1. Introduction

The thermal working in low-pressure steam environment is in Poland wide
introduced technological treatment during production of prefabricated elements [1].
The heating period may usual vary from single to several hours while the hydratation
processes in concrete matrix are improving and the presence of hardened regions in
the material are formed. The internal stresses occurring in the fast hardening material
are the drawback of the described technology, caused by the local temperature
gradients and different volume changes of the concrete ingredients. For example the
linear thermal expanding rate of the gravel aggregates may be five times smaller than
the same parameter of the concrete matrix. The increasing stress concentration in the
structure under thermal processing may result in some internal defects as microcracks
and porosity increase.

In the following paper the correlation between frequency spectra of the AE signals
registered during thermal stress relaxation processes and the compression strength of
the different concrete compositions is discussed. The occurrence of the maxima on the
spectral pattern of the registered AE waveforms have been used to characterise the
certain concrete composition and to determine its strength to be fed into automatic
recognition procedure, the spectral patterns were digitised as it is shown in the further
sections of this work.



90 Z. RANACHOWSKI

2. Experimental materials and methods

Five concrete compositions, similar to used in [2], are indicated in Table 1. The
cement of Grade “35” was used. The specimen were 140 millimeters long, 40

Table 1. Physical and structural parameters of the compositions used for the investigation

Set seeming specific | porosity | water to aggregate sand to | compressive
number density density cement to cement cement strength

[Tm™3 [Tm™3) [%] ratio ratio ratio [MPa]
0 1.20 1.67 342 0.4 0 0 48.0
1 2.129 2.559 16.8 04 045 2:2 43.0
1| 2.096 2.560 18.12 0.5 0.33 3.0 375
1 2.075 2.564 19.07 0.6 0.23 43 23.0
v 2.054 2.565 19.92 0.65 0.20 5.0 21.8

millimeters wide and 40 millimeters thick. The set labelled “0” was made of mortar
while the other sets were made of standard, medium plasticity concrete. All the samples
were heated in the oven with controlled temperature gradient. They were left in the
temperature 150°C for two hours. Then, after removing from the oven the sample were
cooled with use of a fan. The first 20 minutes of the cooling process were used to
register the AE signals. Then the inner temperature of the samples came to the ambient
value. The temperature sensor was fixed to the sample 50 millimeters from its colder
end and 30 millimeters from the same end the wideband AE sensor was mounted. The
sensor, type WD SN954 made in Physical Acoustic Corporation performs flat
(+/—20dB) response to the AE signals within the frequency band 50 — 800 kHz when
matched to the block of concrete. The AE signals were amplified and high-pass-filtered
(over 25 kHz) with the use of EA200 Acoustic Emission Processor, made in Institute of
Fundamental Technological Research. The IWATSU DS 6612C storage oscilloscope
was connected to the output of AE processor to capture the AE waveforms. When the
amplitude of the AE signal (after 80 dB amplification) was greater than 100 mV, the
trigger of the oscilloscope enabled the capturing of 500 microsecond of the AE signal at
a sampling rate of 2 MHz. Several hundreds of such waveforms caused by the thermal
stresses in the concrete samples under test were stored in the disk of logged — in PC
computer with the application of the procedure described above.

3. Spectral characteristic of measured concrete samples

The averaging of 100 AE waveforms for each of 5 tested sets of samples, differing
in compression strength was made for the purpose of further processing using neural
network. The examples of averaged spectra calculated for the sets labelled as “0”,
“II”” and “IV” are presented in Fig. 1 —3. The distinct patterns of presented spectra
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Fig. 1. Averaged spectrum of concrete composition “0”, constructed in linear scale. The amplitude of the
AE signals was measured after 40 dB amlification.
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Fig. 2. Averaged spectrum of concrete composition “II”, constructed in linear scale. The amplitude of the
AE signals was measured after 40 dB amplification.
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Fig. 3. Averaged spectrum of concrete composition “IV”, constructed in linear scale. The amplitude of the
AEF signals was measured after 40 dB amplification.
1911
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are related to the nature of cracking processes occurring in the compositions under
investigation. The set of mortar samples (labelled as “0”") having the highest value of
compressive strength among the tested compositions, indicated high — amplitude EA
pulses — approx. four times higher as for the mechanically weakest set, labelled “IV”.
The absence of the aggregates in set “0” causes the high level of contraction during
fabrication processes and thus the significant (34%) porosity of the material. The
structure of such material allows for forming a relatively large microcracks due to the
lack of the blocking effects of aggregates. The dominant 100 kHz components of the
spectral pattern for the set ““0”” may be therefore considered as reflecting the processes
of crack initiation and growth in the mortar. The high amplitudes of 100 kHz
components of spectral patterns observed in set “I” are also related with the
mechanism described for the pure mortar. The low contents of aggregates for this set
let us suppose that the dominant effects here are appears in the spectral pattern of set
“I”. The latter effect indicates the blocking of the crack growth due to aggregates.
The different low- to high-frequency ratio in the spectral patterns is present in
samples composed with increasing amount of aggregate. The small dimensions of the
cracks, blocked on structure of proper granulation in sets “I” and “II” enable
generation of high frequency AE signals, registered in these compositions. More sand
and aggregates used in compositions labelled “III” and “IV’’ causes the compression
strength decrease. Multiple cracks in the interfacial cement to aggregate zone are
observed here. These low-frequency and low energy sources produce a spectral
pattern shown in Fig. 3. The mechanisms described above correspond with the results
obtained by other authors and described in [3].

