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The paper discusses the deformation of the instantaneous frequency of signals with
linear and jump frequency changes propagating in a room. The instantaneous frequency
deformation in a room has been compared on the basis of theoretical and experimental data.
It was found out that deformation of the instantaneous frequency for linear and jump
frequency changes reached extreme value at the minima of the amplitude of the resultant
signal. For linear frequency changes the deformation is proportional to the rate of frequency
changes, and to the delay time of the reflected wave. In turn, for jump frequency changes, the
deformation increase with an increase in the jump value. The instantaneous frequency
reaches final value after a time equal to the reverbation time of a room.

1. Introduction

An acoustic signal propagating in a room is deformed both in the amplitude and
frequency domains. Sound deformations in a room in the amplitude domain has been
discussed in the literature [2, 3, 4, 6]. Results of the investigations led to the
development of an objective method of speech intelligibility in a room, called the
RASTI method [4]. This method is based on the concept of the Modulation Transfer
Function (MTF) adopted to the room acoustics [3]. The (MTF) represents the
modulation depth reduction as a function of modulation frequency. So far much less
attention has been devoted to signal distortion by the acoustical parameters of a room
in the frequency domain. The problem is important with reference to the propagation
in a room of real sounds such as speech and music which are characterized by
a considerable variability in the frequency domain. Our first approach to the problem
[8, 9, 10, 12, 14] indicated the existence of a number of interesing effects. The basic
issue when evaluating effects connected with sound deformation in a room is to get
quantitative relations between the transmitted sound and the sound received in
a certain points of a room. A preliminary analysis of the problem has been discussed
in paper [7]. In the theoretical part of the paper general dependencies between the
transmitted and received sound in the aspect of a spectral-correlational analysis were
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given. In the experimental part, changes in the spectral structure of complex sounds,
propagating in selected rooms (models), with different spatial configuration and
different reverberation times were determined. It has been found out that the value of
changes is different in growth, steady state and decay process of a signal and depends
on the location of the measurement point and the type of analysed sounds.

Sound deformation in a room was also discussed in the aspect of the mu-
Iti-dimensional space theory [8, 9]. Assuming that the space of acoustic states of
a room affects the signal space, producing as a result its deformation, relations
between elements of these spaces were analyzed. We were also considering the
possibilities of determining acoustic states of a room on the basis of the classification
of sound deformation states.

Another interesting aspect of the frequency sound structure deformation in
a room is the problem of changes in the so-called sound instantaneous frequency in
the process of the growth and decay of signal [10, 14]. Generally, the resultant
acoustic pressure in the sound growth or decay in a room can be treated as the signal
of an amplitude and phase changeable time, which approximately can be expressed as
follows:

p(8)=p(t) cos o(1), (1.1)

where: p(f) — acoustic pressure amplitude, ¢(f) — instantaneous phase of acoustic
pressure.
The instantaneous phase ¢(f) of the resultant signal can be expressed as:

p(t)=wt+ 1), (1.2)

where: w, — frequency of the signal transmitted into the room, f{f) — the function
,;modulating” the phase of the signal transmitted into the room.
Function f{f) represents jump changes of the phase of the resultant signal, resulting
from the summation of the direct sound and successive reflections with different
phase shifts. These jump phase changes cause a change in the time interval between
successive zero crossings of the resultant signal.

On setting the instantaneous phase derivative in relation to time we get a value
which characterizes the rate of changes of that phase, this being called instantaneous
frequency:

_do(t) _d SOV )
ﬂ)(f)—T—-dt ﬂ)of‘f‘ﬂt)]——wu'f'—dft_, (13)
or otherwise 1 do(r)
A=5~ar

More details on the instantaneous frequency and its measurability are given in
papers [1, 10]. It is interesting to note that in the literature [13] one may also find
another definition of instantaneous frequency, based on the analysis of the number of



SIGNAL IN A ROOM 137

zero crossings of the real signal investigated. In this case instantaneous frequency is
defined as the ratio of the number of zero crossings of this signal, determined over
some time interval Az, and the value of this interval. This ratio corresponds to the
mean density of zeros of the signal over this interval and is sometimes called Rice

frequency (f3):

. N

T—ew

where N is the number of ,,positive” or ,,negative” zero crossings of the signal and At
is the averaging time interval.

