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‘What follows is a description of the electronics and simple mechanical equipment
needed for single photon counting. It is intended as an introduction and guide to assist
users in the measurement of Brillouin laser light scattering on acoustic hypersonic waves.
Simple method of a numerical filtration of the low-intensity-leve} optical signal is described
in detail.

1. Introduction

Observation of the acoustic wave in the hypersonic range consists in measuring
changes of photon energy inelastically scattered in annihilation and creation processes
by phonons lying at the beginning of the first Brillouin zone. However the intensity of
this optical signal is very low with respect to the intensity of light incident on the inves-
tigated sample, so an appropriate registration method must be applied. One of the most
sensitive techniques that can perform this task is a single photon counting SPC [1-3],
well known from its wide application to different materials such as crystals, thin layers
and superlattices structures [4-9].

The main purpose of this paper is to instruct users how to perform such experiments
and how to build their own experimental setup, especially for observing acoustic waves
in the hypersonic range by the Brillouin laser light scattering.

2. Experimental apparatus

The general scheme of an electronic for the SPC method is presented in Fig. 1. The
signal from a fast photomultiplier, for example, a Hamamatsu P-series, is amplified
and then formed to a rectangular shape. An amplitude discriminator with upper and
lower thresholds is then applied, followed by a counter sensitive for TTL standard signal
level connected with a computer. In the case of presented experimental equipment the
amplifier, the shaper and the discriminator are stored in a PTI-614 analog-digital module
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preamplifier amplifier

Fig. 1. Block diagram of electronic equipment for the SPC method. § - lens, F ~ phiotomultiplier. An
optical signal comes through a lens to the photomultiplier. At the output of the electronic equipment
the signal is in TTL standard and i registered by the PC computer.

produced by PTI Inc. Table 1 provides the main parameters of this unit. The Hamamatsu
R-4220F photomultiplier was placed inside the PTI-614. Table 2 provides its parameters.
One of the most important parameters of the PTI-614 module is a pulse pair resolution
equal to 250ns. This means that any photon or a group of photons coming into the
photomultiplier in. a period of time shorter than 250ns will not be recognized as a
new count. The signal coming to the counter {in our case, a standard counter used
for nuclear experiments}, possessed a stochastic nature due to the thermal noise of the
photomultiplier and the random nature of the low-intensity-level scattered light.

Table 1. Parameters of the 614 PMT analog/digital unit.

Dyift of the Maximum Pulse pair Raise time of Fall time od Pulse
signal count rate resolution the pulse the pulse width
“(%/hour) {MHz) (ns) (ns} (ns) {ns}
0.03 4 250 20 100 220
Table 2. Parameters of the R4220P photomultiplier.

Photocatode Amplification Spectral response Raise time of

_ {nm) the signal {ns)

Low noise “bialkali® {Na-K-Sb) 1.2.107 185 - 710 (max. 410) 2.2ns

For these reasons a numerical filiration must be performed, assuming thaf the noise
is conformable to the Poisson distribution (Fig. 2). The signal is also a function of the
voltage supply of the photomultiplier {Fig. 3). The main reason for performing filtration.
is to obtain a smoothed Brillouin spectrum. So a weighted average was used of some
neighboring values of counts, creating an “average window” . This averaging was achieved
as follows:

An error of & single measurement is set equal to

ANy = /N (1)
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Fig. 2. Noise of the photomultiplier with no optical signal (a) and a histogram of its Poisson
distribution (b). Time of measurement was equal to one hour,
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Fig. 3. Comparison of dark signals from two photomuitipliers: R928P and R4220P, The second
photomuitiplier is more useful for low-level optical signal detection.

A relative error of a single measurement is equal to

AN;  VN; .
Ni - Ni N (2)

Then, a weighted average value from n single measurements is equal to

=

EwiN.-

N=i=l. 3)

i=n
2w
=]
where the weight of a single measurement w; is equal to the reciprocal of a relative error,

of this measurement, raised to the second power. By substituting Eq. (2) into Eq. (3) we

obtain
i=n

N=EL__ (4)
where NV is a weighted average value from the “filtration window"” of the width equal to

7. The above procedure must be performed from the first point of data of initial position
to the position equal to (Nt —n +1), where Ny is the total number of registered points.
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Fig. 4. Examples of the Brillouin spectra from the LiTaQj crystal after fltration by different widths of
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A separate problem is the choice of an appropriate width of the “fltration window".
If the width is too large, important properties of the spectrum may be lost {Fig. 4).
A workable value, discovered in practice, takes the width to be comparable to half
the width of a Poisson distribution of dark counts at the same input voltage as for
experiments with real scattered light. As we can see from Fig. 4, the best choice of a
width of the “filtration window™ is the "d" case. A ﬁ]ﬁratxon width equal to 75 loses
physical information completely.

