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ELECTROACOUSTIC ANALOGIES APPLIED TO ACOUSTIC OSCILLATOR ANALYSIS
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Department of Sound Engineering
Gdansk Technical University
(80-952 Gdarisk)

Analogies were, so far, rarely applied to acoustic oscillator analysis, however, their use
turns out to be advantageous. It allows, due to comparison of analogous electric and
acoustic oscillators operation, for better understanding of the process of oscillation
maintenance, as well as, the interpretation of the circuits behaviour. Particular conclusions
are presented relative to examples of a bowed string, and of a labial pipe oscillators.

1. Introduction

It is almost incredible that one of the most ancient acoustic devices invented by
our prehistoric ancestors to produce musical sound, the flue pipe, furnishes, so far, an
unsolved problem for scientists attempting to explain fully the involved mechanism of
oscillation maintenance. A more recent example of a similar problem is delivered by
the mechanism of bowed string oscillations. Meanwhile, there is a large family of
electric oscillators, thoroughly investigated, with very well known characteristics.
Why the experience gained in the domain of electric oscillators could not be applied to
mechanic and acoustic self-oscillating devices?

The most probable negative answer bases on formal constraints of electroacous-
tical analogies, which are limited to linear elements only, while self-oscillating circuits
contain, as a rule, nonlinear elements. Nevertheless, as shown beneath, the analogies
can be enlarged, at least qualitatively, to the comparative analyses of oscillator
circuits of the mechanical, acoustical and electrical nature.

First of all, a brief review of electroacoustical analogies is necessary, including
some comments and enlargements of their usual applications.

2. Electroacoustic analogies

Analogies between mechanic, acoustic and electric quantities were studied already
in XIX century. Many authors paid particular attention to that matter and numerous
textbooks contain presentations of analogies, laid down as appropriate tables of
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corresponding quantities and equivalent circuits [5], [7], [12], [13]. Although the
theory of analogies originated by Lord Kelvin and by Firestone remains a valid and
exhaustive basis of those publications a care should be kept in their use, because of
some intricacy in particular presentations, and even few mistakes cointained therein.

A most complete and inspiring presentation of that matter has been given by
Maveckr [8], where he even enlarged the well known concepts on the domain of field
quantities. Quoting here all his consideration would consume too much place, thus
only an abridged information on analogies, indispensable for this article, is given
beneath. ‘

Formal analogies, i.e. those based on similarity of equations describing electrical,
mechanical and acoustical phenomena, are usually denoted as a table of correspon-
ding quantities. For the case of the motional (corrected, or Firestone’s) analogies, in
contrast to the dynamical (classical, or Kelvin’s) ones, the following quantities can be
listed, as quoted in the Table I..

Table L.
Motional analogies
Electrical — Mechanical — Acoustical Quantities
voltage ™ velocity [m/s] volume-velocity [m3/s]
current [A] force [N] pressure [N/m?
charge [C] force impulse [Ns] pressure impulse [Ns/m?]
flux [Wb] displacement [m] volume displacement [m3]
inductance [H] compliance [s¥/kg] compliance [m*s?/kg]
capacitance [F] mass kgl inertance [kg/m*]
resistance [€2] conductance [s/kg] conductance [m*s/kg]
conductance [S] resistance kg/s] resistance [kg/m4s]
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Fig. 1. Examples of motional analogy between two-poles.
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Only the motional analogies, in contrast to dynamical ones, are considered here,
because they keep unaffected topological features of the corresponding quantities.
Moreover, they introduce impedances instead of admittances, and inversely. These
properties are both favourable for a more clear presentation of the concept of
analysis. Besides, keeping to one family of analogies reduces a probability of possible
mistakes, numerous in practice, as mentioned above, even in textbooks.

Employing the correspondent quantities of the table given above, various
equivalent circuits of the acoustical two-poles may be described as analogues to the
electrical two-poles, e.g. those shown in Fig. 1, under assumption of linearity of all
circuit elements.

3. Two-pole oscillator circuits

Further analogies may be considered, concerning oscillator circuits, composed of
two-poles: the first one having non-linear maintenance characteristics, and the second
one built of linear elements with resonant properties. Here, however, due to non-linearity
of the maintaining two-poles the full analogy is possible only then, when shapes and
scales of their non-linear characteristics are exactly analogous. Figure 2 shows the two
basic types of equivalent circuits of electrical two-pole oscillators: the parallel,

electrical acoustical
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Fig. 2. Two basic types -of two-pole oscillators
a) parallel controlled, b) controlled in series.

voltage-controlled oscillator, and the series, current controlled oscillator circuit, as well
as their acoustical analogues. Mechanical analogies are omitted here, because their
equivalent circuit are identical to acoustical ones, except differences in diagram symbols.
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Even when strict analogy between non-linear two-poles is not reached, it may be
sufficient to take advantage of the similarity of maintenance and of stability
conditions of the oscillator circuit, as well as of its circuit variables.