According to (1.3), the sound instantaneous frequency, measured in the growth or
decay process, is not equal to the frequency generated into the room but varies
(fluctuates) around that value in agreement with the derivative of df{r)/d. Quantity
w(?) as defined by expression (1.3) is thus a theoretical one, as it determines the value
of the instantaneous frequency at a given time ¢, which cannot be implementend in
experimental conditions. In these conditions, in expression (1.3) the differential
quantities were replaced by the difference ones, i.e.

4o
w(dt)= yTh (1.4)

In keeping with expression (1.4), the measure of the instantaneous frequency of
the signal is the ratio of its phase change 4¢, occurring in the time interval 4¢, over
the duration of this interval. It has been generally stated that observed changes in the
instantaneous frequency in a room have a random character and are within the range
of several Hz. In a few special cases they can reach much greater values [10, 14].

2. Signal with linearly changing frequency

Let us consider a case when a sinusoidal signal, whose frequency is increasing
linearly, is transmitted into the room, i.e.

o(f)=w,+ at, (2.5)

where: w, — initial frequency, & — rate of frequency changes.

Let us assume that at a measuring point of the room there is a superposition of the
direct wave and the first reflected wave which will reach the measuring point with
a certain delay 4t (Fig.1).

Let us notice that as soon as the reflected wave reaches the measuring point, at any
time ¢ (e.g. 500 or 800 ms cf. Fig.1) there is a constant frequency difference between
the direct and reflected waves, equal 4f=10 Hz. In this case an effect similar to
beating will occur. However, the effect is more complex because that frequency
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Fig. 1. Changes in instantaneous frequency in time for a direct wave f,(f) and reflected wave f,(¢) (for
clarity, time delay of the reflected wave equals A¢=100 ms).

variations in time are continuous. For the assumed character of frequency changes
the signal can be written as follows:
: ot?
x()=xsin(w t+ @+ 7). (2.6)

In the case of the direct wave and the reflected wave, the linear frequency change
can be expressed as follows:

+ direct wave: w,(f)=w,+af,

» reflected wave: w (f)=w +a(t— A?).
The resultant signal at the measuring point in the room is equal:

Xees(£) = X 810 (1)) + X, 8000, (1)),

where:x ,,x, — amplitudes of the direct and reflected waves, ®4(1),9,(t) — phases of
the direct and reflected waves. '

Phases of the direct and reflected waves, given that the initial phase ¢ =0, can be
expressed as follows:

ot?
Q) =wot+—, 2.7
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ot?

rp,,(t)=coot+-2— — adt t. (2.8)

The output signal resulting from the superposition of the direct and reflected
waves can be written in the following form:

Xees(£) = A(D)sin(w t — B(1)), (2.9)

where: wt — ®(f) = ®:s(f) — phase of the resultant signal.

Considering the amplitudes and phases for the direct and reflected waves,
following trigonometric transformations, we find formulae describing temporal
changes of the instantaneous frequency and amplitude envelope. Changes in the
frequency of the resultant signal:

APee(t) adt(6%+ dcos(aAdtt))

el £) = f— : ;
() = T O T 55 cos(udt) e
Changes in the amplitude envelope:
A(f)=x,,/1+0+25 cos(a4tr), (2.11)

where é — the ratio of amplitudes of the reflected and the direct waves.

It can be seen in expression (2.10) that changes in the instantaneous frequency of
the resultant signal occuring as a result of the superposition of two signals with
linearly growing frequency have a more complex character than in the case with the
elementary effect of beating. The amplitude envelope variation of the resultant signal
is like the beating of two sinusoidal signals with a constant frequency difference.

