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This paper presents a model of sound scattering on gas bubbles aggregations in water.
Coherence and second order scattering elfects are taken into account for random and regular
3-dimensional distributions of bubbles with different parameters like bubble size, average
separation between scatterers, distance to the receiver, incident sound frequency. Results of
calculations for various sets of parameters are compared. Excess attenuation is also considered.

1. Introduction

Different objects enclosed in the sea water can be detected and counted by the sound
scattering methods. Gas bubbles floating in the upper sea layer are generated mainly by
breaking wind waves and by biological sources (photosynthesis, decaying organic
matter). These bubbles play an important role in the ocean-atmosphere gas exchange.
On the other hand they strongly influence the conditions of sound propagation in the
sea, scattering and absorbing acoustic energy and changing the sound velocity. The
intensity of all these processes depends on the concentration of microbubbles, which can
be measured by means of acoustic methods, similar to fish counting. The majority of
these methods is based on two fundamental assumptions concerning single scattering
— that is equivalent to the noninteraction between scatterers — and incoherent
scattering — the total intensity of backscattered sound is treated as a sum of intensities
originating from the individual centres. If the discrete scatterers are distributed in space
randomly and not too densely, these assumptions can be sufficient for solving the
problem of backscattering, but in some circumstances depending on the wavelength,
distance between scattering centres, distance between receiver and scatterers, they can
oversimplify the real sitaution and lead to significant errors, therefore this problem
should be taken into consideration in each individual case.

Most of scattering models applied to marine inhomogeneities ignore the effects of
coherence and multiple scattering, but these effects were considered by some authors
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using different simplifying assumptions. Kurianov [3] showed analytically, that
coherent scattering of the time-limited acoustic pulse on the set of randomly
distributed objects can be neglected. StanTON [5, 6] evaluated the second order effects
for scattering on clouds of identical randomly distributed isotropic scatterers under
the following assumptions: the average distance between individual objects was much
greater than the acoustic wavelength (the short wavelength limit), the swarm of
scatterers was located in the plane-wave region of the transceiver and absorption was
negligible. Under these conditions, second order scattering was shown to play an
important role, especially in the case of using multibeam sonars. BRuno and Novarin
[1] considered both coherence and interaction effects, but only for 1-dimensional
(linear) distributions of gas-filled bubbles.

In this paper the mathematical model of acoustic backscattering of spherical wave
from the aggregation of gas bubbles in water has been considered. The expressions for
the coherent and incoherent terms of the first and second order of the backscattered
energy have been obtained. The model was used for both random and regular
3-dimensional distributions of gas bubbles with the same radii or with given size
spectrum, for various densities and various distances to the receiver, with the
attenuation included or not.

2. Scattering and attenuation by a single gas bubble

For the acoustic wave of frequency f the function of backscattering ¢; on a gas
bubble with the radius a; is given by [4, 7]:
a.
=, (2.1)
0 Urilf?-1 +19;
where d; is a damping constant of the jth bubble, depending on the bubble size,
incident sound frequency and number of physicochemical parameters of the gas and
sea water, and fg; is its resonant frequency
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where y — the ratio of specific heats of gas, P — hydrostatic pressure at given depth,
p — water density. Taking the complex function ¢; in the form

t;=p;exp (ip;), (2.3)
we get
py= 2] soi) (2.4)
VIrilf = 11+83
61'
tan (sz —m .
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There is the following relationship between the backscattering function and backscat-
tering cross-section of a gas bubble [4, 7]:

, a?
o= |t s @.5)

Extinction cross-section of a gas bubble looks similar:

4na¥(d;/ka; )
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At resonance bubble cross-sections are reduced to:
Ops,R= af‘/ 5?
@2:7)

0. r=4ma;/kd;

The dependence of p, ¢ and é on frequency for air bubble with radius 100 pm is
displayed in Fig. 1.
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Fig. 1. Dependence of the modulus and argument of backscattering function and damping constant on
frequency of incident sound for air bubble with radius a=100 pm located at depth z,=10 m.

