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In this paper the purpose and manner of conducting the process of asymptotic
homogenization of a type 1-3 composite structure are presented. The formulation of the
homogenization process is reduced to numerical static analysis of an elementary symmet-
ry cell of the composite with generalized forces applied at the boundaries of material
phases. It is demonstrated that the effective values of the material tensors of the
composite depend not only on the tensors of the component materials, but also on
variability course of the aforementioned tensors defined over the volume of the solid of
an elementary symmetry unit of the composite. The latter factor becomes particularly
significant in the case of a step-like discontinuity which occurs, e.g., in the type 1-3
composite structure.

1. Introduction

A type 1-3 composite piezoelectric and polymer ultrasound transducer (Fig. 1),
used in ultrasonic medical diagnosis, is characterized by a number of desirable
properties compared with a typical piezoceramic transducer made from lead titanate
and zirconate.

These properties are as follows:

1 — Acoustic impedance of the composite equal to 8-10 MRayl is matched
better, acoustically to anatomical tissue with impedance of 1.5 MRayl than piezo-
ceramics with impedance of 33 MRayl.
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D =20 mm H=

B =200 um S =240 pm
Fig. 1. Structure of the type 1-3 composite transducer.

2 — Reduction of the energy coefficient of the reflection at the transducer-tissue
boundary (which results from property 1), from 85% for piezoceramics to 50% for
the composite.

3 — Energy efficiency of the transducer, measured by the value of the elect-
romechanical coupling coefficient, is half as high for the composite (60%) than for
the piezoceramics (40%).

4 — The greater broad-band width of the composite transducer than that of the
piezoceramic one because it is not necessary to use thin quaterwave layers for the
reason given in point 1.

5 — The technological workability of forming composite solids with a predeter-
mined curvature radius, eliminating the necessity of using acoustic lenses if it is
necessary to obtain focussed heads.

6 — The possibility of making a dynamically focussed head without having

to work the material of the transducer itself — by depositing one of the
electrodes on the composite transducer, in the form of insulated concentric
metallized rings.
The analytical calculation of the electroacoustic quantities of the composite trans-
ducer is extremely difficult because all the three dimensions of the smallest symmetry
element of the transducer are commensurable with the length of the transmitted
longitudinal ultrasonic wave (a threedimensional problem).

An alternative approach is based on the finite element method (FEM) in which
the calculations of the electromechanical coupling coefficient consist in the deter-
mination of the energy quantities of both the electromagnetic field and the stress and
strain fields in the transducer solid.

In practice, the energy quantities can be calculated using the FEM only for
a small fragment of the composite soild because of the second power increasing
order of magnitude of the rigidity matrix as the total number of degrees of freedom
increases. It is possbile to perform, on the other hand, a dynamic analysis of the
whole composite solid by dividing the numerical problem into the two following
stages:
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I — A static analysis of the elementary symmetry unit of the composite, leading to
the determination of substitute material tensors of a hypothetical homogeneous
structure. .

2 — A dynamic analysis of a substitute homogenous composite structure of the
whole solid [2]. In the proposed, modified process of the numerical solution, the
FEM mesh nodes is extended twice, and independently of one another. Each time
the FEM network generated in this way reaches a degree of densification which is
upper-bound only by the order of the global rigidity matrix permitted by the
computing applied environment. At the first stage, it applies only to the volume
limited to a single elementary cell, and the large density of the FEM network on the
elementary volume means high accuracy of calculations of substitute material
tensors. At the next homogeneous as a whole, and the homogenized material does
not require the necessary densification of the FEM network close to the disconti-
nuity zones — which would be necessary in the composite. As an effect, it becomes
possible to perform a dynamic analysis of the whole solid with a much reduced total
number of degrees of freedom relative to the unmodified FEM solution. This is
achieved without diminishing the calculation accuracy.

