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ASYMPTOTIC SOLUTION OF ACOUSTIC NONLINEAR WAVE EQUATION WITH FRICTION
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A contribution to the development of asymptotic method of small parameter was made
and applied to the analysis of the propagation of nonlinear acoustic waves. The result is close
to strict empiric function. Asymptotic solution of acoustic nonlinear wave equation with
friction was found. The result enables the propagation velocity and the pressure of an
acoustic wave to be evaluated.

1. Introduction

The computation problem of longitudinal acoustic wave with friction is very
important for the duct model of porous material. Absorption of porous materials is
mostly tested experimentally [1, 4]. Nonlinear approximate analysis is also performed
to same extent [3+5].

Next stage of the development of wave equation analysis is the asymptotic
averaging [2].

Even today the strict solution of the non-linear propagation equation of acoustic
waves with friction and partial derivatives is not known. The results approach strict
formula.

2. Analysis

Theoretical analysis must be connected with reality. Taking into account the duct
friction of prorous material we improve the compatibility of the theory with experiments.

Sound propagation is always partly nonlinear. For high intensity levels over 100
dB the nonlinearity cannot be neglected. An approximate theoretical analysis of
acoustical waves with finite amplitude is to be performed.

The first method used in the nonlinear procedure of solving nonlinear equations
was the method of small parameter H. Poincaré and others, the next one was the
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method of Krylowa — Bogoljubova [2] and now we present better results obained with
asymptotic averaging of equations.

Nonlinear equation with friction of the propagation of longitudinal propagating
in the direction of the Ox-axis can be written in the following form

0%u 0*u Ou 0*u ou
or ™ Cogg=*/ (aa 0a* a:) 1)
a=x—u

where u — displacement, C, — sound velocity, a — Lagrange coordinate, ¢ — small
parameter.

The main source of nonlinearity is the adiabatic process. Friction is a nonlinear
function of velocity.

Nonlinear term f can be written in the following form

Ou\—&+D 0%u du
f=[(]+%) _1]a_a2_r,.5, (2.1a)

where x=1, 4 — adiabatic exponent, r; — flow resistance.
For the value

EE <l, (2.2)
da

we can epand the first part of nonlinear formula (2.1a) into convergent power series

Ou\—(*+1) ou 1 ou\2

(2.3)
du
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ou\k
...(x+k)(a—a) +
Number k determines the numerical accuracy.
After inserting Eq. (2.3) into Eq. (2.1 a), we obtain
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Equation (2.1) may now be rewritten as follows
0u *u_ 2
o Y Rl  u ]
=i S0 50 ([ (x+1)k! +(x+1)(x+2)(k n! ( )
1 ou t
~§(x+l)(x+2)(x+3) %a + +(+1) (x+1)(x+2) 2.7

du\* 0*u du

The knowledge of the boundary conditions is necessary for solving Eq. @.7.
Displacement and velocity depend only on the Lagrange coordinate a

ua0=v@, 2204 8)
0<a<l. 2.9)

The displacements at the ends of the duct vanishes
u(0,0)=0, u(1,0=0, (2.10)

where: 1 — duct length of porous layer.
The overall solution has the form

u= Y A,(te)cos[wP1+5,(1:e)] Sin# > (2.11)
n=1
© 11
6_u % z A,(t,6) cos [0 Qe+ 6,(t,8)] COS¥ . (2.12)
2 2 I1
S LI S 0 TN 10 PSP 4 ) P il (2.13)
o> 17 5 [
du 2 o 04 (’ ) (0)
= _(,.);1 o cos[wQt+ 6,(1,6)]
2.14)

-y [ w9+ 0(t, 5)] A,(t,6) sin [0Q1+6,(¢, s)]) sin ?a
n=1
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cos[wDt+5,(1,8)] (+)
(2.15)

n=1

© A (t, aé (1, 3
ay # [w(g) + %:I sin [w(ﬂ)t + 6"(1,8)] (+)

_( ) 62%,(: D 4,60 sin [0+, (1)) +
n=1

35 [‘”‘2466"5: 'ﬂ 24D Gin [+ 8,10 +
n=1

= aé (t,
+ Z[ O+ ol E)] (t.€) cos [Pt + 5,,([,8)]))’Siﬂ gﬁ
n=1
Taking into account
oWt+6,(t,e)=0,(,8) (1.15a)

we obtain the nonlinear part

sf=e ([ (:1c+1).k'Ilr 3¢, ¥ 4 (ts)coscp,,(ta)cos—r;r+ (2.16)

n=1

+...— l:| (—1}—;) i (n* A, (t,e)cos @, (t.¢) sinﬂla—rj) :
n=1

( i aAB(:'S) cos @, (t,6) — i [w‘ﬁ)+ —aé'é(:'s)}{,,(t.e) sin rp,,(t,a))sin n_I;’a)

n=1 n=1

The utility of the asymptotic method can be seen after averaging and analysing the
convergence of trigonometric terms

1 o i
i [ (2, A,, ) sin @, dt=X,,(A,,5,),
0

T—-wo

2.17)

1 i
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T-w

where: f,, — Fourier coefficients.
On the basis of Egs. (2.15)—(2.17) we can write

I 90,1, :
W= (x+ k! = n3 A2 cos2p® — [w(ﬂ)++—’¥]/l, sing Q. (2.18)

Convergence of trigonometric terms leads to
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M 1%
. (cos29pQ singpP) =lim 7 [ cos29Q singQ dr=0. (2.19)
0
Af{ cos@® sinp®} =0. (2.20)
M
" {sing %) =0.5. @.21)
Often
00,(t,
%= onst=C. (2.22)

The amplitude 4, may be derived as A, from averaging

dA, £

dA,

= —05e[0f] 0+ 4, (2.24)

After integration we obtain
A=A, exp{ —0.5[wP] [0Q+C]}. (2.25)
Let us analyse the third part of expanding Eq. (2.17), (2.16)

1 i
S =55 6e+ Doe+ 2)(+3) 7 n* A cos*o, (2.26)
Atl {cos*p®} =%_ . (2.27)

Mean value of é, is denoted by d,. It is involved in the following equation:

do, £
After averaging A,, is replaced by AQ and
o
S E(m et D+ D)+ 3) 5A‘2’4. (2.29)
6= —685— A(ﬂ}‘ (2.30)

(0) 15

Differentiating the formula (2.30) we obtain the mean value of constant (2.22)
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06, en2A0*

The solution of equation (2.1) has the form

- enSAY
u= Y Aexp{—0.5[wf] [m(ﬂ)_ﬁgs (o)ls‘]}

n=1

ensAQ nlla
-cos[w‘?) 685° -0 !;:lt sin 7

(2.32)

3. Concluding remarks

After averaging and convergence analysis, the asymptotic solution is obtained to
the nonlinear equation of longitudinal wave propagation. The obtained formula is
a good approximation of the exact solution and is in good fitness with experimental
result [1, 5]. The pressure level is very important parameter in this analysis since from
formula (2.32).
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