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PROPAGATION AND SCATTERING OF APM IN THE PIEZOELECTRIC PLATE WITH
PERIODICALLY CORRUGATED SURPHACES

D. BOGUCKI
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Bragg reflection of acoustic plate modes (APM) in piezoelectric plate with periodically
grooved surfaces is analysed. Reflectional mode conversion and phenomena of APM
propagation along the grooves are also taken into account. Influence of phase shift between
the grooves on dispersion relations is also analysed. Presented results may be applied in the
analysis of APM sensors and signal processing devices.

1. Introduction

Phenomena of SAW propagation in a piezoelectric substrate with periodically
corrugated surface were analysed in details in literature [5], [8], [11]. Corrugation has,
usually, a form of shallow, periodic grooves. In this case, in substrate propagates one
surface mode [5], [9] and the Bragg condition has the form K=2k, where K is
wavenumber of grooves system and k, is SAW wavenumber.

Corresponding phenomena in the piezoelectric plate are more complicated
because of multimodal propagation of acoustic plate modes (APM) [2], [3], [4].
Different modes may be coupled by formula: '

K=k, =k,

where: k, — wavevector of forwards propagating mode, k, — is wavevector of
backwards propagating mode. In the coupling of different modes we have also
phenomena of reflectional mode conversion.

If the plate is corrugated on both sides, then reflection of different modes,
depends on grooves amplitude and their phase shift.

Different phenomenon is APM propagation along the grooves. There is no Bragg
reflection in this case — propagation has a form of waveguiding by grooves of
corrugation. This effect is similar to a SAW propagation along the grooves deposited
on the isotropic halfspace analysed by A.A. MarabuDIN ef al. in [11] and [12].

APM propagation in the isotropic corrugated plates was analysed by author in [10].
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Fig. 1. Piezoelectric plate corrugated on both surfaces

In this paper APM propagation in the piezoelectric plate with both surfaces
periodically corrugated is analysed. Solution for plate with corrugated one surface
may be easily obtained from this generalized case. We consider slant propagating
wave (with reference to groove system) and propagation of APM along the grooves in
infinite piezoelectric plate d — thick (Fig. 1). Piezoelectric plate is characterised by
p-mass density and material tensors ¢, ey, ¢;;,,. Below and above the plate there is
vacuum (¢,). Periodic corrugation may be described as follows:

{'(z)=h,e™ %+ b= (1.1)
{"(z) =h,e %=+ hyele (1.2)
where A=2n/K is a period of corrugation. Corrugation amplitudes 4,, h, may be

different, they especially may be phase shifted. Corrugation is assumed to be small, so
a perturbation theory may be applied:

i

A

We consider waves propagating in any direction on a (x, z) plane. According to the
Floquet theorem [6], solutions for displacements and stresses in the structure may be
written in the form:

«1" i=1,2. (1.3)

h;
1 1.
«], Id

Ty e ereslagn, (14

e Zu(ln)e—_y(s+nh’)ze—jrxejmt ; (] 5)
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where i, j=x, y, z and r>0, s> 0 — wave vector components of the incident wave in
x and z axis direction respectively (Fig. 2). Analogous assumptions are made for
electric field flux density and electric potential inside the plate:

X 22 X 2 >
E(=1) e k() k(1)
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: i :
s— K 0 s ¢ -K 0 K Z

Fig. 2. Wavevectors taken into consideration in analysis: left — for oblique incidence, right — for
propagation along the grooves.

D=3, Dipe-fe+nig=irsgion (1.6)
® =Zq)(n)e—x.r+nnze—jrxejmt . (] 7)

Electric potential over and below the plate must additionally dissapear in + co and in
— oo respectively:

(P'= ler(u)e—_,(..+nx)ze—jrxe—fc(n)yejwt i (] 8)
n
= S eyl 19

where k™ =./r?+(s+nK)>2 In the case of slant propagating waves (with reference to
the groove system) only the lowest harmonic components, coupled by Bragg
condition are taken into account i.e. n=0, — 1. For propagation along the grooves
(eg. for s=0), it is necessary to account components n= —1,0,1, because k" =k,
This simplification is allowed in presented perturbation analysis (h;—0). For
| n'| - oo solutions for u; and ¢ describe leaky modes exponentially attenuated with
distance from plate surfaces. These modes gives ommitable contribution in total
energy and can be neglected.