A problem arises in connecting the PTI-614 module fo the computer This can be
solved by the use of any frame grabber or external module. In our case the counter was a
relatively old module giving on its output a signal in a BCD standard. An interface was
designed which connects the counter with a parallel port of a PC class computer. The
interface was controlled by a Pascal language program. The main task of the interface was
the successive reading and transmission of numbers from the counter to the computer.

Pressure (8. u.)

Linear
range

Time (sec.)

4 1000 2000

Fig. 5. Dependence of the pressure in interferometer chamber on a time. The middle-of the plot
provides a linear dependence useful for measurement.

Another problem is the linear scanning of the Brillouin spectrum in time. The total
phase difference between the mirrors of the Fabry-Perot interferometer must be scanned.
or controlled. In most cases, this is done by the piezoelectric method {10]. An older,
less precise, but easier method is a pressure scanning [11], where an interferometer is
placed in a chamber connected with a pump and with a second controlling chamber
useful for valves and a capillary mounting. This allows us to remove a gas from the
chambers and then leak it slowly back. Most importantly, this produces a linear range of
pressure changes (Fig. 5), useful for our purposes. It means that the Brillouin spectrum
can be linear scanned. Obviously, this is a function of the mechanical parameters of the
equipment. In the case of our apparatus, the total volume of the chambers was equal to
6:10"?m® and the diameter of the capillary was of the order of 10~5m
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3. Examples of a registered Brillouin spectium

As was mentioned at the beginning, Brillouin light scattering consists in measuring
changes of photon frequency inelastically scattered on acoustical phonons lying at the
beginning of the first Brillouin zone. At the quantum level annihilation and creation
processes are responsible for the typical picture of the Brillouin spectrum where lines
of lowered and increased frequency can be visible. Figure 6 provides the experimental
spectra of acoustic phonons registered by the use of the SPC in the transparent for laser
wavelength LiTaOj crystal. Lines described as longitudinal (L) and quasi-transverse
waves (T} and T3) were spatially separated from high intensity elastically scattered
light by the Fabry-Perot interferometer — a standard method in every Brillouin or
Raman spectroscopy experiment. Table 3 provides the results of measurements in the
[100] crystalographic direction (compare Fig.6 b). The averaged values are equal to
2560 0.17 GHz and 20.36 £ 0.15 GHe.

Teble 3. Example results of measurements of quasi-transverse waves frequency in the LiTaOj crystal ~
{100} direction.

Frequency of the first . Frequency of the second
quasi-transverse wave (GHz) quagi-transverse wave {GHz)}

25.62 20,40

25.68 ' 20.46

25.44 20.33

25.46 20.41

25.81 20,38
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Fig. 6. Two examples of Brillouin spectra from the LiTaOj erystal for two different full spectral
ranges: a) FSR = 75 GHz, the pressure range is linear only around the middle Rayleigh line.
b) FSR = 37.5 GHz. Descriptions: 71, Th ~ quasi-transverse waves, L - quasi-longitudinal wave.
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The systematic error in phonon frequency measurement caused by the choice of
the interferometer’s full spectral range and numerical treatment of data was equal to
0.15GHz. It is interesting to compare the amplitude of the line from elastic scattering
with the amplitude of Brillouin signal with respect to the noise level. The high resolution
capacity of the SPC method is evident.

4. Conclusion

Single-photon counting is one of the most sensitive methods for very low-level op-
tical signal detection. What was described, in a simple way, is how to perform such
an experiment for the registration of light inelastically scattered on acoustic hypersonie
waves. Most of the equipment was designed and made in laboratory. By the appropriate
choice of volume of the pressure chamber and diameter of the capillary, it was possible
to obtain a linear range of Fabry—Perot scanning, which is crucial in such experiments.
Simple numerical filtration was used to smooth the registered spectra. The described
use of the SPC method can be applied not only in hypersonic acoustics [12], but also in
other field of physics, chemistry and biology.
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