3. Scattering model without attenuation

Let us consider the problem of backscattering of the spherical sound wave on the
aggregation of N gas bubbles enclosed in any volume V with the centre at a depth z,
related to the source depth (Fig. 2). The geometry is monostatic — source and
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Fig. 2. Scattering geometry

receiver are located at the same point. The hydrophone receives the single scattered
signals (path 0—j—0) and multiple scattered signals (paths 0—j—/-0,
0—j—k—1-0, etc.). If the sound attenuation in the sea water is neglected, the
pressure of the wave returning from the jth scatterer is

t,
pj=Aj;lcxp (ikr)), (3.1)

j
where k — a wave number, r;— a distance between the source and the jth scatterer, ¢;
— a complex backscattering function for the jth bubble, 4; — a sum of complex
amplitudes of the spherical waves coming to the jth scatterer from all other bubbles

N
t k
A;=Ay+ Y A vl exp (iksj). (3.2)
I#£j 2jl

In this formula s; is a distance from the jth to /th scattering object and A; is an
amplitude of the spherical wave coming to the jth scatterer directly from the source

A
A()}:’fexp (ikrj), (3.3)

J
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where A, is an amplitude of the wave emitted from the source.

The expressmn (3.2) is a reccurence formula including scattering effects to all
orders. In the presented model it is assumed 4,=A4y, what is a consequence of
neglecting all the effects over the second order, and for simplicity, 4,=1. According
to the fundamental hypothesis, in practice we measure an incoherent field of single
scattered signals:

L=Y 1512 (34)

but in fact we measure a total field (including coherent terms) of multiple scattered
signals:

N 2
La=|Y, P; (3.5)
=3

The main goal of calculations is a total intensity with taking phase relations into
account, therefore the coherent sum of pressure is needed:

Z py= Z L exp(21kr )+ Z jcxp(akr ) Z —L exp(ikr,) exp(iks;) =

= F=1T3 1#j T8t
N N N
Z BKP(ZIk")+ Z y —-— s + explik (r;+r+sp)] =
J= =1l#j _p it 8i
N N N
3¢ Z 2 ap= Za”+2 Z Z aji - (3.6)
jeai=i =1 i=1l>j

for ¢; in the form (2.3) we get
aﬁ=f—2jexp[f(¢j+2krj)] for j=I,
i

1 ilo, k O for j#l 3.7
aj rj+r[+SﬁcxP{l[‘P1+¢t+ (re+r+splt for j#l, 3.7

The total scattered field is:

Iml‘_'

éP,‘)‘ ip,-)‘= )E iaik'i ia!:n- (3.8)

Jj=1k=1 I=1m=1

N 2
1P| =
i=1

The product of these two sums comprises N(N+1)/2 incoherent terms
agap= | az | 2, where j=I, k=m, and N(N+1)[N(N+1)/2—1]/4 coherent terms
4@+ aj3a;, involving phases. As a result w obtain:

La=10+IQ+1Q+13, (3.9)
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where
N

Q=% la;l?
j=1

N N
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In the case of only coherent scattering of the first order (the phases of echoes from
individual scatterers are equal), for identical objects we have I8 =(N—1)I{) or
La=NK.
 Asit wasmentioned above, N(N+ I)[N(N+1)/2+ 1]/4 terms must be calculated to
obtain the value of [,,. This gives 1540 components for N=10 and 813450 for N=50.
Total backscattering intensity can be greater or smaller than its incoherent part
because echoes from single centers can interfere constructively or destructively
(coherent terms can be positive or negative). For estimation of an error connected
with the assumption of the dominant role of incoherent scattering it is useful to
introduce the following correction coefficient:

Coor = I(R/Imt-

For purely incoherent scattering its value is 1 and it decreases with rising contribution
of coherent effects.

4. Scattering model with attenuation

Attenuation of the running wave takes place only inside the volume V on the way
r; to the individual scatterer and on the way s5; between two consecutive scatterers

(Fig. 2)

r}=rj(zupp_zj)/zj9
where r; — a distance from the source to the jth bubble, z; — its depth and
z,pp — a depth of the upper boundary of the swarm of scatterers. Energetic coefficient

of sound attenuation in bubbly water is expressed in Np/m and for identical bubbles
has a form [7]:



]

SOUND SCATTERING IN THE SEA 197

a=Na,rlV,

where o,  is given by the formula (2.7).
Expressions (3.1)—(3.3) and (3.7) change their appearance:

t.
pi=A jf exp(ikr;) exp(—0.5arj), (3.1);
i
& iy
Aj=A0j+ Z A[—‘ exp (IkSﬂ) Cxp(—O.SCCSJ‘g). (32)'
I#j it
A, , : ,
Ay - exp(ikr;) exp(—0.5arj) (3.3)

J

ajj=%fexp [i(q)j—r?.krj)] exp(—arj) for j=I
Fi
(3.7

aj,=%q—exp{i[cpj+qo,+k(rj+r,+sj,)]}exp[—O.Sa(r}+r;+sﬂ)] for j#I
TS

The effect of sound wave extinction was introduced to the model according to
formulae (3.1)'—(3.7)".

