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GENERATION AND DETECTION OF ACOUSTIC WAVES IN MICROWAVE CAVITIES
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This paper containes a detailed analysis of the conditions of acoustic wave excitation in
retrant-type, microwave cavities, obtained by means of the methods field. Dependence of the
resonance frequency on the resonator parameters and the material constants of a piezoelect-
ric sample placed in the resonator is given. Construction of the resonators investigated and
the experimental data concerning their parameters in the 0.210 GHz frequency range are
presented. Results of attenuation measurements of waves in lithium niobate and bis-
muth-germanium oxide crystals obtained by applying the resonators described are also
shown.

1. Introduction

Present ultrasonic technology and physics need acoustic sources with higher
frequencies. Piezoelectric plate transducers traditionally used for the ultrasound
generation become useless, first — from technological reasons (breaking of thin plates),
and moreover troublesome because efficiency of transformation of the electric energy
into the acoustic one (for harmonic frequencies) is low (losses are proportional to the
square of frequency). Therofore, at the end of the fifties BAraxski [1] and BéMMEL and
DransrLED [2, 3] proposed the method of existing the acoustic wave in a piezoelectric
rod (quartz), one end of which was placed in a microwave resonator. Detection of the
generated acoustic waves was done by the Bragg-type light diffraction measurement.
Those methods were applied in solid body investigations at frequencies of 0.3 — 3 GHz.
Investigations of the liquids were initiated by Lezunev [4]. Measurements in a higher
frequency range were also made [5, 6]. In this paper the results of investigations, which
represent an extension of the above mentioned method, togehter with a precise analysis
of generation and detection conditions of hypersonic waves in the gigacycle frequency
range, are presented. Dependence of the resonance frequency on the cavity parameters
is determined. The resonators and the measurement setup made in IFTR for acoustic
measurements in the gigacycle frequency range are described.
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2. Excitation of hypersonic vibrations in resonator cavity

Generation of hypersounds by means of a cavity consists in the non-resonance
surface layer excitation of vibrations of a pizoelectric rod, which is placed in a strong
electric field of a microwave resonator. The excited hypersonic pulse on the surface
layer of this rod, propagates as a consequence of the piezoelectric effect, along the
rod, is reflected and returns to the origin of this rod. As a result of the inverse
piezoelectric effect, it produces a new electromagnetic pulse, recorded by a microwave
detection setup. In the rod with low acoustic losses, this pulse can be reflected many
times and produces the subsequent echoes (Fig. 1).

Fig.1. Sequence of electric echoes produced in the resonator as a result of repeated reflections of the
hypersonic pulse in piezoelectric rod (frequency 600 MHz, room temperature).

In order to describe the generation phenomenon more precisely, the following

assumptions are made: the piezoelectric rod.is X-out, the one surfaces of it is placed at

x,=0, and the hypersonic wave propagates along the x, — axis of the rod (Fig. 2)

: )

b ]
P

Fig.2. Parameters of the coaxial resonator.
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A high-frequency electric filed E (7) is also applied in this direction. In quartz with the
density p, the mechanical stress ¢, is determined by the expression:

o,=c,&—e,E (), (2.1)

where ¢, and e, are the elasticity and piezoelectric constants, respectivelly, and &, is
the relative deformation. The equation for the displaced is obtained from the
equation of motion

0%u, da, e, 0
—W—a_xl_ena_xl e a—xl(euEl), (2.2)
or
Pu, Lo, 9y 2.3)
s g AR Ox e, ;

where (c,,/p)'? is the velocity of lingitudional wave propagation along x-axis the
quartz. From Eq. (2.3) one can see that gradient of the electric field is the source of
hypersonic waves. This gradient is large only on the surface of the piezoelectric rod,
because inside the rod the electric filed gradully decreases with the distance.
Supposing the solutions of that equation to have the harmonic form:

E,=F3 ¢ 'O,/ yomul TR, (24)
Eq. (2.3) becomes
gi);+ kzui'=ail (Z?:E?), @.5)
where k?=g2/v.
Since the Green functions
G(x,.x;) =i[2k exp (ik | x-x"| ) (2.6)
are the solution of a homogenous equation
0%G|ox3+ k*G+ 6(x;—x,) 2.7
one can obtain
1 i a0 f ey
u‘l‘(xl)=j2—k exp (lk | x—x; | e (c—u E‘}) dx,. (2.8)