3. Signal with jump changes of frequency

Let ut consider a case of a sinusiodal signal propagation in a room for which at
a certain time a frequency jump appears. Such a change can be obtained by means of
frequency modulation of the signal by a rectangular wave. The modulated signal x()
has the form:

Tiz i 3
x(t)=xosin[ j’ (m1+Aw1(t))dt]=xosin[ Tf m(:)a'r], (3.1)
=Tf2 +Tfa

where:
o(f)=w,+ dwl(f),

1= 1 for —T/2<t<0
10 for 0<t<T)2 °
do =w,—wo,,

T 1

=f",
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and w, — the initial frequency value (i.e. before the jump), w, — the final frequency
value (after the jump), f,, — frequency of the rectangular modulation wave, 4w/2
— frequency deviation.

The conventional value of the carrier frequency of FM signal will be equal to:

dw
UJO = CUI -+ —5-
For relatively low frequency values of the rectangular signal (f,,—0) in the spectrum
of the frequency modulated signal only two components with frequencies o, + dw/2
and w, — Aw/2 can be distinguished. If a sinusoidal signal with a constant amplitude
A and phase ¢ is transmitted into the room, then this signal, in a steady state, for
frequency w, can be represented in the following form:

x()=4 | H(jw)) | sin(w,?), 3.2)
Similary for frequency w, one can write:
y(t)=A4 | H(jw,) | sin(w,?), (3.3)

where: | H(jw) | — the value of amplitude frequency response for frequency w.

Let us further assume that at time /=0 a signal frequency jump from value w, to value
w, occurs. After the frequency jump, given the assumption of an exponential sound
decay, signal amplitude, for frequency w, will decrease in accordance with function:

x()=A4 | H(jw,) | exp(—kf)sin(w,?). (3.4)
In turn, signal amplitude, for frequency w, will increase according to the form:
yH)=4 | H(jo,) | [1—exp(—ki)]sin(w,?), (3.5)

where k=13.8/T,,, T,, — room reverberation time for 60 dB decay. Let us assume
that in the frequency range in question, in which the jump occurs, the dependence of
the reverberation time on frequency is a slow-changing function.

At a certain time after the frequency jump, there will be a superposition of the
decaying signal of frequency w, and the growing signal of frequency w,. The resultant

signal will be
2(f)=X exp(—kt)sin(w,f) + ¥ [1 —exp(—kf)]sin(w,?). (3.7
where X,=4 | H(jw)) | , Y,=4 | H(jw,) |
Next, we transform equation (3.7) to the following form:
2(t) = R(sin(p,(1)),

where R(f) — amplitude envelope of the resultant signal, ¢ (f) — phase of the
resultant signal.
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After trigonometric transformations we get the following formula describing
changes in instantaneous frequency after the frequency jump:

do (1) _
dt

w(t)= w,+ {YEA w(l —exp(—kt)y*+ X Y exp(— ki)

(3.8)

x [ksin(4w?)+ Aw(1 —exp(— kt))COSI(A wt)]} 20

where

R(t)= \/ Xoexp(—2kt)+ Y1 —exp(—ki))*+2X, Y exp(— kt)(1 —exp(— kt))cos(4dwt)

— amplitude envelope after frequency jump.

On the basis of expression (3.8), calculations of changes of instantaneous
frequency and the amplitude envelope of the signal after the frequency jump were
made. The results of calculations allow to analyze these changes in detail with respect
to such parameters as: the range of frequency jump Af, room reverberation time
T and quantity 6= | H(jw,) | / | H(jo,) | .

4. Results of calculations and experiment for linear frequency changes

In order to check the machanism of the instantaneous frequency changes for
linear FM, computer calculations were performed. For clarity of interpretation we
took into account the superposition of direct and reflected waves. The aim of the
calculations was to show how the rate of frequency changes, amplitude and time
relations influence the resultant signal of instantaneous frequency changes.

