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Harmonic wave propagation in thick, cylindrical, three-layered shells of infinite
length was studied. Both the outer layers and the core are composites made of short
strand fiberglass resin, but the planes of isotropy in the outer layers are orthogonal to the
plane of isotropy at the core. A closed form solution of the exact linear equations of
elasticity was sought in terms of Frobenius power series. The influence of the core
thickness on the dynamics of the wave motion is estimated from numerically computed
dispersion curves. Prime consideration was given the asymmetric wave motion and the
different types of waves which can occur are identified over a wide range of wave
numbers.

1. Stress-strain and strain — displacement relationships

Let u;, v; and w; be the orthogonal components of displacement in axial
(x-wise), circumferential (¢@-wise) and radial (z-wise) directions of the i-th
layer, respectively. The stress-strain relationship for the outer layers made
of transversely isotropic material with the plane of isotropy parallel to the
x—r is of the form:

0xi | = [Ciy Ciz Gy 0 0 07 [ea"
Opi | = [Cia Con Ciy 0 0 0 Epi
0| = |Gy Cizi Cy 0 0 0 & {1.1)
Tori | = 0 0 0 Cu 0 0 ||Yeri
Tari | = 0 0 0 0 GCssi 0 ||Vxri
j.' i | = | 0 0 0 0 0 C44_,' _'Yx‘pi_

where Cs5,=1/2(C,;;— C\3), for i=2 (the core). The stress-strain relationship for the
middle layer made of transversely isotropic material with the plane of isotropy
parallel to the x— ¢ plane is given in the form:




312 §. MARKUS and T. NANASI

Faxi = |C Cix Ciyu 0 0 0 Exi

Opi | = |[Ciy Coy Ci 0 0 0 Epi

6n| = |[Cxu Cyu Cyu 0 0 0 Eri (11"
Tori | = 0 .0 0 Cu O 0 Yori

Tl | = 0 0 0 0 Cui 0| |y

T-“'P' = 0 0 0 0 0 C&ﬁ; Vxoi

where Ce,i=1/2 (C,;;— Cyy) for i=1, 3 (inner and outer layers).
The strain-displacement relations in polar coordinates are:
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ow; _ow; Oy
=505 }'xri—a—x T (1.2)
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2. Governing differential equations

Consider a thick shell with homogeneous orthotropic layers. The three-dimen-
sional equilibrium equations for each layer can be expressed as follows [1]:

doy; 1 61:,,,,,-_'_1 a o 0%u;
ox r dp ror Mat)=M5na
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—— (rr xwpi__  CY
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Dimensionless variables have first been introduced in the form r=zH and x= (R,
with H being the total thickness, R, the outer radius of the cylinder, and x = R JH and
A=R,/L, where L is the wavelength The stress-strain and strain-displacement
relationships (1.1)’, (1.1)” and (1.2) are now used to obtain the governing differential
equations of the three-dimensional elasticity in terms of displacement:

[ C 1:‘Dcc +x2Css( D + Dz/ z)+ 1?22 CeeD w]ui +x/2(Cpyi+ Cﬁﬁi)-ch:vi +
+ [K/ 2(Cssi+ C, 1) D+ k(Cyi+ C55i)ch] w;= PiRiDr:uf ’
K/Z(Clg,- + C'“,-)D;,,u,- + [C&s;D;; =+ KZ/ZZCZZ,'D,,,, + (22)
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+ k2C 4Dz + 1/zD,— 1/2%) |v,+ 2.2)
[cont.]
+ [KZ/ 2(Cozi+ Cau)D o+ K2 zH Copi+ C44f)D¢] w,=pRiDv,,
[K(Ci3i+ Cas)D o — K zH Copi+ C441)D¢] v+

+ [ CssiDgr+ k% 22Co4iD g+ K2Cya{ Dy + 1/2D,) — K2[22Cop [w; = pRID W, .