The largest spatial changes of the electric field occur at the boundary, therefore
one can approximate the term corresponding to the source by a 6 — function. The
vaves which propagate in the x — direction are reflected from the free boundary. The
boundary condition can be fulfilled by introducing the second apparent source at
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x,=x,, and by extending the rod to infinity. Next, two sources are transformed to
a single one by passing to the limit for x,=0. This gives

= mdbeC 1
ud(x,)= lim =2 [ exp(ik | x,—x; | & (x]—xg)+8(x; +xa)]dxi=%exp(ikxl)
- o2kc,, ke
2.9)
for x>0

Since the displacement is a real quantity, one takes only the real part of this
expression,

o= 55 sin(wt—kx,). (2.10)
o

Now it is possible to find the acoustic energy flux and the efficiency of transfor-
mation. The density of the acoustic energy R in the rod equals

R=1/2 ¢, (£ (2.11)

This energy propagates with velocity v, from the surface 4. According to (2.10), the
deformation equals

e
0x, 1

E} cos(wt—kx,), (2.12)

£

and consequently, the amplitude of deformation is equal to e,,E}/c,,. In this case, the
acoustic power obtained is given by

S=1/2 e4(E)Av/c,,. (2.13)

To determine the efficiency coefficient, this power must be compared with the
electric power P deliveerd to the cavity. This power equals

P=gl/2 % (E)V, (2.14)

where Q,V and x are the quality factor of the resonator, its volume and the dielectric
permeability of the rod, respectively.
Then

ey Av,Q

xcy,

S/ P= =k} AvjoV, (2.15)
where k,,=(e?/xc,,)V? is the electromechanical coupling coefficient.

The resonance frequency of the resonator, presented in literature [7], is described
by following formula:
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¢’ [elc? —z2

where ¢’ is the light velocity -and ¢ is the dielectric constant. The dependence of
frequency f,, on the resonator parameters, calculated from this formula, is shown in
Fig. 3. The dependence was obtained on the assumption that the piezoelectric rod was
in contact with the resonator pivot. The case of a gap between the rod and pivot was
examined by Carr [8] and, for different resonator shapes, by Fuisava[9]. However,
the theoretical results obtained by them did not coincide with the experiments in
a satisfactory manner. Furthermore, our experimental investigations showed that in
some cases, particulary the case of samples with large dielectric constants, it was not
possible to tune the cavity resonator up. Different unexpected effects were observed
which made it imposible to tune the resonator described below indicates the reasons
for these difficulties and enables us to make the resonator possess the required
features.

f
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Fig.3. Resonance frequencies for the resonator with parameters 2a=11 mm, 2b=2.5 mm and 1=3 mm,
calculated from Eq. (16).

The Eq. (2.16) was obtained by means of the circuit methods. Namely, the
resonator has been described as a set consisting of both an inductance created by the
short section of the concentric line, and a capacitance between the central line and the
internal surface of the resonator. The coaxial resonator described is the so-called
capacitance shortened resonator [10, 11]. This resonator is made from an ordinary
resonator by forming an air gap in the inner line of the resonator. In this manner,
a new space with a homogeneus electric field is created and that produces the
additional capacitance.
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Introduction of the dielectric sample with a high value of the dielectric constant (for
instance lithium niobate) to the describe by the circuit methods. Another difficulty in
applying these method is due to fact that the part of the resonator in which the sample
is placed, has not a strictly capacitive character, because in this space the magnetic filed
energy is also accumulated. In particular the value of permeability of the sample, it is
possible to obtain the resonance at the distance which corresponds to the depth of the
sample immersed in the resonator in the considered space. The field distrribution in
this resonator is, of course, unfavourable for the excitation of the hypersonic wave in
the sample. These considerations concern the case when the resonance frequency in
constant. This case corresponds to the situation in our experiment, when the
magnetron generator (from radar emitter) is applied. For these reasons, it is necessary
to use the methods for the description of the resonator in our configuration.

In this case the resonance state is obtained in the following manner [11, 12]:

a) The inside of the resonator is divied into space by planes (Fig. 4), in which the

Helmholtz solution can be found analytically.
2a
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Fig4. Setup of the theoretical model of the resonator.
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b) Appyling the equivalent principle, each space is considered separately by
introducing imaginary surface magnetic flows j,,=iE,(r, h) on the planes of separation.