A particular attention is to be paid to the two acoustical circuits shown in Fig. 2.
While the parallel controlled oscillator represents the case of a labial pipe maintained
by a jet action (Fig. 2a), which is a main topic of our consideration, the acoustical
circuit controlled in series should require a special maintaining two-pole, pressure
controlled (Fig. 2b). As such a device is unknown in practice, so the respective
two-pole characteristics v(p) is rather hypothetic.

On the other hand, we know that a pipe resonator may be maintained in
oscillation by excitation applied to the pipe closed end, which case is just equivalent to
a series resonant circuit. It is commonly known that such wind instruments like
lingual pipe with a tuned resonator, or like clarinet, are excited from their closed ends,
yet by means of a reed. The reed acts as a mechanical lever, which is equivalent to an
electrical transformer, transforming a low impedance of the series resonant circuit
into a high impedance needed to match a maintaining two-pole, of the same kind as
that of the Fig. 2a). Thus, an appropriate equivalent circuit for the tuned lingual pipe
is that shown in Fig. 3.
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Fig. 3. Electrical equivalent circuit of a lingual pipe.

4. Four-pole oscillators

Besides of the two-pole circuits the four-pole equivalent circuits are very often
employed to the analysis of electric oscillators. While the former ones are denoted as
the negative imittance (i.e. either negative impedance or negative admittance)
oscillators, the latter ones are called the positive feedback oscillators. The fourth, or
at least the third, términal of the equivalent circuit put out an appropriately
phase-shifted variable from a divided or tapped resonant contour into the main-
taining four-pole (at least three-pole), see Fig. 4. ,

Although many mechanical oscillators can be represented by four-pole equiva-
lents, no acoustical examples of such circuits are known in practice, because
acoustical resonators generally have neither taps nor branches. Therefore, attempts to
analyze acoustical oscillators as feedback circuits, as e.g. is practized in edgetone
theory, do not seem to be justified.
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Fig. 4. Four-pole (positive feedback) electric oscillator circuits; a) with parallel, tapped resonator, b)
with series, branched resonator.

5. Examples of oscillator analysis
5.1. Bowed string as a two-pole oscillator

As it was shown earlier [2], a bow-string system may be dealt with as a mechanical
self-oscillating system with a resonant contour having one degree of freedom. The
system, depicted in Fig. 5, may be analyzed as an equivalent electric analogue circuit
shown in Fig. 6.

Fig. 5. Mechanical system representing a bow-string oscillator.

For the circuit of Fig. 6:
dujdt=—(L|C)V* Ku)—i; dijdt=u; 1)
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where
t=t/(LC)Y2 denotes the dimensionless time,

whilst O
t denotes usual time in seconds,

1= iL(LC)I/Z e 9/(LC)1’2,

iy, denotes the coil current,

O denotes the magnetic flux in the coil.
Analogically, for the system of Fig. 5:

do[dt=—(C,M)"*Fv)—f; dfjdt=v, 2
where
t=t/(C,M)"2,
S=1ACM) 2= x/(C M),

Jc denotes force applied to string compliance, x denotes the string displacement.

D

Fig. 6. Electrical circuit equivalent to the system of Fig. 5.

The nonlinear function F(v) from the equation (2) represents the force of friction
between the bow and the string. The friction is a function of the relative bow-string
velocity, i.e. the difference between the string- and the bow-velocities (v,—v,). The
function depends strongly on the degree of bow rosining. This dependence, being
essential for bowing excitation action, can be taken into account based on inves-
tigations reported in literature [3] [4], where values of friction force vs. relative
bow-string velocity were conclusively measured.

Based on those results the nonlinear function F(v) may be described by the
following expression:

To sign(o,— Db)
HV)—I"*'klU,_DbI ’ (3)
where
T, denotes static friction force at (v,—v,)=0
k is a coefficient depending on rosining.
The shape of function F(v) is depicted in Fig. 7.

