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BY INTERDIGITAL TRANSDUCERS
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Piezoelectric plate with periodic metal strips on both sides is considered. Propagation
and Bragg scattering of plate modes and associated made conversion are analyzed.
Excitation of acoustic plate modes by interdigital transducers is investigated and results are
compared with experimental data.

1. Introduction

Excitation of surface acoustic waves (SAWs) in the piezoelectric halfspace by
interdigital transducers (IDTs) was analysed in details in numerous papers [1 —4]. In
recent years, there is growing interest in applying of acoustic plate modes (APMs)
instead of SAW in piezoelectric sensor and filters [S—8]. Theory of APM generation
by IDT can be considered more difficult than that of Rayleigh waves [9]. It is caused
mainly by

» multimodal propagation of APM, a number of different modes can propagate
at the same frequency with different velocities,

» Bragg reflection of APM from transducers fingers can be accompanied with
modes conversion,

« generation of APMs by a pair of IDts deposited on both surfaces of
piezoelectric plate is unique problem for plates.

In this paper, a theory of generation of APM by such pair of IDTs is devoloped,
using Blotekjaer’s method of analysis of waves propagating in the periodic system of
metal strips [10].

In next section, we analyze electric properties of piezoelectric plate, with electric
charge applied to its both surfaces. The immitance relation is derived which is the
planar Green’s function for piezelectric plate in spectral domain [9, 12]. The relation is
a generalization of effective surafce permittivity, introduced in [12], to the case of
piezoelectric plate.
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In the following section, propagation of APM in the piezoelectric plate with
electrodes deposited on both sides of plate is analyzed. Dispersion relations for most
important cases, open and short-circuited strips on both sides of plate are discussed.
Numerical results are presented for plates made of some known piezoelectric
materials (quartz and LiNbO,)

In Section 3, a theory of APM excitation by IDTs deposited on both sides of plate
is presented. The corresponding inhomogenous problem is solved using method
proposed in [2, 3, 10]. Numerical results are compared with experimental data
presented in [13].

2. Immitance relations

Let us consider an infinite piezoelectric plate bounded by planes x,= +d/2 (Fig.1)
and made of material characterized by mass density p and material constants ¢, e,
Cijpg- Vacuum () is outside the plate. We consider harmonic waves propagating
along x,, that is exp(jwt— jkx,), where k is wavenumber and w is angular frequency.
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Fig. 1. Piezoelectric plate covered by periodic metal strips.
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where u, is particle displacement component and ¢ is electric potential, both inside
the plate. Electric potential outside the plate (in vacuum, D7 = — ¢ ") satisfy Laplace
equation

D{=0. (2.2)
Certain electric and mechanical conditions must be satisfied on both surfaces
T,=0 at x,=+dJ2, (2.3)
and
o=¢", D,—D,=A4D.,at x,=d|2, (24)
o=¢", D,—D}= ADL, at x,=—d/2,

where AD1 and ADL are electric charges induced on uper and bottom surfaces of the
plate, respectivelly. Solving the corresponding boundary problem in the way
presented in {14], we obtain a set of immitance relations for piezoelectric plate. This
set is a generalization to effective electric surface permittivity introduced in [12] that
involves that electric charges, and electric fields at both sides of the plate
E, =jko(x,=d|2), and E| =jko(x,= —d|2)

Ey=jS, XAD1 + jSkX’ADi (for x,=d/2),
Ej=—jS,X'AD1—jS,XAD] (for x,= —d|2), (2.5)

where X and X are functions of k, and
1 fork>=0,
= .6
» {—1 fork<0. G-6

In the above equations, we accounted for the symmetry relations {14, 15]
(rotation of a plate by 180° does not change its equations, but note that 4D, and
AD| include vector components differently oriented with respect to the plate).
Generally, the matrix elements of immitance relations (2.5) which can also be
considered as a surface Green’s matrix function in spectral domain k, can be
evaluated only numerically. The matrix elements are singular at k being the wave
numbers of plate modes.