¢) Treating the flows j,, as sources, the magnetic field distribution H in the divided
space is found by the Green function method.

d) Imposing the condition of continuity of the field H on the separation
boundaries, the resonance condition is found in the form of the equation, which
combines the resonance frequency with the material parameters of the sample and the
dimensions of the resonator.

3. Model of an ideal resonator and parameters of the real one
First, according to the aformetioned procedure, one considers the particular case

h=d, i.e. the situation when the dielectric contacts with the central line of the
resonator. This case has an accurate solution.
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The resonance condition has the form of a condition of continuity on the
boundary z=h

Hi(r, H—H""(r, h)=0, (3.1)
where the magnetic fields in all spaces are expressed by the flows Jm and the proper
Green functions

H(r, 2)=iwe[GXr, r’, z, K)E(r’, h)dr’, (3.2)
H"(r, z)=—iwe[G™(r, r’, z, h)E/r’, h)ar.

Functions G' and G™ can be found by the methods described by Friepman [12] and
Jaworski [13].
Introducing the symbol of integral operator

qu(r, h)=iwe[G(r, r’, z, H)P(r’, h)dr, (3.3)

one obtains the resonance equation in the from
RE(r, h)+ RE(r, h)=0, (34)

This equation must be fulfiled in every point r € (¢, a). To solve Eq. (3.4), one uses the
methods similar to the momentum method. The distribution of the field E,(r, /) can
be expressed by an expansion into a series of the complete and orthogonal set of
functions in the interval (c, a) related to base (p,),

E(r, h)y=Za,p,(r). (3.5

Next, Eq. (3.4), which is valid for any r, can be replaced by an infinite series, where ¢,
is a base identical with {y,}. Inserting (3.5) into (3.4), multiplying the results by
and integrating, one obtains the homogeneus set of linear equations with respect to
the unknow expansion coefficients a,:

Za,,{:(wm, Ro)+,, Rmcp,,)] =0, m=0,1,23.... (3.6)

where (, Ry) denotes the scalar product [y R¢ dr.
The set of equations (3.7) has a solution, when its characteristic determinant
equals zero.

dct{(ll!m, RIfP,.)+!lfm,Rm%}=0- (3.7

Since both base sets, {¢,} and {y,}, are infinite, the exact solution can be only
obtained as a limiting case when m, n—oo. In practice, finite values m, n<M are
assumed but the approximate solution converges to the exact one when M is assumed
to be sufficiently large. First of all, the rate of convergence to the exact solution
depends on the choice the base functions ¢,, and V. It will assumed below that
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Qo=WV,=1/In(a/c)r, n=0,
eo=V,=Z@nN|INI| n=123., (3.8)

where N denotes the normalization factor, «, are the subsequent solutions of the
equation Z (a, ¢)=0, nad I, and N, denote the Bessel and Neumann functions of order
p respectively. Set { ¢,} ={@,,} is complete and orthonormal with r in the interval (¢, a).

It appears that function ¢, =y ,=1/In (g, c)r reproduces quite well the distribution
of the field E/(r, k) and, due to that, further calculations may be confined to the
zero-order approximation of Eq. (3.7). Inserting ¢, ¥, to (3.7) and integrating, one
obtains the equation for the resonance frequency in the from:

1 1 T
ktgk(—h) | kig(kh) 2hln(a/c)
ub ]
b [ule(ub)Zo(vb)—;Jn(ub)Zl(vb)Zo(vc)] i
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Fig.5. Dependence of the resonator length on the heigth of the piezoelectric rod from parameters
2a=11 mm, 2b=2.5 mm, 2¢=3.0 mm, =94 GHz.
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where:
Z p(vr)_ =N(ve)J (vr)—J(ve)N (vr), p=1.2,

w?=k?—(nn/h)?
v=k*—(nnfh)?, n=0,1,2,..,
k=2mn/A

u denotes the so-called Hankel coefficient: u=1 1 for n=0, and u=2, for n= 1,2,.....