Figures 2 and 3 show changes in frequency and the amplitude envelope for the ratio
of amplitudes of the reflected wave to the direct wave 6 =0.85, delay of the reflected wave
At=20ms and the rate of frequency changes a, respectively 250Hz/s and — 250Hz/s.

Characteristic deflections of instantaneous frequency from the linear dependence,
indicated in Fig.2 and 3 by a dotted line, can be observed. Minima of the amplitude
envelope correspond to extreme frequency deflections, irrespective of their direction.

It was interesting to find out to what extent the instantaneous frequency changes
depend on such parameters: « — rate of frequency changes, & — the ratio of the
amplitudes of the reflected wave to the direct wave, At — time delay of the reflected
wave. For this purpose, computer calculations were made whose results are shown in
Fig. 4—6. The results, for clarity of the drawings, only refer to the deformation
introduced as a result of the superposition which in reality occurs at the background
of the linear frequency (cf. Fig. 2—3).

Analyzing the data shown in Fig. 2, 3 and 8 one can generally say that the minima
of the amplitude envelope correspond to considerable deflections of the signal
instantaneous frequency. The value of the deflection (Fig. 4 —8) depends on the rate
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Fig. 2. Computer calculations of changes in instantaneous frequency and amplitude for a signal with
a linearly growing frequency, for =250 Hz/s, =0.85 and 4¢=20 ms.

of frequency changes, delay time of the reflected wave and the ratio of the amplitudes of
the reflected wave to the directed wave. The frequency for which extreme deflection of
frequency occurs depends linearly on the product of the rate of frequency changes « and
time dealy A1; this frequency corresponds to the frequency of changes in the amplitude
envelope (Fig. 2— 3). Furthermore, one can notice that with the increase in the amplitude
ratio & (Fig.5), deflections of instantaneous frequency lose their quasi-sinusoidal
character and for large values of § assume the form of short, one-sided deflections of high
value. The direction of extreme frequency changes depends on the direction of frequency
changes in the direct signal (sign at &) and whether coefficient 6 is smaller or greater than
1. The time interval in which single frequency deflection occurs is inversely proportional
to the rate of frequency changes, echo delay time, and the amplitude ratio 4.

The above results pertaining to instantaneous frequency changes refer to
a relatively simple case of the superposition of a direct wave with one reflected wave.
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Fig. 3. Computer calculations of changes in instantaneous frequency and amplitude for a signal with
a linearly growing frequency, for a= —250 Hz/s, §=0.85 and A41=20 ms.

Nevertheless, they permit an initial qualitative and quantitative analysis of deforma-
tion in the signal in the frequency domain. Computer analysis of frequency changes
for a larger number of reflections is much more complex and does not permit a clear
interpretation of these changes due to the growing number of signal parameters.

At the next stage of investigations, measurements of instantaneous frequency
changes for a real room, i.e. under conditions in which a large number of reflections
exist, were performed.

The measuring setup used in the investigations consisted of two sets — the
transmitting set and the receiving set. The transmitting set consisted of computer
(IBM PC486) which generated FM signals (linear or jump frequency changes)
through 16 bit digital to analog converter, at sampling rate of 48.1 kHz and low pass
filter at 8 kHz cut-off frequency. The signals were next supplied to the power
amplifier and loudspeaker. The receiving set which consisted of two microphones
with preamplifiers was connected to frequency demodulators and 16 bit analog to
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Fig. 7. llustration of changes in instantaneous frequency of a sound in a room for a signal with linearly

growing frequency at the rate of 50 Hz/s, for a few measurement points P1, P2, P3.

digital converter with a computer. The control microphone was placed near the
loudspeaker. The distorted FM signal was received by the next microphone placed in
the selected measurement point.
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Exemplary results of these investigations, for the rate of frequency changes 50
Hz/s and the initial frequency 650 Hz are shown in Fig.7.