2. Asymptotic homogenization of the elementary cell of a transducer

Fig. 2. The idea of homogenization of the elementary cell of the composite transducer.

The purpose of homogenization of the elementary cell of a composite transducer
(Fig. 2) is to determine the substitute elementary symmetry unit built of hypothetical
homogeneous material. This material shows values of effective material tensors
related to:

1 — The averaged values of the tensors of the component materials of the
composite

2 — A step-like character of changes in the physical properties at the boundaries
of the material phases in the volume of the elementary symmetry unit of the
composite solid (3).

The process of homogenization of the composite soild can begin with asymp-
totic transformation [4]. A composite soild with a periodical structure consisting of
the volume € is considered (Fig. 3). The object under consideration is only the
solid £ with its total size much larger than that of its single elementary symmetry
unit Y. ’
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1
A

Fig. 3. A transformation of the coordinate system.
(31> %2> ¥3) — the global coordinate system,
(1, ¥2, y3) — the local coordinate system,
£ - the composite solid,
Y - the symmetry element.

The matrix notation will be employed throughout in the text. The tensorial
notation will be used at places with specific comments, summation over twice
repeated indices being employed. The above assumption is defined in equation (1),
where dia (¥) is the characteristic dimension of the solid (%).

dia(Y)

A= dia(©) «1. (1)

—=Q - generalized forces
s=u==s - boundary of material phases

Fig. 4. Static analysis with the division 4x4x3 of the elementary.

The assumption formulated in equation (1) provides the basis for an asymptotic
analysis of the solid of composite material with the parameter A tending to zero
(Fig. 3) [6].

In keeping with Fig. 4, the coordinate system is transformed from the global
system of the solid (xi, x2, x3) to the local one (y,, y», y3) related to a single symmetry
element of the composite. In the course of the transformation, the scale of the axes
of the coordinate system changes, as shown by equation (3).

X =X; + i, (2
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{xi}
et 3
v =" ©
In equation (2), x; is the 'tracking vector, while in (3) {x;} and {y;} are the lengths of
unit vectors of the axes x; and y;, respectively.
Considering (2) and (3), the partial derivative with respect to the variable x; can
be written in the form of (4),
) 0

1
x ox A

)
o @)

In the further analysis, the symmetrical gradient operator sym V. (5) and the
divergence operator div,, (6) will be applied

— , —
) 0 0
0
a—xz 0
0
0 =
axl
Sym v-\'['= 0 a 6 3 (5)
6x3 ﬁx;
a 0
ax; axl
0 0
ax2 axl
0 0 0
0x, ' é Ox; 0Ox,
0 0 ad
dvg= | * mg 0 @m O Em | ©)
0 0 0
0 0 a—x3 a—xz a—xl 0

The notation of the partial derivative with respect to the variable x; in (4) determines
the form of the Nabel operator (7), the symmetrical gradient operator (8), the
gradient operator (9) and the divergence operator (10).

1
in=v3;i+1vyi, (7

1
symV,, = symv,;l.-k}symv,,i, (8)
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1
grad, = grad;, + zgrad yyo 9)
divs, = divi 4 2 div,, (10)

In keeping with (11) and (12), the two independent variables of the electroacoustic
field, the displacement u and the potential @, can be expanded into convergent
asymptotic expansions:

u(x,y) =uo(x.y)+ A (x,y)+ 2w (x,¥)+ ..., (11)

Do(x,y) = Po(X,y)+ AP (X, )+ 22D (X, y)+ ... (12)

The problem of the electroacoustic field wave propagation in the composite material
containing a piezoelectric component is formulated in the form of a system of six
equations (13) — (18):

div,T(x, y) =p(»u(x, ), (13)
div, D (%, y) =0, (14)
T(x, y) = c(»)S(x, ) — e(NE(x, ), (15)
D(x,y)=e(»)S(x ) +e(NE(x, y), (16)
S(x, y) = sym.u(x, y), (17)
E(X, )= —V.®(x, ), (18)

where u is the vector of mechanical displacement, @ is the scalar of the electric
potential, S is the displacement tensor, T is the stress tensor, E is the vector of the
intensity of the electric field, D is the vector of electric induction, p is the scalar of
mass density, ¢ is the tensor of mechanical rigidity, e is the piezoelectric tensor and
¢ is the dielectric tensor.