If #? or v? have negative values, then the function J, and N, must be replaced by
the modified Bessel functions. Examples of the results of calculations for &,=4 and
¢, =45 are presented in Fig. 5. These calculation were carried out to determine / as
a function of 4 for the following parameters: a=5.5 mm, b=1.25 mm, c=1.5 mm,
/;=9.4 GHz. It should be noticed that for ¢, =45 the lenght of the coaxial part of the
resonator is 4/4 <1— h<1/2. This means that space / lies above the self-resonance and
has an inducative character. As it has been mentioned before, this effect indicates that
the space / can be replaced by a supplementary capacitance. This means that the
circuit methods are useless in the description of such resonators.

Generalization of the applied method to the case of three spaces, i.e. h>d (Fig. 4),
is connected with considerable calculation difficulties. One of the possible methods of
solution of this problem is based on the assumption of two unknown distributions of
the field E,(r) on the boundaries z=d and z= h, calculation of the field H, in a manner
similar to that described above, and next, on the introduction of two conditions of
continuity at the boundaries of the spaces. As a results, one obtains a double set of
linear equations with respect to the unkown coefficients of the expansion of fields
E(r, d) and E(r, h) into the series of phase functions. As before, vanishing of the
characteristic determinant of the set of equations is the resonance conditions.
Application of this method gives potentially very accurate results, but it requires the
solution of a large set of equations. Confining the considerations to the zero-order
approximation, we observe that the results, in the limiting case d=A, lead to errors
larger then before. Another possibility is to treat the space I and II toghether and
adjust the solutions is to the boundary z=h. This approch is simpler because it consist
in adjusting the solutions in two, not three, spaces. However, it decreases the accuracy
of the analysis.

In such a case the aproximate resonance equation has the following form:

1/[k tg k(I— )]+ A/(k 2 — k?)+ B=0. (3.10)

At the zero approximation the coefficients 4 and B can be considered as constants.
They can be determined from two resonance states, d=0 and d=h, calculated by
means of the described method. In turn, k2 can be calculated by an analysis of the
homogeneus space I+II or estimated by interpelation between the resonance
frequencies of the space I+ II, calculated d=0 and d=h. In Fig. 6 some results of
calculations of &k, are presented, corresponnding to the linear interpolation and the
case when d<h. The calculations were carried out for ¢,=4 and &,=45 to determine
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Fig.6. Dependence of the resonator length on the width of the gap.

[ as a function of the width of the air gap (h— p), other parameters being constant:
a=5.5 mm, b=1.25 mm, c=1.5 mm, d=2 mm, f,=94 GHz. For ¢,=4 one can
observe the monotonic dependence of / on (h— d). When the width of the gap increase,
then the resultant capacitance of the space I+ II decreases, and so the length of the
coaxial part (/=h) increase. The dependence for &,=45 is more interesting when the
space I+ II is of an inductive character for a small width of the gap and, as in the
previous case, the length of coaxial part lies in the range 1/4</—h<A/2. For
h—d=0.6 the selft-resonance of the space /—II is obtained. It corresponds to the
short-circuit in the plane z=h i.e. [—h=0 or /[—h=4/2. Further increase of the gap
width leads to the situation similar to the case &,=4, i.e. the space I+1I is of
a capacitive character and the length of the coaxial part lies in the range 0 </—h< A4

Comparison of the results of the presented above with experimental data
necessitates to account for the following facts:

« the resonator presented in Fig.2 is an idealized model of the real system, in
which many simplifying assumptions have been made,

« in the nature of things, the method of calculation applied is an approximate one.

In what follows, these two factors will be discused. One of the fundamental
simplifications consists in the assumption that the resonator has no hole in the place,
where the dielectric sample should be put. Thus the sample is placed directly on the
bottom of the resonator. This simplification resulted from numerical estimation of
the lowest frequency of propagation of cylindrical modes in the dielectric sample with
the largest assumed permeability &,=45.These calculations indicated that the
resonance frequency was higher than the assumed 9.4 GHz, at which the resonator
would be excited. Consequently, the cylindrical modes would be attenuated in the
dielectric very quickly and the microwave energy would not be emitted outside the
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resonator. For this reason it could be expected that the error caused by the existence
of a hole in the real resonator would not have any significant influence on the value of
the calculated resonance frequency. The experimental measurements have supported
this assumption. Changes of the resonance frequency were unnoticeable after
elimination of the hole. Influence of the hole on the quality factor of that resonator is
more difficult to estimate, because the depth of the penetration depends on the
sample.