In this paper are analysed dispersion relations i.e. relations between w and
wavevector components s, ¥. Method of solution is the same for plate corrugated on
one or on both surfaces:

1. Structure is decomposed onto three (two) parts:

+ Piezoelectric plate d-thick
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+ Thin, corrugated piezoelectric layers h, — thick.

2. Influence of corrugated surfaces is substituted with so-called generalized
Tiersten boundary conditions — Section 2.1.

3. Properties of piezoelectric surface is substituted with so-called spectral Green’s
function for piezoelectric plate (also known as immitance relations for
piezoelectric plate) — Section 2.2.

4. Combining above formulas, we obtain dispersion relations for analysed
structure. Numerical results are presented in Section 3.

2. Formulation of the problem

2.1. Generalised Tiersten boundary conditions

Let us consider free piezoelectric surface streaching for y <{(z) (Fig. 13), where
{(z) =he %= 4 Kz 2.1)

describes sinusoidally grooved surface with period A=2n/K and amplitude h« A
(grooves are parallel to the x-axis). In [8] were presented so-called generalized
Tiersten boundary conditions. They were exploited in the analysis of periodically
corrugated isotropic plate in [10].

Generalised Tiersten boundary conditions have the form of additional stresses
and electric charges subjected to mean surface y=0, in the function of known
displacements and electric potential on the same surface. On the other hand,
generalized Tiersten boundary conditions replace homogeneous boundary conditions
on corrugated surface by inhomogeneous boundary conditions on mean surface (in
simplification of small corrugation). In our case they have general form (denotation
of complex amplitudes is analogous to (1.4)—(1.7).

T™W = hg(""‘_ h.y-1 e h'g‘"’”* .yt 1), (2_2)
where
TOS[TO; TP, TY; 4DP] and  UP=[uld; uf; u; ™).

It is worth to note that in above formulas, matrices g™"*? and g™~ couple
waves propagating with different wavenumbers (for example wave n=0 with n= +1).
This effect disapears with h—0.

Method of evaluation of mentioned relationships for piezoelectric material and
two-dimensional corrugation (periodic dots) is presented in the Appendix A.

2.2. Immitance relations for piezoelectric plate

Let us consider infinite piezoelectric plate bounded by planes x,= +d/2 (Fig. 3)
made of material characterized by p — mass density and material constants ¢, €qijs
Cijpg- Yacuum (gy) is outside the plate. We consider harmonic waves propagating in
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Fig. 3. Piezoelectric plate with forces on both surfaces.

x,-axis direction proportional to exp(jmf—jkx,), where k is wavenumber and  is
angular frequency.

In the piezoelectric material, the coupled acoustic wave equations are (in
quasi-static approximation):

0
PO U;= Cijpg Up,jq+ €4ijP jg>

2.3)

0=ejpq Up,jg— €iq P, ja>

where u, is the particle displacement in the p-axis direction and ¢ is the electric
potential inside the plate. Electric potential above (¢") and below (¢”) the plate satisfy
Laplace’s equation in the vacuum:

0= (P: jjs
Y 2.4)
Appropriate electrical and mechanical conditions must be satisfied on both plate
surfaces. The mechanical boundary conditions are

T,=T, at x,=+dJ2, (2.5)
T,=T; at x,=-—df2, (2.6)
and the electrical ones:

¢=¢'; D,—D,=AD, at x,=+d/2, 2.7
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p=9¢" D,—D;=4D, at x,=—dJ2, (2.8)

where T, and T are stresses subjected to the plate surfaces. 4D , and 4D, are charges
induced on upper and lower surfaces respectively. Solving this boundary problem, in
the way presented by S.G. Josui ef al. in [14] and [13], we obtain immitance relations
for piezoelectric plate i.e. relations:

U=x-T+xT, , (2.9
U=y -T+y T, (2.10)

where vectors T, T, U, U are defined as follows T=([T,, T,, T,, 4D, T=[T, T, T,
4D}, U=[U, U, U, ® and U=[0, U, O, @].

Matrices (4 x 4): x, X, y, ¥ are Fourier transforms of corresponding elements of the
Green’s function for piezoelectric plate (k is spectral variable). These functions
depends only on k, w, material constants and plate thickness. In general case,
calculation of these immitance functions may be performed only numerically. It may
be prooved [14] that geometrical and material symmetry requires that y= —x and
y=—%X. Both x and X have the same simple poles for k corresponding APM
wavenumber. Matrix x is hermitian (x;=xj), and % is symmetrical ones (xi5=x5)
(14], [13].

Matrices x and X for isotropic plate were presented in [10]. It is worth to note that
only for piezoelectric materials elements x;, and £;, are non equal to zero, because
they describe coupling between mechanical displacements and electric field.