5. Numerical results

The first stage of calculations concerned N identical scatterers distributed both
regularly and randomly in volume V with a given mean distance d between the
neighbouring individuals. Sound attenuation was not included. The volume V was
chosen as a parallelepiped with edges n,d, nd and n,d (n,*n*n,=N). In regular
distributions bubbles were located in the nodes of a network, in random distributions
each coordinate (x, y, z) of a scatterer was a random variable from the interval equal
to the appropriate edge length determined for the regular case. In the random case the
distances s; between all scatterers were tested and values smaller than diameter of
a bubble were eliminated. Obtained values of backscattered field were averaged over
50 realisations.

In the first series of calculations the dependence of the scattered field on
swarm density was investigated. For this purpose the value of d was being
changed from d=1 cm to d=10 cm which resulted in change of total volume
and, in consequence, in the bubble concentration. Various values of bubble
number N (27 or 48), bubble radius a (10, 50, 75 and 100 pm) and swarm
depth z, (1,5 and 10 m) were taken for each numerical calculation. Resonant
frequency of a single bubble was chosen as a frequency of incident sound (f=fg).
Incoherent scattering of the first order practically depends neither on bubble
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concentration nor on character of a distribution. In the random case it dominates for
d>2 cm (Fig. 3). Incoherent term of the second order increases with decreasing
volume for all kinds of distributions. For the densest packing (d=1 cm, i.e.
N/V=10%m?) this term contributed significantly — for random distribution it is even
greater than the first order incoherent part. Regular distributions give the interference
picture of I,,, with oscillations of order 30 dB which are connected with a vertical
network dimension — large maxima occur at half wavelength and smaller — at
quarter wavelength distance between horizontal layers of scatterers. It can be clearly
seen on the diagram with horizontal axis and scale d/A (Fig. 4).
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Fig. 3. Comparison of different order scattering effects for regular (upper) and random (lower) bubble
distributions. N=27, a=100 um, z,=10 m.
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Fig. 4. Total intensity versus d// for regular bubble distribution for different swarm depths (upper) and
different bubble radius (lower). N=27.

The second series of computation concerned the random distributions only.
Values of scattering volume (¥'=0.01 m?), bubble radius (a=100 pm) and swarm
depth (z,=5 m) were fixed and bubble number N was varied. Calculations were
carried out for seven different ratios 4x/4z of scattering volume: from A4x/4z=0.1
— tall and narrow parallelepiped (in practice it is equivalent to narrow beam and long
pulse) to Ax/Az=100 — low and broad (broad beam and short pulse). Fig. 5 shows
the dependence of the total intensity and correction coefficient on number of bubbles
in given volume for three chosen geometries. Apart from an obvious fact that
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Fig. 5. Dependence of total intensity (upper) and correction coefficient (lower) on number of bubbles
enclosed in volume ¥'=0.01 m? for three geometries. Bubbles distributed randomly, averaging over 100
realisations.

intensity increases with increasing number of scatterers, we can see the tendency that
with flattening and broadening of the parallelepiped the total echo rises and
correction coefficient falls. It means that coherent scattering becomes more substan-
tial, what is obvious for 2-dimensional (flat) scattering systems. The shape of these
curves is very uneven despite increasing the number of averaged realisations to 100,

because of large changeability of succesive realisations (see standard deviations in
Fig. 6).
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Fig. 6. Total intensity with standard deviations versus number of scatterers for one of geometries from Fig. 5.

The third series of computations concerned the dependence of the total backscat-
tered signal and its components on frequency of incident sound for two types of
distribution: regular and random (Fig. 7). Bubble number (N =32), its radius (a=100
um), scattering volume (V'=0.01 m?) and swarm depth (z,=5 m) were fixed. The
comparison shows that incoherent terms of the first and second order are almost
identical for both cases, but the shape of I is different. For the random case
I, repeats the form of I, but for the regular one numerous maxima appear. The
largest of them originates from the resonance of single bubble f; (according to
formula (2.2)), others are connected with the vertical dimension Az of the scattering
area. Distances between consecutive peaks are equivalent to Az=1/2 and they change
together with a geometry of the scattering volume V.