Thus, equation (13) is a notation of Newton’s second principle of dynamics for
a continuous medium. Equation (14) is one of four Maxwell equations, stating that
in the volume of the composite solid there are no free electric charges. Dependencies
(15) and (16) contain a notation of the simple and converse piezoelectric effects
which take place in the composite solid. Through (15) and (16), in the piezoelectric
material there occurs the effect of coupling of the stresses and strains field with the
electromagnetic one (through the nonzero tensor e), which thus form one elect-
roacoustic field. Dependence (17) is a principle which is generally valid in the
continuous medium mechanics, linking the mechanical quantities of strain and
displacement. Equation (18) determines the relation between the quantities of the
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electric field the intensity and the potential. The expansion of the two independent
variables of the electroacoustic field, the mechanical displacement u and the electric
potential @, into convergent asymptotic series with respect to A implies asymptotic
expansions of all the derivative quantities (19) — (22):

S(%, y)= A1S4(%, )+ A1 8.1 (Z )+ So(X, 1)+ AS1(X, )+ 2282 (X, )+ ... (19)
T(F, y) = 12T3(% p)+ A T (%, 9)+ To(Z p) + ATH(%, )+ A2 To (X%, ) +...  (20)
E(%, ) = L2Eo(%, )+ A Eo (% )+ Eo(Zy) + AE(% p) + A2 E(X,3)+ ...  (21)
D (X, y)=A2D(X, )+ ' D (X, 3)+ Do(%, )+ AD(Z, )+ A2Dy(X, )+ ... (22)

The asymptotic expansions of equations (19) —(22) will also contain terms involving
the powers of A equal to minus one and minus two. It results from the fact that, in
keeping with (17, 18 and 15, 16), all the derivatives (19) —(22) are functions od the
mechanical displacement « and the electric potential @ acted by the differential
operators (7)—(10). In turn, operators (7)— (10) contain the partial derivatives (5, 6)
in their structure. On the other hand, the partial derivatives (4) contain a component
including the fraction 1/4. It is exactly the component that causes decreasing order of
¥ by one. '

Subsequently the values of the u, @, S, T, E, D in equations (13) — (18) can be
replaced by their infinite power expansions (11) —(12), (19) - (22). Then on both sides
of the system of equations (13-18), there are only infinite power series with the given
small parameter 1. The terms on both sides of the equations related to the same
powers of A are equal to one another. The terms containing the zero power of 4 (23)
— (28) can be compared:

So(X, y) = symV ;i (X, ¥), (23)

Ey (%, y)=-Vi® (X, y)— V,2(X. »), (24)
To(X, y) = c(3)So(%, y)—e(NE(X, ¥) 25
Dy(X, y) = e(¥)So(X, ¥) — e(»)Ew(X. y) (26)
div,T\(X, y) +diviTo(X, y) = p(p)ix(X, y), @7
div,D\(%, y)+diviDo(%, ¥) = 0. (28)

Then, the same can be done for the terms which contain the power 4 equal to minus
one (29) — (34):

S.(%, y) = symV,uo(Zx, y), (29)
E—l(}i Y) = 'vyd}&](“—t' y): (30)
T.(%, y) = c(»)S.(X, y) — e(DEAX, »), (31)

D.(%, y) = e(y)Su(X, y)—e(ME(X. 1), (32)
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div,To(x, y)+divi:T, (X, y) =0, (33)
div,Do( %, y)+diveD, (%, y) =0, (34)

Finally, the terms containing the power of A equal to minus two (35)— (40) can be
compared:

Sa(x, y) =0, (35)
Ey(x. y)=0, (36)
Ty(%, ) =0, (37
Dy(%, ) =0, (38)
div, T, (%, y) =0, (39)
div,D, (%, y) =0. (40)

The following two important dependencies result from equations (39)—(40) and
(29)—(30):

diVy[C(y) sym V,uo(X, y)—e(y) V,®o(X, y)] =0, @1)

divy[e(y)symvyuﬂ(}! J’)—E(J’)Vyd%()_fn y):| = 07 (42)

The system of equations (41)—(42) is satisfied in terms of identity only when the
dependencies specified in equations (43 — 44) occur:

uo(X, y) = uo(x), 43)
Po(X, y) = Po(X). (44)

From (43)—(44), an important conclusion results concerning the terms of the zero
order of the expansion of the two independent variables of the electroacoustic field,
the displacement u (11) and the potential & (12), into power series. On the basis (43)
—(44), it can be stated that these terms are independent of the local variable ).

Considering dependencies (43)—(44) in the system of equations (29)— (34), the
following system of equations is obtained (45)— (50):

Si(x,y)=0, CH))
Ei(x,y59)=0, (46)
T.(x,y) =0, @7
D.(x,y) =0, (48)
div,To(x, y) =0, 49)
div,Dy(%, ¥) = 0. . (50)

For a value of 2 much lower than unity (for a solid with the geometry shown in Fig. 1,
A is approximately equal to 0.011), it is permissible to neglect in the asymptotic
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expansion of any electroacoustic quantity ¥ all terms, apart from A, related to the
zero power (1). This means the approximation of the exact value ¥ of the term ¥, of
its asymptotic expansion. Then, the effecxtive value Wg(x) of any electroacoustic
quantity ¥ on the volume of the symmetry element Y of the asymptotic expansion
¥ (45). The volume of the symmetry element Y is designated as vol(Y).

_ _ 1
(D)= || Yo (% ») |l L (%, y)dY. (51)

As a result of applying operator (51), on both sides, in the system of equations (13)
—(18), the system of equations (52)—(57), describing the relations between the
effective quantities, that is, those averaged over the volume of the elementary cell Y,
according to formula (45). The sought quantities are ¢, ¢, ¢¥f — the effective
values of the material tensors of the substitute homogeneous piezoelectric material
with respect to the two-component composite in question.

div,Ts(X) = pii (%), (52)
div,Ds(F) =0, (53)

Te(x) = CEFSE(})—GEFEE(RL (54)
Dg(x) = e Seg(x) + e Eg(x), (55)
S5(%) = sym V,uz (%), (56)
Ex(X) = -V,®s(%). (57)

From equations (23) — (24), (43) — (44) and (56) — (57), the following dependencies
(58) — (59) result:

So(X, y) = Se(x)+symV,ui (X, y), (58)

Ey(%, y) = Eg(x)— V, ®1(X, )), (59)

From equations ((49) —(50), (23) — (26) and (58) —(59)), the following dependencies (60)
— (61) result:

divy[f(y) -sym Vyuy (X, y)—e(y) Vy@i(X, y)} = -div,c(y) - Se(x) +

+ div,e(y) - Ex(X), (60)
divy[E(y)-symVyul(i y) +e(y) V@i (%, y)J = -div,e(y) - Se(x)+
+divye(y) - Ex(X). (61)