The following figures show results obtained at three measurement points P1, P2,
and P3, localized in the diffuse field. One notices some short, often considerable,
deflections of frequency at the background of linearly growing frequency of the signal
trasmitted into the room. The deflections occur both in the direction of higher and
lower frequencies with respect to linear frequency changes of the input signal.

Figure 8 shows both changes of the instantaneous frequency and amplitude
envelope of the resultant signal. A comparison of the above changes indicates
a synchronous character of the occurrence of minima of the amplitude envelope and
the corresponding extrema of deflections of instantaneous frequency. Unlike the
results of computer calculations, instantaneous frequency changes in the room do not
have a regular character, mainly because of the random-like delay times [5, 15] and
the amplitude ratios of the successive reflections.
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Fig. 8. lllustration of changes in instantaneous frequency and amplitude envelope recorded in a room for
a=50 Hz/s.
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5. Results of calculations and experiment for jump
frequency changes

The formula (3.8) was used to the numerical calculations of the instantaneous
frequency and envelope changes which appear after the frequency jump in the
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Fig. 9. Computer calculations of changes in instantaneous frequency of a signal, due to a frequency jump,
for selected values of coefficient §.(4f=50 Hz; T=1s).




130 L. RUTKOWSKI AND E. OZIMEK

room. The only difference between presented calculations and results for the real room
is an assumption that the room decay process is an exponential one. Calculations were
performed for selected signal parameters (range and direction of frequency jump) and
room dependent parameters (amplitude ratio and reverberation time).

I I I I T [ I I I

a0 Af=10 Hz

20 -

—
e

100 + =

100 |- l | | | | | | l | H

200
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| I L 1 1 r | 1
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Fig. 10. Computer calculations of changes in instantaneous frequency of a signal, due to a frequency jump,
for selected values of frequency jump Af.(6=0.1; T=2s).
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Exemplary results of the calculations are shown in Figs. 9—12.

The moment at which signal frequency jump occurs corresponds to the zero value
on the time axis. At successive time moments we observe characteristic fluctuations of
instantaneous frequency nad then a fixed frequency value which corresponds to the

I | I ! I I I T 33)
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Fig. 11. Computer calculations of changes in instantaneous frequency of a signal, due to a frequency jump,
for selected values of reverbation time 7.(4f=50 Hz; § =0.6).
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Fig. 12. Computer calculations of changes in instantaneous frequency and amplitude envelope of a signal
after a frequency jump. (4f=40 Hz; 6=1.0; T=2s).

final frequency of the frequency jump. For simplification we adopted the initial
frequency value equal zero (in reality it is the value of the initial frequency of the
jump). Furthermore, Fig.12 shows both changes in the frequency and amplitude of
the signal after the frequency jump. Analysis of the calculation results has pointed out
the following facts:

« the transition from the initial frequency value to the final value has an
oscillating character; at the initial phase, the oscillation is non-symmetrical around
the initial frequency value and then, starting at the moment at which the values of the
amplitudes of the growth and decay signals are equal, the oscillation is
non-symmetrical around the final frequency value, '

+ the final frequency value occurs after the time equal to the room reverberation
time T,

« the oscillation frequency of the instantaneous frequency and amplitude en-
velope is equal to the value of the frequency jump,
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+ for the value of coefficient 4> 1 the oscillation time around the initial frequency
value is shortened,

* changes in time of the amplitude envelope have an oscillatory character,
however without the change in the oscillation direction, which is characteristic of
changes in instantaneous frequency.

Analyzing the data in Fig.12 one can state that extreme fluctuations of instan-
taneous frequency correspond to the minima of signal amplitude. Fig.13 shows
a case of the frequency jump of a high value 199 Hz with respect the amplitudes
ratio =2.2 and reverberation time T=1.4s (top figure) and the jump in the
opposite direction (bottom figure) — the value of coefficient 6 is equal to
1/2.220.45.