2.3. Dispersion relations

Let us introduce for each n new coordinate system such that axis y=x® and
XP=k™ (Figure 2). Immitance relations for each n have the form:

U™ =x® . T4 g . Fm (2.11)
)= — 0. T _ 0. 0, (2.12)

Transforming in the same way generalized Tiersten conditions and taking into
account only the lowest harmonic components, coupled by Bragg condition we
obtain (Section 1):
« for normal nad slant incidence onto grooves i.e. taking into account n=0, —1
we have:

TO=h,g® . y", (2.13)
TN =h; g=19. YO, (2.14)
« propagation along the grooves i.e. taking into account n=1, 0, —1 we have:

TO=h,g®= V. U-D 4 p} gD . y®, (2.15)
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TCD = b g=19. YO,
TO=h,g™® - UO,

(2.16)

(2-17)

h; is h, for the upper and A, for the lower plate surface.
Substituting (2.15)—(2.17) and (2.13)—(2.14) to appropriate (2.11)—(2.12) we
obtain dispersion relations in general form:

D=det{Q} =0. (2.18)
Where matrix Q and u is defined as follows:
s for normal and slant incidence onto grooves
| = BA, 0 —hA,
—hiB, I —hiB, 0
= X 2.19
Q 0 +h,A, I + A 19)
+h;B, 0 +h;B, I
- for propagation along the grooves
[ 1 —-h,C,. 0 0 —-hC, 0
—-hD, 1 —hA, —hD, 0 —hiA,
0 —hB, I 0 —-hmB, 0
Q=] 0 +aC, 0 I  +hC, 0 (2.20)
+hB, 0 +hA, +hD, 1  +hA,
| 0 +hB, 0 0 +h,B, I

I is unitary matrix and A;, B,, C;, D, are 4 x 4 matrices defined as follows:

A =x0.g0 ) A =x30.g0" (2.21)
B,=x\"". g9, B,=g(-0.g-10, (2.22)
C,=x0-gl9,  C,=30-g, (2.23)
D,=x®.g®  D,=xO.gO" (2.24)

Dispersion relation for piezoelectric plate corrugated on one side may be obtained by
substitution h,=0 in presented above formulas.

3. Numerical results

In numerical results presented in this section it is assumed that:

+5€(0,K) i.e. s is in the first Brillouin zone;

« angular frequency w is normalised to 2=w/V and V=./c,/p, so 2€(0, K);
« it is assumed that 4,=0.01 4;
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« place thickness d is normalised: d=m - A/2x; We analyse relatively thin plates
with m=1 because for m>3 higher APM may propagate and corresponding
dispersion relations are much more complicated;

+ re(0, K) for the waves propagating aiong the grooves and for slowness curves.

- amplitudes of corrugation on both sides are: h1=hcxp{—j-‘g} and

h,=hexp { +j %} i.e. are phase-shifted by y.
It may be easily prooved that highest frequency f,,,, of model correctness is given:

v

fmnx= Z' (3'1)

For f>f,.,. we must take into account more n in the series (1.4)—(1.7).

3.1. Normal and slant incidence onto grooves

We analyse equation (2.18) in a two ways:
1. For normal incidence onto the grooves i.e. for r=0, the most natural is to
analyse dispersion relation D(r, s, 2)=0 on (s,£2) plane.
2. For slant incidence onto the grooves more useful is to analyse slowness curves
i.e. for Q=const on (r,5) plane.
Numerical results for popular piezoelectric materials (BGO, SiO,, LiNbO,) are
presented on Figures 4— 10. Upper part of Figures 4 —9 show dispersion curves for
piezoelectric plate corrugated on one side. Dotted lines are dispersion curves for free
(uncorrugated h=0) plate. Lower part of figures, presents dispersion curves for plates
with corrugates both sides.
For APM propagation in the corrugated plates, existence of forbidden frequency
bands (marked with letters on Figures 4—9, see table below).

letter reflection letter reflection
a SH+~SH, d A8,

Ag—A, e A~SH,

C S8, £ S;~SH,

Inside those bands wavenumber has complex values — which is connected with
effects of Bragg reflection. There are two kind os stopbands:
« associated with backward mode reflection (a, b, c) inside those bands
Re{s} =K[2=const
+ connected with reflection associated with mode conversion. In this case
Re{s} # K[2#const because of different velocities of coupled modes.
Let us note that, if crystal cut of the plate is such that in analysed plate
displacements in saggital plane (u,, u,) and u, are independent each other, then for