An asymptotic behaviour of X( | k | ) and X’( | k) for | k| —co are following

X-X _, X-0, 2.7
Q0
which shows that the system of Egs. (2.5) separates at large | k | . This is because of

fast decaying of the wave-field in depth of the plate if the applied electric charge to the
plate has large | k| .
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3. A plate covered by periodic electrodes

3.1. Eigenvalue boundary problem

We consider infinite piezoelectric plate of thickness d. The plate surfaces are
covered by periodic systems of weightless, ideally conducting metal strips (Fig. 1)
which period A is the same on both plate sides but the electrode widths can be
different, w and w’ at x,=y=4d/2 and —d)2, correspondingly (in what follows, all
quantities at y= —d/2 will be marked by ‘prime’). The considered problem is
2-dimensional, waves in the system are assumed propagating in z=x, direction
perpendicular to strips.

There are mixed electric boundary conditions on both surfaces

E,=0, E;=0, on electrodes,

(3.1)
4D, =0, A4D[=0, between electodes,

where E| and 4D, are defined as in previous Section.

Accordingly to the Floquet theorem [17], a solution to the eigenvalue boundary
problem stated by Egs. (2.5), (3.1) is searched in form (K=2n/A is the wave-number
of periodic strips)

[+ o]
Ey= } Ee”+0,
n=—-ow

(3.2)
AD, = Y D e+

at the upper plate surface, and similarly at the bottom surface, where E, E, and
AD,, D, should be replaced by corresponding ‘primed’ quantities. The time
dependence exp(jw?) is dropped thoughout the paper. There is certain ambiguity
concerning spectral parameter s, in what follows we will assume its value in the
domain (0,K).

Taking into account Egs. (2.5) we obtain following relations for amplitudes of
Bloch waves included in the above solution

E,=jS,X,D,+jS,X3Dn,
(3.3)
E:l a _.]San’an +.]SanD:| 3
where X, =X(s+nK), and X, =X"(s4nK), similarly S,= S nx-
Asymptotic properties of X and X" (Egs. (7)) allow us to find such integer numbers
N, i N,, that Egs. (3.3) become separated if n¢[N,, N,

E,=jS,X.D,, Ei,=—jS,X,D,. (3.4)
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This will be exploited below in expanding the Bloch amplitudes into another series
which, according to the method presented in [10], make the solution (3.2) to satisfy
the boundary conditions (3.1). The expansion is following

M, ]
E= ) ) 8P~ fcosd),
m=M,
(3.5)

M,
Dn= Z ﬁmPu—m(COSA)s
m=M,
and similarly for ‘primed’ amplitudes in which relations a’ and b’ substitute @ and S,
and A'=nw’/A substitutes A=nw/A in corresponding arguments of Legendre
polynomials P,. Taking into account Egs. (3.4), we obtain that

U =JX s %= —JX o Bm- (3.6)

Following the method [10], we apply sufficiently large summation limits in
expansions (3.5), M,=M,=N,, and M,=M,=N,+1. The solution given in Egs.
(3.2), (3.5) satisfies the boundary conditions (3.1) and Eqgs. (3.3), but only at
n¢[N I,Nz] so that we must still consider Egs. (3.3) which are explicitly

0, (S—m— Sy Z )P — m(cOSA) — 001S , Zp Py — m(cosA) =0,
3.7)
- amSnZ;Pn s m(COSA )+ ar;:(Sn -m— SuZﬂ)Pﬂ = m(COSA’) =0,

at ne[N,, N,], in order to satisfy Eqs. (3.3) for any ne(— o0, o). The above set of
equations, where Z,=X,/X_ and Z,=X,/X_ including 2N linear equations for
2N+2 unknowns «,,, &,, N=N,—N, +1, can be solved for any given a  and «,

Oy = Ao+ D, Oy =0y + bty (3.8)
where a,=1, b,=0 and ay=0, by=1. The efficients a,, b,, an, b, are evaluated
numerically from Eq. (3.7).

Integrating electric field £ and Ej, represented by Eqs. (3.2), (3.5), over the

domain between strips, we obtain relations for electric potential of electrodes on the
upper (P(s)), and bottom (V(s)) sides of the plate at z=0

m’

P0)= sty Codin + %o
(3.9)

g aniahy ;
V)= sty @+ 3oz,

Analogously, integrating electric charge over strips placed on the plate surfaces at
z=0, we obtain currents flowing to strips on upper (/(s)) and bottom (/'(s)) sides
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f(s): 2n K}(i (otgB1;+2pBy5),
(3.10)
F(5)= —2n - @B+ 4B,

where 4;; and B;; are defined as follows (v=s/K, summation sumbols over m dropped
to shorten notations)