4. Processing of AE signals with use of the neural network with backpropagation
of error

Since an identification of artificial AE sources with use of neural associative
memory (GRaBEC and SacHse, 1989, [4]) and analysis of artificial AE waveforms using
neural backpropagation technique (Yuki and Homma, 1991, [5]) was made, the neural
network analysis is applied in processing of AE signals. The method has replaced the
previously used Pattern Recognition technique [6] where a set of characteristic
measurements, namely “features’” were extracted from each grouping of measured
data. To make decision on the class assignment to predetermined pattern the linear
classifier was most often used. The rule of classification was made on the basis of
finding the minimal Euclidean distance between the classified and different reference
sets of features:

D=((x, =1 )+ wor 4+ (X, — 1))V 4.1)

Here: D distance of classify relation between tested and reference set of features,
x,...x, — vector of tested features, r,...r, — vector of reference features.
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The described above linear classifier seemed to be insufficient to determine within the
class of linear non separable vectors (Minsky and PapperT, 1969 [7]). The non-linear
neural backpropagation algorithm is able to solve the problem. Neural networks are
computer models of circuits composed of multi-input vs. angle output elements
(neurons) connected in serveral chains called layers. Each neuron output (except the
output layer) is connected with all the neurons, consisting the next layer. The relation
between element input and output signal can be expressed as:

Pyt 1) =0, wyx,(0)— ). @.2)

Here: y,(t+ 1) — neuron output signal after signal processing cycle, § — one of the
neural activation functions [in this paper assumed as 1/(1 +exp(—x))], w;; — called
a weighting coefficient a synaptic weight which expresses the bonding strength,
between connected neurons labelled j and i, x;(f) — neuron input signal before signal
processing cycle, y; — process parameter, called threshold level.

The computer model of neural network consists of a table of weight coefficients,
being modified in the learning process. This process is carried out to vary synaptic
weights to obtain desired network output signal when certain signal is fed to input of
the network. The aim of the research work presented in this paper was to form the
network output signal as a measure of association with one of the five averaged
acoustic emission spectra characterising the tested concrete compositions. Each
weight was changed according to wide used iterative procedure called “backp-
ropagation of error” [8]. The idea of the procedure is to make a weight changes
proportional to the difference between the temporary network output and the desired
(optimal) output:

Aw P =n (dO(E)/dE) x; 65+ n,m;**. (4.3)

Here: 0 — activation function, Aw;® — weighting coefficient between neuron
labelled 7 in the layer k and neuron j in the layer (k—1), 1, — parameter called
learning rate, in described work experimental set to 0.01, , —momentum, parameter
optimising the learning process, in described work set to 0.008, E,— total excitation of
j-th neuron in the layer k, equal to Z;w;;*) x;, z; — desired signal at i-th output of the
network, y; — temporary signal at i-th output of the network, m;; — weight change
used in the previous iteration, 8% — z,— y; for the output layer or X, w;* 6§ 2 for the
other layers.

Algorithm, described as formula (3.3) was designed by P.J. Werbos in 1974 but
was wider practised ten years ago. For the purpose of the research work described
here, the following assumptions was taken to form the data processing procedure:

« AE waveforms registered in 200 bytes with sampling rate of 2 MHz were used in

averaging process to obtain spectral power coefficients while each coefficient
corresponded with 10 kHz band,

- 31 spectral power coefficients were chosen to characterise the range of 30—310

kHz, where the majority of the entire AE signal power is included,
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» the used neural network was able to analyze 8 signal levels of the values of
discretized spectral power coefficients (the discretization was set up every 6 dB
of the signal level),

« this spectral modelling scheme required 31 times 8 binary inputs to the network,
connected to 62 neural units used in the first layer,

« the second layer consisted of five neurons to generate five output signals due to
association between the input signals and five learned patterns.