Fig. 4. BGO YZ plate m=1 thick, dispersion curves at r=0. Above: corrugated one side, dotted line
— uncorrugated plate. Below: two-side corrugations phase-shifted by: a) =0 — solid line and b) y=n
— dashed line.
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Fig. 5. LINbO, YZ plate m=1 thick, dispersion curves at r=0. Above: corrugated one side, dotted line
— uncorrugated plate. Below: two-side corrugations phase-shifted by: a) =0 — solid line and b) ==
— dashed line.
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Fig. 6. SiO, YZ plate m=1 thick, dispersion curves at r=0. Above: corrugated one side, dotted line
— uncorrugated plate. Below: two-side corrugations phase-shifted by: a) =0 — solid line and b) y=n
— dashed line.
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Fig. 7. 8i0, YX plate m=1 thick, dispersion curves at r=0. Above: corrugated one side, dotted line
— uncorrugated plate. Below: two-side corrugations phase-shifted by: a) =0 — solid line and b) ==
— dashed line.

[258]
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Fig. 8. Slowness curves at 2=0.4 K. BGO YZ plate m=1 thikc. Above: plate corrugated on one side.
Below: two-side corrugations phase-shifted by: a) =0 — (solid line) and b) =7 — (dashed line).
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Fig. 9. Slowness curves at 2=0.4 K. LINbO, YZ plate m=1 thick. Above: plate corrugated on one side.
Below: two-side corrugations phase-shifted by: a) y =0 — (solid line) and b) yy=n — (dashed line).
[260]



AMP IN THE PIEZOELECTRIC PLATE 261

0.24
0.20 | - PR
0.16 | oy
G o012 A,
< 2 — Isotr.
~---BGO
0.08 | ~ 8i0z: YZ
--- LiNbO3:YZ
— §i02 :YX
0.04 |
0.00 i l 1 " i 1
0.0 0.5 1.0
y[rad]

Fig. 10. Stopband a width dependence on grooves phase-shift  at r=0. Plate thickness: m=1.

r=0 we have no Bragg reflections associated with Lamb to SH (transverse) mode
conversion (bands e, f, Figures 4 —6).

Unlike isotropic case [10] we have mentioned reflections even for r=0, if crystal
cut is such that both Lamb and SH modes have all displacements not €qual zero
— YX quartz on Figure 7.

In the case of plate corrugated on both sides, we have interesting phenomena of
stopband width dependence on yy — phase shift between the grooves. If crystal cut is
such that Lamb and SH modes propagate independently, we have for Lamb modes at
r=0, situation analogous to the isotropic case [10] (Figures 4—6):

« for Y =0 there is only stopband d associated with reflection 4;—S,

« for y == we have only stopbands b (4,-4,) and ¢ (S;=S,)

The width of a stopband (SHy—SH,) depends on y in different way. This
reflection disapears for different materials at different y #0, but AQ is the largest
always for ,+n (Figure 10).

Generally, stopband width AQ depends on phase shift i in a complicated way.
Good example is plate made of YX quartz (Figure 7). Stopbands e associated with
relfection SH >4, depends on y in quite opposite way then other bands associated
with mode conversion (d, f).

Numerical results for slant incidence of wave onto the grooves are presented on
Figures 8, 9. In this case, analogously isotropic case [10] we have always stopbands e,
f associated with reflection of SH to Lamb modes. On the other hand, the shape of
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slowness curves for piezoelectric materials is quite different then for isotropic case
[10]. Anormally distorted curve SH, on Figure 9 (arrow) is associated with beginning
of bandpass SH —SH for r=0 at 2=0415 K.

3.2. Propagation along the grooves (s=0)

In this special case solutions have different character then presented in the
previous paragraph — this is waveguiding by groove system (Figures 11 —12). There
is no Bragg reflection of incident wave in this case. In regions marked with capitals
(A, B) we have coupling between waves propagating along the grooves (S,, SH ) with
modes propagating with wavenumber /K2+r? (marked X, on figure). Those modes
are associated with harmonic components n=n=+1+1.

For propagation of waves along the grooves, in the plates corrugated on both
sides, there are two main differences (Figures 11 —12):

« For y =0 width of bands A, B is the largest; on the other hand for y=n —is the

smallest (especially for B band)

« Phase shift i has only influence on propagation of X; modes (propagating with

wavenumber k"' =k(-"). For == they exist for higher .