The analyzed resonator is a system which is lossless and isolated from sur-
roudings, but in the reality the system is coupled with the surroundings and energy
losses occur in the walls and the dielectric material. The influence of the elements,
which are coupled with the wave-guide line, is difficult to estimate. It is known,
however, that this influence on the resonance frequency can be neglected when
coupling with the wave-guide is sufficiently small.

The effect of radiation into surroundings from the dielectric rod, transmitted
through the hole placed in the bottom of the resonator, is easier to estimate.
With the assumptions that the diameter of the rod is equal to 2.5 mm and
the frequency f,=9.4 GHz, this rod becomes a section of the subcritical wave-guide,
fulfilled by the dielectric and excited in the TM_, type. For instance, the depth
of penetration of the electromagnetic field energy along the rod axis is ap-
proximately equal to 0.35 mm for &,=45. This means that the field energy,
which is accumulated inside the rod below the bottom of the resonator, can
be neglected, and replacement of the hole in the resonator bottom by a plane
of perfect conductivity is possible for the values of 4 and h assumed in these
considerations.

In relation to the energy losses and the corresponding finite quality factor the
losses in the walls and in the coupling elements are small under typical conditions, and
they can be estimated by measurements of the quality factor of the resonator without
the sample. On the other hand, the energy losses in the piezoelectric sample depend on
the dielectric and acoustic (attenuation) parameters and its volume. The calculations
have been made under the assumption of a losseless (real) dielectric, but the
calculation formulas are vaild also for a complex one. In particular, it is possible to
assume that the energy lost in the dielectric depends approximately on the dimension
d, the other dimensions of the resonator being fixed. As a result, the quality factor of
the resonator is, approximately, inversely proportional to the height of the sample,
d and a reasonable compromise is needed between the requirements of effective
coupling of the electromagnetic field with the sample (large d), and the large quality
factor of the system (small d)

Estimation of the quality of the investigated resonator by means of numerical
methods is extremely complicated and it could not be done with a sufficient accuracy.
Thus, the measurements of this factor were carried out experimentally for several
samples. From these measurements it follows that this factor is not very large and is
of the order of several hundred. Moreover, the quality factor depends at least on two
factors, which are difficult to control. They are: uncertain contact in the inner line of




162 M. ALEKSIEJUK AND W. PAJEWSKI

the resonator at the entrance to the resonator cavity, and the position of the coupling
antenna inside the resonator. Significant differences in the quality factor measure-
ments were observed even for small displacements of these elements. In the case
when the measurements were performed in a stable range, the dependence of the
quality factor and the resonance frequency upon the position of the samples and the
position of the microwave short-circuit element are similar to those presented in
Fig.7 and 8.

Independently of that, the calculations performed are of an approximate
character.
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Fig.7. Dependence of the quality factor of the resonator on the inner line position.
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Fig.8. Dependence of the resonance frequency on the position of the microwave short-circuit element (from
experiments) a) subcritical coupling b) supercritical coupling.
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Typical starting data have been assumed to estimate the dimensions of the
construction.

The results of calculations concerning the influence of the sample position and of
the gap h—d on the resonator length, are shown in Fig.9 and 10. The discontinuity of
the resonator length / is of particular interest for ¢, =40. One can notice that only for
the sample with & ,=3.38 (quartz) it is posible to get the contact of the sample with the
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Fig.10. Dependence of the resonator length on the gap between the sample and central line.
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inner line of the resonator. For &,=15 and 40 it cannot be done in a continuous
manner because of a step change of the resonance length. In both the figures dashed
lines mark the actual resonator length of about 2.5 mm. This length from the
existence of the exciting antenna in the real resonator. One of the ways to shif the
limit, at which the step change of the resonator length occurs, towards smaller values
of h—d (this gives, practically, the possibility of getting the tuning continuity in the
range of small gaps between the inner line and the sample), is reduction of the
diameter of the sample.

The characteristics of sensitivity of the resonator tuning (Figs.11, 12) are very
important for practical tuning-up of the system. Variation of the resonance length of
the resonator influences the frequency in a similar manner, independently of the
parameter &, of the sample. This tuning is not so rapid and, in practice, it is easy to
control. On the other hand, the change of the gap between the sample and the inner
line is a critical parameter. The change of about 0.1 mm causes a shift in the resonator

f d=1mm
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961 36 mm
2a=25mm
£ =40
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1 1 1
075 080 h-d [mm1] 085

Fig.11. Dependence of the resonance frequency on the gap between the sample and central line.
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Fig.12. Dependence of the resonance frequency on the resonance length for different samples.
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tuning-up frequency by about 500 MHz. For this reason, the micrometric screw was
used in the resonator model to displace the inner line.