Like in this case of linear frequency changes, experimental investigations were
performed in accordance with the methodology developed before, this time for jump
frequency changes of the signal.
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Fig. 13. Computer calculations of changes in instantaneous frequency of a signal after a frequency jump, for
jump values Af=199 Hz in the positive and negative directions. (T'=1.4 s).
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Fig. 14. Changes in instantaneous frequency, measured in a room after a frequency jump, for jump values
Af=30 Hz in the negative and positive directions.

Figure 14 — 16 show exemplary results of instantaneous frequency changes for two
measurement points, localized in the sound reverberant field of a room. It should be
noted that in the case of a real room the sound growth and decay process is irregular
and is only similar to the exponential character. This is seen in the figures where one
notices irregular oscillations compared with the oscillations obtained as a result of
computer calculations. Generally, one can say that the character of changes of the
instantaneous frequency observed for a room is to a large extent similar to that
obtained by computer calculations. A comparison of the data in Fig.13 and 16 gives
us the extent to which the results of experimental investigations and computer
simulation results are comparable. ;
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Fig. 15. Changes in instantaneous frequency, measured in a room after a frequency jump, for jump values
Af=100 Hz in the positive and negative directions
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6. Discussion

On the basis of the investigation results, obtained both by computer calculations
and experimental investigations one can say that the instantaneous frequency can
undergo considerable deformation in a room. The degree and complexity of the
deformation depend closely on signal parameters, the character of frequency changes
and acoustic parameters of the room.

It was found that even in the case of relatively simple linear frequency changes in
time, deflections of instantaneous frequency of the signal measured in the room with
relation to frequency changes of the transmitted signal are possible. The existence of
time delays of reflected waves in relation to the direct wave has a decisive influence.
Because of the time delays, reflected waves whose instantaneous frequencies are
different reach the measurement point at a specific moment. The amplitude ratio of
successive reflected waves are also different. As a result of the superposition of these
waves, and additionally of the direct wave the phase change of the resultant signal
takes place. Hence, the rate of phase changes in time (instantaneous frequency) of the
resultant signal can be different from that which is emitted by the source.

A specific character of frequency deformation is obtained when a signal with
a constant amplitude and jump frequency changes is emitted into the room. The basic
role in this case is played by the reverberant properties of the room in the amplitude
domain. Because of these properties after the frequency jump from f| to f, a signal
with frequency f, will continu to exist at the measurement point and only its
amplitude will decrease. At the same time a signal with frequency f, will appear whose
amplitude will increase. Thus, one can say that at a certain interval at the measured
point there will be signals with two different frequencies. Because of the frequency
difference also in this case there will be a phase ,modulation” of both signals,
producing in its effect a frequency changeable in time. It is important in this case that
practically for the time equal the reverberation time, the value of the jump final
frequency f, will be reached. Hence, the so-called inertia of the room in terms of
reverberation in the amplitude domain is, among other things, the cause of inertia in
the frequency-time domain. It is worth stressing, that the results of the frequency
jump investigations are directly related to one of the basic parameters of a room, i.e.
the reverberation time.

A certain common feature of deformations in the frequency-time structure of the
signal is the appearance of extreme frequency deflections in determined time intervals.
For a linear frequency change, the frequency of occurrences of the deflection is equal
to the product of the rate of frequency change and delay time of the reflected wave
adt, whereas for a jump change it is equal to the value of frequency jump Af.

The value of an extreme frequency deflection for a linear frequency change
depends considerably on the value of coefficient . An increase in the value of the
coefficient causes an increase of the deflections value (cf. Fig.5). A similar relation
was not found for the frequency jump.

Irrespective of the type of frequency change used, the extrema of instantaneous
frequency deflection correspond to the minima of the amplitude envelope of the
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resultant signal. For a minimum of the amplitude envelope, deflection in the negative
direction (in phase with envelope changes) or in the positive direction (in opposite
phases) can occur. It should be added that the results of calculations and results of
measurements obtained in a room are not always fully comparable, which indicates
a considerably greater complexity of effects occuring in a real conditions.