4. Conclusions

1. In piezoelectric plate with periodically corrugated surfaces, we have Bragg
reflection phenomena associated with mode conversion — in this case Re{s} #const
inside forbidden band of frequency. This effect is caused by different velocities of
coupled modes.

2. If crystal cut is such, that in plane normal to the grooves Lamb and SH modes
propagate independent each other then for r=0 there is no reflection associated with
conversion of Lamb to SH modes. This effect is possible for slant incidence of wave
onto the grooves.

3. For plate with both surfaces periodically corrugated, width of stopbands
depends on phase shift between corrugation grooves . Changing iy we could obtain
only reflection of certain kind. Those phenomena may be useful in elimination of
parasitic effects of multimodal propagation in APM devices, especially in APM
sensors [15] and resonators [13].

4. In the case of propagation along the grooves, propagation has a form of guiding
wave by groove system. For plates corrugated on both sides, changes are not so large
as for slant and normal incidence of wave onto the grooves.

Appendix A

Let us consider thin periodically corrugated layer made of piezoelectric material
characterised by material tensors ey, &, ¢ijpq and p — mass density. The layer is
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Fig. 11. Dispersion curves, propagation along the grooves (s=0)BGO YZ plate, m=1 thick. Above: plate
corrugated on one side. Below: two-side corrugations phase-shifted by: a) yy=0-— (solid line) and b) y ==
— (dashed line).
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Fig. 12. Dispersion curves, propagation along the grooves (s=0)LiNbO, YZ plate, m=1 thick. Above:
plate corrugated on one side. Below: two-side corrugations phase-shifted by: a) =0 — (solid line) and b)
Y =n — (dashed line).
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Fig. 13. Corrugated piezoelectric layer in generalised Tiersten boundary conditions.

placed on the substrate made of the same material, above the layer there is vacuum
(¢ — Fig. 13. In the piezoelectric, the coupled acoustic wave equations are (in
quasi-static approximation):

PO = Cijpq Up, jg+ €4ij P jos
(A1)
0=ejpq Up,ja— €ia P.ja s
where u, is the particle displacement in the p-axis direction and ¢ is the electric

potential inside the layer. Electric potential above the layer (¢") must satisfy Laplace’s
equation in the vacuum:

0=, (A2)

Let periodic function { ={(x,z) describe two-dimensional corrugation of the layer
surface. According to the Floquet theorem [6], solutions for displacements and
potential in our structure may be assumed in the form:

-y (:r.) —j(s+nK )z ,— jir+mK, )x _jeot
) ) e e el
nn (A3)
¢=ZZ g0(:n"t)e—j(.!+n1(z)z e—j(r+sz)x ejmt,
n n

where A, =2n/K_ and A, =2n/K, are periods of corrugation in z and x axis direction,
respectively. Then s€(0;K) and r € (0;K,). For one-dimensional corrugation (periodic
grooves) it is assumed that K =0.

Electric potential over the layer must additionally disapear in + co, so:

qo’= Z Z q):(:.)e—j(s+nxz)z e—j(r+mxz)x e—-kyejmt, (A4)

where:
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k=/(s+nK)2+(r+ mK,). (AS)
Let us note
_a =&
n=-" and 9_62. (A6)

Boundary conditions on the corrugated surface y={(x,z) are:
» Mechanical conditions:

T;n;=0. (A7)
+ Electric flux density D normal to the y={(x,z)
(D;—Djn;=0. (A8)
» Electric field E tangent to the y={(x,z)
Ei(E;— Epn;=0, (A9)
where n; are componénts of vector normal to the surface y={(x,z)
n=[—n;1; -0], (A10)

and &;; is antisymmetric Levi— Civitta symbol.
It is easy to proove that (A9) is equivalent to the continuity of the electric ptoential
on the corrugated surface:

¢'=¢p at y=((xz2) (A11)

Let us consider now condition (AS8):
inside the layer D;=D,—nD —0D, (A12)
in the vacuum Dj=D,—nD;—0D;. (A13)

Electric field in the vacuum must disapear in the + co, so according to the (A4) we
have:

Dy=—ep=¢cko" at y={(xz)
and finally taking into account (Al1) we have for y={(x,z):
Din;=¢, (ko+no +00, ), (A14)
and, respectivelly:
Dnj=e,pqtp,q— 1P .q—1M(€1pglhp.g— €14P 4) — O(€3pgtip.a— EsqP.0)- (A15)

Mechanical conditions (A7) may be written for y=z(x.z)' as follows:

TunJ = Cizpqlip.gt+ €qizP g — N Cizpglip,g + €i1P.9) + G(Ciquup,q + eqisfp.q)- (A16)
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Expanding u; and ¢ in the series:

u_, | y=C=uj+Cu.i,2+ o I y=0
N PR S S
and retaining only the terms of order h({,n,0), we have finally for y=0:

T =Cizpglip.q+ €qi2®.a =1 (Cirpqlip,a + €4i1®.0) + O(Cizpglip,a+ €4isP.0) (A17)

—{(Cizpatip,2at €aiz®,20)
AD, = (€1pqlhp,g— E2qPsq) — EKP =M(€1pglp,q— E14P,0) + O(€3pgttp.a — E34P.0)
_‘:(ezpqup,zq_ Ezqu.zq)_ ED(H(P‘1+9(P_3+Ck(P.2) (Alg)

where [=6, 2, 4 for i=1, 2, 3 (in shorted notation).

Let us note that for {=0 we have boundary conditions for free (uncorrugated)
surface.

Note that derivatives with respect to x, z are known from (A3). Unknown
derivatives (u; ,,¢ ,) may be eliminated, taking into account that formulas (A17— Al8)
are of first order in & and may be rewriten in the following form (4,y=1, 3):

Cigpallp.y+€4i,0,,= — (Cizpstip s+ €550 5+ O(h))
— (€2patip,— €220 .2) = — (€apalp,s— 5P 5 — Ekp + O(h))
Thus, if we introduce the symmetric matrix I';, by:

Iip=Cizps
Tu= T ety (A19)
=60,

then we obtain derivatives u; ,, @ ;.

up,;= —I g3 (Cargylha,y+ €yaz®.y) —
— '3 (eg5tg,3— 9.y — €K D), . (A20)
?.2= —I 4 (Carqy¥ha,y+€1a29.1) —
— I (eagya,y — Py — EKP)-
Because this result holds for all x and z, differentiating with =1, 3 we have a second
useful result:
up, 6= —T pa (Cazgytiq.oy+ €yaz® ) —
— I 5} (e3074,87— ExvP .3y — P 0), (A21)
?,26= — I 4 (Cagylla, o9+ €3029.37) —

+F ZA} (ezqyuq,ﬁy — 6P 5y — Enkﬁa,a)-
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Writing equation of motion for piezoelectric (A1) as follows:

Cizpalp,2q 7+ €qiz P29 = — (PO U+ Cispylip 5y + €150 5y +

= Ciﬂpzup.t,z-"evi(p.tl])s (A22)
€20ap,20— €24P,20= — (Capylhp,5y— €5y Pay +
+ eﬁpzup,Jz I Eﬁz(pﬂz)s
taking into account formula (A21— A22) we obtain finally:
Cizpalp,at €qizP,29= — (PO*U;+ Ci5pylyp 5y + €550 5y + Kis D, 3), (A23)

€20a4p.20— €24P,20= — (€pyUp,5y— €35 Poy+ K 159 3)

where are introduced the following symbols:

Cispy = Cispy— Ciap2(I 3l Cazpy + I p2€397) — €3is(I’ o Caypy+ T 44€3p);
esiy = €aiy— Ciaps(I" pdeyaz— I p633) — sl leya,— I Jl6y),
esy =esy+Cap T pleya;— I ples) — el ey, — ' ley), (A24)
Kis = €f(Ciapsl pa + sl 4d);
Kes = €k(csp ] pd+es,l ).
Substituting (A21), (A22), (A23) and (A23) to the formulas (A17—A18), we

obtain finally generalised Tiersten boundary conditions for piezoelectric in the
following compact form:

Ty ={pw?u;+ cippy(Ctipy) s+ € ((0.0) 5+ K@) 5, (A25)
A‘Dz = e;:?(cup.v).ﬁ T E;:; (C(P.T).J + Ka(‘:ﬁo),a, (A26)

+ 6,1+ 00, ) — Lek(K pstip s+ K430 3) + L (€4) 0.

Substituting u; and ¢ from (A3) to above formulas, performing differentiation with 4,
y=1, 3 and collecting terms with the same m and n we obtain generalised Tiersten
boundary conditions in matrix form, useful in numerical calculations. Generally they
are complicated but for certain piezoelectric materials (i.e. BGO, a-quartz, LINbO,)
they are much simpler due to limited number of non-zero elements of material tensors
€qijp Eij» Cijpq [4]-

For one-dimensional periodic grooves K,.=0, n=0, m=0 and presented above
formulas may be written in the form (11).
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