Analogous dependence for I, was found for random aggregations of bubbles
with various radii. For this purpose three different types of bubble size spectra were
chosen: Gauss distributions with maximum at 150 pm, a hypothetical power law
distribution with a maximum at 50 pm and the distribution of KoLosaev and
DexTeREV [2] describing natural marine population of gas bubbles:

(1) n(a)~exp[—(a—a)*/2¢?] a=150 pm (Gauss),

a for a<50 pm
(2) n(a) {a'3 B g (power law),
(3) n(a)~a 3exp(—3ala) =15 pm (KorLosaev and DEkTEREV [2]).

All these distributions were normalized to give N,,=50. Fig. 8 illustrates the
dependence I,,,(f) (upper part) for particular distributions (lower part). It can be seen
that for aggregation of bubbles with different radii the resonant maximum of I is
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Fig. 7. Frequency dependence of the total backscattering energy and its components for regular (upper)
and random (lower) bubble distributions. N=32, a=100 pm, z,=5 m, ¥'=0.01 m?, 4x/4z=1.56.

broadened in comparison with the case of bubbles with the same radii (see Fig. 7) and
the shift of maximum in size spectrum causes the shift of resonant peak of
backscattered intensity according to reverse proportionality of fand ag. Additionally,
the bigger bubbles dominate in the aggregation, the higher is the level of I, in the
nonresonant area (large frequencies). :

The dependence of the calculated backscattered intensity without and with
attenuation on the linear dimension of swarm is shown in Fig. 9. For very small
volumes ¥ (i.e. huge bubble densities N/V) the attenuated field is about tens of dB
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Fig. 8. Frequency dependence of the total backscattering energy (upper) for different kinds of bubble size
spectra (lower).

smaller than the unattenuated one. A comparison of this diagram with the
dependence of the first and second order terms of backscattered energy on the linear
size of aggregation (Fig. 10) shows that the range of large attenuation is the same as
the range of domination of the second order scattering. Therefore we can conclude
that strong attenuation eliminates the second order effects. On the other hand, in the
range of moderate bubble densities (under 104/m?), the role of both attenuation and
interaction diminishes and these effects become negligible.
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Fig. 9. Dependence of the total intensity on parameter d with attenuation included or not. Random
distribution with N=27, a=100 pum, z,=10 m.
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Fig. 10. Relative contribution of the first and second order scattering effects to total intensity for random set
of bubbles. N=27, a=100 pm, Z,=10 m.

6. Summary

On the basis of numerical model describing the total field of signals backscattered
on the collection of isotropic scatterers an attempt of verification of two fundamental
assumptions of echosounding was made. Free gas bubbles were chosen as modelled



204 1. SZCZUCKA

-30

total intensity [dB1]

H
i

" 1 1

(4] 2 4 6 8 10
d fem]

Fig. 9. Dependence of the total intensity on parameter d with attenuation included or not. Random
distribution with N=27, a=100 pm, z,=10m.
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Fig. 10. Relative contribution of the first and second order scattering effects to total intensity for random set
of bubbles. N=27, a=100 um, z,=10 m.

6. Summary

On the basis of numerical model describing the total field of signals backscattered
on the collection of isotropic scatterers an attempt of verification of two fundamental
assumptions of echosounding was made. Free gas bubbles were chosen as modelled
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scattering objects. They can be treated as an approximation for marine biological
objects like plankton or fish (often with swimbladders). It has been shown that terms
of the second order scattering are important for very large concentrations of the order
10%/m?3, but they are compensated by the effects of attenuation (very strong in that
area). Coherence is substantial for regular distributions of scatterers and for
aggregations close to 2-dimensional ones. The dependence of backscattered signal on
frequency is dominated by the distinct maximum at the resonant frequency of the
single or prevailing bubble size and regular distributions give the characteristic
oscillations determined by the scattering geometry. To sum up we can state that
commonly assumed simplifications used for estimation of the number of intrusions in
the sea water are justifable, at least in case of gas bubbles. Their natural populations
are randomly spaced and are small enough (excluding extremal wind conditions) to
neglect multiple scattering and coherent effects.
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