The following procedure was used to prepare the five spectral patterns representative
for five tested concrete compositions. Seven most typical AE waveforms were chosen
for each composition and their discrete spectral patterns were combined at one graph.
The left side of the Fig. 4 presents the numbers proportional to the occurrences of
certain pattern elements in seven waveforms registered for composition labelled “0”.
The pattern element was used in the learning process if it was present in not less than
in three waveforms used to compare. The averaged pattern for composition labelled
“0” is shown at the right side of Fig. 4. The Fig. 5 and 6 present the averaged patterns
obtained for the compositions labelled “II”” and “IV”.

1 101 201 301 KkHz

Fig. 5. The averaged pattern constructed for the waveforms registered in composition labelled “II".

1 101 201 301 kHz

Fig. 6. The averaged pattern constructed for the waveforms registered in composition labelled “TV™.
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5. Process of learning the neural network

The main shortcoming of the backpropagation method of learning the network is
longer period of the iterative process when comparing to other methods. The
advantage of backpropagation is its algorithm — simple and therefore easy to modify
the size of processed binary pattern. The important point is that time required for the
single iteration step is proportional to the number of the network interconnections.
Such iteration step called “epoch” lasted aporox. 0.3 s for the network configuration
described in Section 3 when executed on PC 486 DX/40 MHz computer. 800 sets of
repetitions had to be run to complete the learning process. The operation of
comparing the learned pattern and test signal took approx. 1 s. The procedure of
learning the network consisted of several steps. Five spectral patterns, corresponding
to five concrete compositions were presented in controlled order to overcome the
effect of gradual disappearing of previously formed associations when the new
associations were formed. After the three series of learning steps (400, 300 and 50 sets
of “epochs” for each pattern) the network was able to produce the signals at its
outputs as it is shown in Table 2. The values presented in five consecutive rows of the
table correspond with the network reactions to presentation of five characteristic
spectral patterns. Only the second, third and fifth outputs, trained to be associated
with compositions of type “II” and “IV” respectively, had achieved the ability of
proper determination. The other outputs reactions were false. In the next part the
three series of learning steps (25, 20 and 15 sets of “epochs™ for five patterns) were
performed. The outputs obtained for five testing patterns are shown in Table 3. Each
output was associated with the proper pattern however the values generated as the
reaction for different compositions were not identical. The cause of this effect is the
influence of the random initial setting of the weight coefficients. For large sets of the
neural interconnections the most convenient way is to begin the learning process with
randomised initial parameters and therefore each learning process comes to the
unique final equilibrium and to make an unification of output signals the additional
signal processing is required.

Table 2. Network reactions to five characteristic spectral patterns after three series of learning

pattern signal level at | signal level at | signal level at | signal level at | signal level at
symbol first output second output | third output | fourth output fifth output
neuron neuron neuron neuron neuron
0 0.179 0.184 0.140 0.165 0.114
I 0.179 0.212 0.154 0.177 0.125
1I 0.183 0.202 0.169 0.167 0.126
111 0.179 0.205 0.136 0.244 0.135
v 0.175 0.200 0.137 0.224 0.139
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Table 3. Network reactions to five characteristic spectral patterns after six series of learning

pattern signal level at | signal level at | signal level at | signal level at | signal level at
symbol first output second output | third output fourth output fifth output
neuron neuron neuron neuron neuron

0 0.195 0.236 0.263 0.119 0.211

1 0.186 0.277 0.275 0.130 0.223

11 0.192 0.259 0.311 0.120 0.220

111 0.182 0.202 0.161 0.219 0.221

v 0.174 0.238 0.210 0.216 0.254

6. Conclusions

After completion of learning process where the averaged spectral patterns were
used, reactions of the network for real signal patterns presentation were tested. The
proper outputs for the patterns of type “III” was observed in 67% of all cases
however for other types approx. 60% patterns were classified right. It can be
explained with the considerable dissimilarities of the real patterns and the occurrence
of sample signals representing the combined character of more than one spectral type.
Considering these limitations the adaptative algorithm able to determine different
categories of waveforms or spectral patterns may be useful in practise to examine
large records of acoustic emission signals. The collected sets of data concerning the
different standard concrete compositions can be used to compare with tested samples
during the routine compression strength investigation.
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