In keeping with equations (62), (63), the following auxiliary tensors A(y), B(y), G(y),
H(y), which mutually link u,(x, y), @ (x, y) with Sg(x), Eg(x), are then derived:

u (X, y) = A(y)* Se(X)+ B(y) Ex(X), (62)
Pi(X, y) = G(y)  Se(x) +H(y)* Ex(%) . (63)
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From equations (60), (61), (62), (63), the system of equations (64) — (67) is obtained,
the solution of which are the values of the auxiliary quantities of the tensors A(y),
B(y), G(y), H(y):

divy[c(y)- symV,A (y)—e () VyG(Y)] = -div,c(), (64)
div, _e(y) -sym V, A (y)+&(y)- VyG(y)] = -div,e(y), (65)
div, —C(y) -symV,B(y)—e(y)- V,H (y)} =-div,e(y), (66)
div, _e(ry) -sym V,B(y)+&(y) VyH(y)] =-div,&(y). (67)

The system of equations (64)—(67) can be expressed using the tensor notation
(68)—(71):

[,k A ey G{’;} S (68)
& 8]

Cikl A‘;:,'i'ﬁik GT:‘ = =Cipg,is (69)
—c,-jﬂ BL— ekgHij| = €pijj» (70)
- .

ikt Bil,'f“ SikHiq] . = -Cip.i - (71)

Equations (64)—(67) and (68)—(71) are static equations (Fig. 3) with generalized
excitations in the form of generalized forces (72)—(73) and generalized charges
(74)—(75) as well as generalized inputs in the form of generalized forces (76)— (77)
and generalized charges (78)—(79) shown below.

The generalized excitations in terms of generalized forces (72)—(73) are:

—kl ki kil
Tl’j = CymAqu— epij‘p ’ (72)
e k k
Tij = Cijpq Bp.q b ep,-jHﬁ . (73)

The generalized response expressed in context of generalized charges (74)—(75) are:
D, = eiA, +856,. . (74)

D, = ¢,,B, +5,H.. (75)
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The generalized inputs in the form of generalized forces (76)—(77) are as follows:
where n; = {n,, n,, n;} is the vector of the external normal vector.

(F)pfz[lc.-,-,,ql} .n,, (76)
(F)ff[lem I} “m, (77)
The generalized inputs in the form of generalized charges (78)—(79) are:
(Q)“'s[le.—,,Er I} ‘n;, (78)
(Q)”"E[ls,-,,q I] ‘n,. (79)

The static problem formulated in the form of the equation of statics (68)—(71) is
illustrated in Fig. 4. For the system of equations (68)—(71), predetermined loads on
the boundaries of material phases on the volume of the symmetry element Y of the
composite solid were determined in the form of generalized forces (76)—(77) and
generalized charges (78)—(79) which are induced by a step-like change in the values
of the material tensors on the boundaries of the phases in the volume of the
aformentioned element Y (Fig. 3). The boundary conditions mentioned above are
reflected in the form of the right-hand side of the system of equations (64)—(67) and
(68)—(71).

The mechanical rigidity matrices for piezoceramics and polymers have the form:

PIEZOCERAMICS POLYMERS

ErVCull Ciizz cis 0 0 0 Ciin Cri2z iz 0 0 0

i Cin cum 0 0 0 Crn ciz 0 0 0

i Ci;s 0 0 0 . . i Cax 0 0 O

i . Cas 0 0 o 0 0

\ symmetry . . Can 0 symmetry . . Cm 0
‘_ . Cia12 | - F - . 01212_

The dielectric rigidity matrices for piezoceramics and polymers:

PIEZOCERAMICS POLYMERS
€ 0 0 &1 0 0_
ey 0 en O

symmetry . £33 symmetry . &1
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The piezoelectric rigidity matrices for piezoceramics and polymers:

PIEZOCERAMICS

0 €3
0 0 €311
0 0 €133
0 exn 0

em 0 0
0 0 0

)

In view of the form of the material tensors ¢, ek, &x for polarized piezoceramics
(orthotropic material) and polymers (isotropic properties), most terms in the matrix
representation of the aformentioned tensors beyond the main diagonal are zero in
value. Equations (80)—(82) show the proposed form of the formula for the effective
calculation of the values of the material tensors ¢, ef, ¢ff for the substitute
homogeneous piezoelectric material.