A,=(-D"a,Ppyiy-(—cosd), B, =a,Pn,.,_(cosd),
Ay, =(—1Y"b,Pp+y-(—cosd), B,,=b,P,., (cosd),
A, =(—1D)"apPpiy-(—cosd"), B, =auP,., (cosd’),
Ay =(—1)"bpPysy—(—c084’), Byy=0bgyP,., 1(cosd’),

(3.11)

3.2. Dispersion relations

Equations (3.9), (3.10) are sufficient for analysis of propagation of APM in
piezoelectric plate covered by strips on both sides. Generally, there are four
possibilities

«all electrodes connected to ground, ¥=0 and P'=0,

- open electrodes on both surfaces, /=0 and ['=0,

«short-circuited strips on one side, and open strips on the other side of the plate,

V=0 and ['=0,
«and vice-versa, /=0 and V’'=0.
Corresponding dispersive relations resulting from Egs. (3.9), (3.10) are

Ay Ay — A4, =0,

BuBzz % BIZ‘BZI =0,
(3.12)
B, A5, — B;A4;,=0,

A4,,B,, _AuBm =0,

which should be solved for s at given w. Generally, it can be done only
numerically. The most interesting feature of the solution for s is the existence,
at certain frequency domain called a stopband, of complex s. The imaginary
value of s makes the wave-field decaying along its propagation path. The
reason of this decaying, which is generally faster for stronger piezoelectrics,
is the Bragg reflection of APMs from strips which bring periodic electric
perturbation into the elastic waveguide. Similar phenomenon, but caused by
mechanical perturbation of plate by shallow grooves, was discussed in [16],
for instance.
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4. Excitation of APM by a pair of IDTs

4.1. Imhomogeneous problem for metal strips

In Eqgs. (3.9) and (3.10), there are two arbitrary constants, a, and a, which are, in
fact, functions of spectral variable s. Evaluation of these functions is the subject of
inhomogeneous problem considered below.

In the considered inhomogeneous problem (Fig. 1), two electrodes, one on upper
and the second on the bottom side of plate, have given voltages ¥V, and
Va correspondingly, and the others are grounded. We will evaluate the transadmit-
tance relations for strips,

i =YimVm+ OimVm,
4.1)
i;=v?me+y¢me,; )

which describe signal transmission between strips by both means of electric interac-
tion [11], and APMs. The evaluation of transadmittance will be carried out on the
way similar to that applied in [2—4] for Rayleigh waves.

The given strip voltages V, and V,, are following inverse Fourier transforms
defined for discrete functions over periodic strips

1K ) .
Vo= He s, Vimg [ Vet “2)

where V(s) and V'(s) are as given in Egs. (3.9). To satisfy the above relations, we must
apply that

Ky gl = m}'{SI;—KS'/K'( (S)A 1 +o($)4,,),

(4.3)
—jr

jsmA __
Ve’ ~ Ksinns/K

(otg(5) A, + ()4 5,),
which can be solved for unknown a(s) and o(s)

K . V
e s wa
12423

(4.4)
—Vud

oK, VaAd iy
o(8)=j—sin ny——"——"_21 glsmd
%) 'l S A Ay —A,4,,

The currents I flowing to upper electrodes, and I’ flowing to bottom ones can be
evaluated by applying similar inverse Fourier transforms to Egs. (3.10)
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318y v, b5 i
I= ¥ { I(s)e™4ds, I =E£ I'(s)e™ 74 ds, 4.5)
which, applying solutions (4.4) yield (v,,=v},=—0v}, on the principle of virtual
works)
B, A;,— B4

K p
I 127 12 sin wve U-m4 dg |
0 IIAZZ AIZAZI

y;‘m=KX

ac

2o X B,,A,,— B, A, . js(i—m)A
Vi = sin wve MM dy =
KX I AnAzz_Aqui .

< 0

2o % By 4,,— B4y, sin mye—U-mA gg (4.6)
KXco 0 AIIA AIZAZI

o= — 2w ]-{ ByAy—Bydy,
KX Aquz—Ale.u

o 0

sin e ™A dy

4.2. Radiation admittances
Integrals in Eqs. (4.6) have following general form

20
ijf  R(s)sin es/ Ke-mds @.7)

o 0

Yim=

where function R(s) which is different for different yj,, but in all cases the
denominator is the same in Eqgs. (4.6), as singular at single poles for s being the
solutions of dispersion equation for short-circuited strips. R(s), and Y can be
decomposed as follows

R(S)=R()+ R (), Yin=Yin+ Yin, 4.8)

where R(s)=R(s)— R'(s) is assumed regular function of s, thus the corresponding
integral for Y* can be easily evaluated numerically. It describes mutual capacitance of
electrodes / and m, placed on the same or different sides of the plate [11].