3. Boundary and continuity conditions

For the purpose of this treatment we assume the inside and outside surfaces of the
layered cylinder to be stress free. Furthermore, at the internal interfaces of the
adjacent layers there is equality of each displacement and of the shear and normal
stress components. The stresses are given by the following equations [2]:

0:(2,0.8) = [ Crsdu;+ CTZM (mv;+w)) + Cywi] sin(ﬂ.Rg}cos(mp)e“" (3.1)

To0i(2,9,8) = Cssi(ui — lw,-)cos(ﬂ.Rj)cos(mp)e e

nw;+v;

Tzzrl'(z! fp:é) = CMJ(U; _ )COS(/LR.“_é)Sin(n(;D)emr ’

The boundary and continuity conditions are defined as follows:
o.4(R,)=0, T,u(R,)=0, (R, =0,
Ta(R)=04(R), TaR)=Tua(R)), T:01(R)=T:02(R),
U(R)=1u)(Ry),  v;(R)=0,R),  Wi(R)=w,R),
u,(R)=uyR)), v,(R)=v,(R)), wy(R)=w,(R)),
0A(R)=04(R), Tp(R)=7(R), Tipa(R)=T:53(R,),
o4(R)=0, T.5(R,)=0, T,03(R)=0.

4. Solutions of differential equations

As the system of differential equations (2.2) is singular at z=0, the general
solution is sought in terms of generalized power series (Frobenius series):

j=6 k=

w=7y Ay Y, a2 [sin(AR )cos(np)exp(i2f)], @4.1)
Jj= k=0

1
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j=6 k=

u,-=12 4y Z bkak+“1 [cos(;LRd)sin(n(p)exp(iQt)], “4.1)
i=1 k=0 [cont.]
J=6 k=

wi=Y Ay Y cj?* 4[cos(AR )cos(np)exp(if2t)].
=1 k=0

The coefficients ay;, by, ¢;; and the indices a; in the Frobenius power series are to
be determined such that the differential equations (2.2) are satisfied. The procedure
has been treated in paper [1] and will not be repeated here.

The purpose of this paper is to find the dispersion curves when the cylinder
consists of two types of transversely isotropic materials to form a sandwich
configuration. By inserting the solutions (4.1) into the set of differential equations
(2.2) and the boundary conditions (3.2) and by using relations (3.1) we can
accomplish the task.

The wavespeed ratio ¢, = (2/4)/+/(Cssip), where A is the actual wavenumber in the
longitudinal direction and is implicitly involved in the coefficients of the Frobenius
power series. For a non-trial solution, the determined of the final 18 homogenous
linear algebraic equations must vanish. This results in the dispersion (or frequency)
equation of the form:

| By(n.c,.A..) | =0, for i, j=1, 2,..18. 4.2)

5. Numerical evaluation and discussion of results

The dispersion equation (4.2) is a function of all the geometrical and material
parameters of the layered shell. We have considered a rather thick shell in which
x=R,/H=4 for all computations. The only geometrical parametr varied is the ratio
of the core thickness to the total thickness H of the shell, ph2=h,/(2h,+h,). Extreme
values of the parameter ph2 are ph2 =0 (corresponding to a single layered shell made
of the material defined by Eq. (1a)) and ph2=1 (corresponding to a single layered
shell made of material defined by Eq. (1b)). The matrices of elastic constants are given
as follows:

Material according to (1.1)": Material according to (1.1)"
29 7 0 0 O 2.7 9 0 0 O
9 217 0 0 O 7 10 7 0 0 O
7 7 10 0 0 O 9 721 0 0 O
0 0 0 5 0 0 00 0 5 0 0
0 0 0 0 5 0 0 0 0 0 6 0

10 0 0 0 0 6 L0 0 0 0 0 5]

These values have been kept constant in the numerical experiment. With this
arrangement the dispersion equation is a function of only four nondimensional
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Fig. 1. First three branches of the dispersion curves c,, (1, ph2) for n=1, 2, 3, 6. Solid lines: ph2 =0, dotted
lines — ph2=1.

parameters: the circumferential wavenumber #, longitudinal wavenumber 1, wavespe-
ed c,, and the nondimensional core thickness ratio ph2.

In actual calculation the left side of the dispersion equation (4.2) has been
evaluated for fixed values of n, A and ph2 cover a range of wavespeeds c,. The
interval have been sought in which a sign change was encountered. To identify the
precise roots, the bisection method was used. In most search areas near the roots
the values of the frequency determinant fluctuated violently within limits as large as
0%

The first three branches of the dispersion curves for n=1, 2, 3 and 6 are shown in
Fig. 1. The solid lines correspond to ph2 =0 (the limiting case of single layered shell
made of material according to (1.1)"). Dotted lines correspond to ph2= 1 which is the
other limiting case for a single layered shell made of material according to (1.1)".




316 §. MARKUS and T. NANASI

These results show that it is possible to influence the dynamic properties of
sandwich shells even when they are built up of a single composite material having
different orientations in the involved layers.
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