{cl’.‘l'.’}

Fig. 5. Six elementary static related to the load of the elementary symmetry unit of the composite caused
by a step-like change in the value of the material tensors at the boundaries of material phases.
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EF =kl
Ciikr = legully + ”Tjj Iy, (80)
g __
e, = legly+1D]ly, @81)
EF — —
e = lewly+IT Iy = - legly+ 1Dy (82)

In equations (80)—(82), two terms were separated on the right-hand side of each
equation. The first is related to the weighted average of the value of the material
tensors of the composite components on the volume of the solid of the elementary
cell. The other illustrates, in turn, the impact of the step-like discontinuity of the
value of the aforementioned tensors on the volume of the solid in question.

In keeping with equations (76)—(79), the static analysis shown in Fig. 4 is
reduced to the solution of six independent static problems with load cases presented
in Fig. 5.

On the basis of (80)—(82), calculations of the values of the components of the
tensors were made and they are listed in Table 1.

Table 1. Calculations of the values of the components of the material tensors of piezoceramics, an epoxy
resin and the composite made from two afromentioned materials.

Piezoceramics Epoxy resin Cﬁg:;iﬁ::ﬁi?t

Cu kg/(m*s?) " 12.1%10" 7.4410° 3.09*10"
iz kg/(m*s?) 7.5%10° 1.4*10% 1.65*101°
s kg/(m*s?) 7.7%101 1.4*10% 1.63*10"
Cx kg/(m*s?) 7.3*10% 7.4*10'° 2.91%10"
Cus kg/(m*s?) 2.1*10" 4.7410" 9.09*10'°
Ces kg/(m*s?) 2.3*10% 4.7*10" 8.49%10'°
- A% kg*m® 14.6*10° 3.53*10™M 1.08*10°
£33 A™s'kg*m® 15*10° 3.53*10™M 1.48*10°
es A*s/m? -5.4 0 -1.66

€ A*s/m? 15.1 i« 3.19

s A*s/m? 12.3 0 2.60
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3. Dynamic analysis of the electromechanical coupling coefficient
The values of the electromechanical coupling coefficient k£ are calculated using
a numerical dynamic analysis involving direct integration within the framework of

the finite element method:

E,

k = (83)
1
En=, @Kia®+ K, u), (84)
1
E,= 5 HIKWH ’ (85)
1
E;= 5 ¢’K¢¢¢ s (86)

where E,, is the electromechanical energy, Ey is the energy of the field of strains and
stresses, E, is the electric field energy, u is the displacement matrix, @ is the potential
matrix, K., is the mechanical matrix rigidity, Kae is the dielectric rigidity matrix and
K' is the matrix transposed with respect to the matrix K.

The values of the electromechanical coupling coefficient k were calculated from
formula (98) for the composite transducer (Fig. 1) and the PZT transcuder with the
same electrical resonance frequency and disk diameter. The results are listed in Table 2.

Table 2. Values of the electromechanical coupling coefficient k for the piezoceramic and composite
transducers previously subjected to homogenization.

Transd . Electrical resonance Electromechanical coupling
SUHBCUIEE e frequency MHz coefficient k&
Piezoceramics 1.80 0.48

Composite previously 1.86 0.69

subjected to homogenization

4. Conclusions

The approximation of the values of the effective material tensors of hypothetical
homogeneous material only by weighted averages of its components involves the error
related to neglecting the impact of a step-like change (in the case of the type 1-3
composite) in the physical properties at the boundaries of the material phases in the
volume of the elementary symmetry unit of the composite. The division of the numerical
calculations into two independent stages (static and dynamic analyses) makes it possible
to carry them out for the whole composite solid, since in this way the limitation imposed
by the permissible order of the global rigidity matrix of the problem is bypassed. The
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calculations confirmed an approximately 50% increase in the value of the elect-
romechanical coupling coefficient of the composite with respect to the piezoceramics.
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