The function R'(s) that includes all singularities, is defined as follows

b, b,
()= : 49
) zi:s-s+zi“s-K+si’ “9)

i

where we accounted for that both s, and K—s, are solutions to dispersion equations in
the considered system, s;— K being the wave-number of APM propagating backward.
Corresponding integrals can be evaluated approximately by expanding the integ-
ration path to infinity on the complex plane s, and thus applying Jordan’s lemma and
residual theorem (see [3], for instance). We obtain
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oA &)/
Vimity, 207
(4.10)
A .
Y,,’,,=2c;)—Zbie”"”’”"Asinnsi/K, for [#m.

This is similar equation to that presented in [2, 3] for Rayleigh waves. The main

difference is in the number of propagating modes generated in plate which contribute
to the strip radiation admittance.

5. Some numerical and experimental results

Typical interdigital transducers are composed of a number of metal strips
connected to transducers bar-buses [1], which buses are connected to external
voltage sources, in generating IDT, or to loading impedance, in receiving IDT. In
piezoelectric plate covered by strips on both its sides, there is interesting possibility
of APM excitation by a pair of transducers having their fingers on different sides of
the plate.

In [13], an experiment is described where a pair of IDTs were placed face-to face
on two sides of YX quartz, 64 um thick plate. Both IDTs had 40 pairs of split Al
fingers (strip period A=40 pm and w=w'=20 pm). There are measurements
presented for IDTs connected in parallel and antiparallel, which means that
corresponding strips on two sides of plate had the same, or oposite electric potentials.
The measurements have not been interpreted as concern waves excited by transducers
in the measured frequency band (10— 100 MHz). This will be provided below, by
comparison with numerical results. Let us note that the discussed plate is relatively
thick as compared to the strip period, its normalized thickness is Kd=10.035, thus
several modes can be observed in the measured frequency band. The numerical
calculations presented here will include 4, SH,, S, and SH, modes only.

We introduce notations 4, B for IDT bus-bars on the upper side, and A’, B"— for
corresponding bus-bars of IDT on the bottom surface of the plate. The voltages of
these bus-bars will be noted V,, V, V,,=V4, Vi.=Vp, and similarly for currents.
Egs. (4.6) results in following relations for the discussed IDTs

B0 80

IL,=W z Z W WiV o+ w1 —w, )y Ve+

m=1il=1
W WiV a4+ w1l —w, )0 Vs,
(5.1

80 80

L=W 3 ¥ (A=ww,yinV+ 1 —=w)1—w,)yimVp+

m=1l=1
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(A=w)w, i Va+ A —w, )1 —w)ok, V3,

and similarly for 7 and Ip, with w, defined as follows

1 if electrode k is connected to 4 or 4’ bus-bars,
Wy = (5:2)

0 elsewhere, and W is IDT aperture width,

In the analyzed configurations, we have
*in symmetric configuration, I=((I,+1I A—Up+1p))/2, and V, =Vi=V]2,
Ve=Vp=—V]2,
* in antisymmetric configuration, I=((I,+ Iy)— (I, p+1p)/2, and V, =Vp=V]2,
Ve=Vi=—V]/2,
and the measured admitance of transducer pairs is

Y=IIV (5.3

Its values are computed in following frequency bands: 13—16 MHz, 32—34 MHz,
and 54— 58 MHz, and presented in Figs. 2, 3.
In conclusion, we recognize that the measured radiation conductances result from
excitation of following APMs
* Lamb 4 mode for f~14.5 MHz, in antisymmetric configuration,
« transvers SH mode for f~33.4 MHz, in symmetric configuration,
* Lamb S, mode for f~56 MHz, in both configurations, but in antisymmetric
case more efficiently,
* transverse SH, mode for f~54.5 MHz, in both configurations but for
symmetric case more efficiently, and modes S oand SH, overlap in this case what
makes the measured conductance of IDT highly distorted.

6. Conclusions
An analysis of propagation of plate modes in piezoelectric plate covered by
periodic strips is presented. Bragg reflection and mode conversion is discussed.
Inhomogeneous problem of generation of plate modes is solved and experimentally
verified. Physical interpretation of measurement is provided.
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