4. Results of measurements

On the basis of such considerations, the resonator have been made in the
IFTR. They are presented in Fig.13—15. In Fig. 13 the resonator, which works
in the range 0.2—1 GHz; is shown and it represents an improved version of
the LEzHNEV resonator [4].

o
-
o

e

o
hn
o

Ll

-

G

e
Sl e
L

S

L
i

e
-

S

e
il a&&gﬁgsiﬁﬁg‘ b
o

.
e

&
e

Fig.13. The resonator for the frequency range 0.2—1 GHz.
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The resonance cavity is a coaxial construction. The tested sample is placed in the
hole in the upper part of the cavity. The electromagnetic energy supplies the
coupling antenna through the concentric cable from the emitter. The cavity could
be tuned up precisely by applying a worm gear. The second worm gear is used for
precise displacement of the inner pivot. The cavity is covered by silver to increase
the quality factor. A complete set of the replaceable inserts allows us to test the rods
of different diameters. These resonators are used in the IFTR in the our Laboratory
of Acoustoelectronic for testing the acoustics properties of solid bodies, and also in
the Physical Acoustics Department for testing the properties of liquids. Several
resonators of that type made in the laboratory are used in other research centers in
Poland. These resonators are easy to excite thus enabling the generation of acoustic
waves. The ,,Matec” setup is especially suitable for cooperation with such resona-
tors.




Fig.14. The resonator for the frequency range 3—4 GHz.
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Fig.15. The resonator for the frequency range 9—11 GHz.
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The resonator, presented in Fig.14, works in the 3—4 GHz frequency range.
Those presented in Fig.15 were made in the IFTR for the 9—11 GHz frequency
range. One of them has the displeceable diaphragm a, and the second one — an inner
pivot which can be displaced by the micrometer screw b. These resonators were used
in the setup made in the IFTR [14].

Construction of the cavity resonator is schematically presented in Fig.16. The
resonator connected to the section of the wave-guide with the microwave short-circuit
element (3). Copuling of the cavity with the wave-guide occurs by the antenna (2).
The cavity is tuned by means of the pivot (5), attached to the diaphragm (). The
piezoelectric rod (/) is inserted into the cavity. In the course of tuning one can change,
by turning, the piezoelectric rod plunge L in the antenna cavity in relation to the
cavity. During the experiment, from outside of the cryostat, it is possible to change,
by rotary motion, the values of the plunge L and the position D of the antenna, with
respect to the cavity by changing of the rod position and the distance C between the
antenna and the microwave short-circuit element. The dependence of the resonance
frequency of the cavity on the parameters C, D, and L has been estabilished in the

course of experiments.
L
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Fig.16. Construction of the reentrant type cavity. I-piezoelectric rod, 2-antenna, 3-microwave short-circuit
element, 4-diaphragm, 5-pivot.

In Fig.17 and 18 the results of measurements of the acoustic wave attenuation in
crystal, performed by means of the above described resonators, are presented. These
measurements were made at cryogenic temperature. The variation of attenuation for
the bismuth-germanium oxide (Bi,, GeO,,) in the 100 direction and the lithium
niobate (NbLiO,) crystals, are shown in Fig. 17 and 18, respectively. In the former
dependence (Fig.17) one can notice two ranges of temperature, above and below 100
K. In the former one the attenuation of acoustic wave is connected with scattering of
the wave on thermic phonones.
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Fig.17. Dependence of the attenuation of the longitudinal acoustic wave on temperature in Bi jGeO,,
crystal at 0.6 GHz frequency.
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Fig.18. Dependence of the attenuation of the longitudinal acoustic wave on temperature in NbLiO, crystal
0.6 GHz frequency.

A significant increase of attenuation near the temperature of 90 K is connected
with the relaxation processes of non-stoichiometric additions. Below the temperature
of 50 K the attenuation decrease, what is connected with reduction of the amount of
termic phonones when the temperature decreases [15].
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