7. Conclusions

The instantaneous frequency structure of signals propagating in a room can
undergo considerable deformation under specific conditions. The value of the
deformation depends both on acoustic parameters of the room and the paramters of
the signal under analysis.

+ Signals with linearly changing frequency exhibit considerable instantaneous
frequency deflections in a room, occurring at the minima of the amplitude of the
resultant signal. The value of the deflection is proportional to the rate of frequency
changes and to the delay time of the reflected wave.

» Signal characterized by a jump frequency change exhibit, in the jump range,
fluctuations of instantaneous frequency in a room. The frequency of the fluctuations
increases with an increase in the jump value. Their character, on the other hand,
depends on the ratio of the amplitudes of a signal with final and initial frequencies of
the jump. Extreme values of frequency deflection correspond to the amplitude
minima of the resultant signal. The final, fixed frequency after jump occurs after
a time equal to the reverberation time.

Acknowledgement

The work was supported by grants no 200399101 and 200719101 from the
Committee of Scientific Research.

References

[1]1 M.S. GueTA, Definition of instantaneous frequency and frequency measurability, Am. J. Phys., 43, No
12, 1087—1088 (1975)

[2] T. Hourgast, H.J.M. STEeNEKEN, The modulation transfer function in room acoustics as a predictor of
speech intelligibility, Acustica, 28, 66—73 (1973).

[3] T. HourGast, H.J.M. STEENEKEN, A review of the MTF concept in a room acoustics and its use for
estimating speech intelligibility in auditoria, JASA, 77 (3), 1069—1077 (1984).

[4] T. HoutGasT, H.J.M. STEENEKEN, The modulation transfer function in room acoustics, Bruel-Kjaer
Technical Review, No 3 (1985).

[5]1 H. KUTTRUFF, On the audibility of phase distortions in rooms and its significance for sound reproduction
and digital simulation in room acoustics, Acustica 74, 3—7 (1991).



138 L. RUTKOWSKI AND E. OZIMEK

[6] H.N.H. Mivata, T. HourGasr, Speech intelligibility and modulation transfer function in non-expo-
nential decay fileds, Acustica, 69, 151 —155 (1989).
[71 E. OzMEek, Investigations into the change in the spectral structure of sound propagating in aroom (in Polish
with a summary and figure captions in English) Wydawnictwo Naukowe UAM — Poznari 1977, p. 248.
[8] E. OzimMEx, Problem of the sound spectral changes propagating in a room in the aspect nultidimensional
space, Archives of Acoustics, 12, 251 —272 (1987).
[9] E. OziMEx, Transformation of the space of room acoustic states into space of sound deformation, Journal
of Sound and Vibration, 113, 417 —423 (1987).
[10] E. OziMEk, L. JuGOwAR, L. Rutkowski, Problem of the instantaneous sound frequency measurement,
Archives of Acoustics, 9, 325—339 (1984).
[11] E. OzmmMex, A. Sek, Perception of irregular frequency changes of sinusoidal signal, Acustica, 66,
146—152 (1988).
[12] E. Ozimex, L. Rutkowskl, Deformation of frequency modulated signals ( FM ) propagating in a room,
Applied Acoustics, 26, 217—230 (1989).
[13] 8.0. Rice, Mathematical analysis of random noise, Bell System Tech. 1., 23, 24 (1944/45).
[14] L. Rutkowski, E. OziMEK, Changes of the deviation of FM signals in a room, Proceedings of the
International Symposium on ,,Architectural Acoustics” (2). Strbske Pleso, 202 —205 (1985)
[15] T. Tonuuama, R. Lyon, T. Kok, Reverberent phase in a room and zeros in the complex frequency

plane, JASA, 89, 1701 —1707 (1991).