Substituting expression (3) into (2) gives a set of equations describing oscillations

of the string point under the bow, on the phase plane. The variables of the set
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Fig. 7. Bow-string friction force as a maintenance function of the system.

represent the string point acceleration, multiplied by the constant value (C,M)"?, and
the string point velocity in function of the dimensionless time. The first variable is
a differential of the second one. Solution on the phase plane yields trajectories of
a phase point, which, describing behaviour of the system in transient states, tends to
a limit-cycle determining steady-state oscillations. This analysis runs quite similarly to
that one of an electric analogous oscillator. ‘

5.2. Labial pipe as a two-pole oscillator

A sounding labial pipe may be represented by the acoustical equivalent circuit
shown in Fig. 2 a). Theoretically the pipe resonator should be treated as a system with
distributed constants, however, under usually accepted approximation it can be
represented by a simple parallel equivalent circuit with lumped constants. When
connected to a two-pole, which represents an air-jet maintenance action, the pipe
resonator is controlled by the volume-velocity at the open pipe end, i.e. the air column
at this end is accelerated under influenced of the pressure, delivered by the air jet,
pumped through the wind chests from a bellow.

This topological condition of oscillation excitation was known from long ago. It was
already stated by Lord RayLeicH [11]. He added then a comment concerning alternative
deflections of the jet inwards and outwards of the pipe, and thought this motion to be
maintaining oscillations within the pipe. His next remark concerned an accurate
adjustment of the jet to the pipe, which was a decisive condition of oscillation onset. He
noticed, however, that once the oscillation started that condition became less exacting.

Besides, Lord Rayleigh described experiments which showed that the natural
frequency of the flue pipe resonator excited from an external source is lower than the
frequency maintained by an usual blast.

Those remarks and, first of all, many experimental observations convince us, that
a coupling two-pole is an unavoidable element of the equivalent circuit, which should
represent mainly a compliance L', due to an influence of the static pressure exerted by
the blast within the labium chamber, and a resistance R, due to losses of an air flow
through the flue. Values of those coupling elements depend on operating conditions
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Fig. 8. Electrical equivalent circuit of the labial-pipe maintained by a jet action.

of the blast. Taking this into account, the resulting equivalent circuit, turned into its
electrical form, adopts the following shape, see Fig. 8, where, moreover, an extra
inertance C;, marked with broken lines, has been added.

The inertance C; is an analogue of the, so called, dynatron capacitance, a fictitious
element playing an important role in the theory of oscillators. Under its influence, the
operating frequency of a negative conductance, voltage controlled oscillator with
simple resonant LGC circuit, is always lower than the natural frequency of the
resonant circuit [6].

We have measured the operating frequency and the natural frequency for eight
labial pipes of various types and pitches, and we have found all operating frequencies
lower than natural ones. Thus, this property of acoustical oscillators is again
analogous to electrical circuits.

Thanks to above proposed equivalent circuit configuration, the mentioned
discrepant observations [11] or other similar measurement results [10] may be
interpreted as occuring in circuits having low value of C; and relatively high value
of L'. In such circiuts the operating frequency may be indeed higher than the
natural one. Moreover, the dependence of the compliance L' on wind pressure
causes a reduction of the resulting circuit compliance with pressure increase, which,
in turn, augments the operating frequency. Such mechanism explains why in
acoustical oscillator the operating frequency increases with increasing wind pres-
sure.

The jet action is nonlinear when its velocity is above certain limit value of the
Reynolds number, which determines the turbulent air flow. The Reynolds number for
a jet velocity vinside a pipe with a diameter d is:

Re=p/u

where p/u is the kinematic viscosity of the air.

Limit values to be outvalued as a turbulence condition, quoted in the literature, are
inconsistent and discrepant. The resulting jet velocities, however, should be in the
range not less than about several m/s.

The nonlinearity is an elementary condition for possible oscillation maintenance
by a two-pole. It is difficult to describe its further properties, because of the
dynamical character of the flow. However, assuming that an observer moves together
with the jet, it is possible to create a simple, quasi-static velocity-pressure characteris-
tics of the jet action.
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Inside a jet, the air is under a higher pressure due to a wind supply system,
composed of blowers, and wind-chests. This higher pressure exceeds the pressure
around the jet stream, which equals to the ambient pressure, or even is lower, thanks
to sucking effect, caused by the jet flow out of a nozzle. Then, a working pressure
difference exists across the moving jet front.

An important phenomenon existing on the jet edge is a boundary layer, composed
of vortices of rotating air portions. Due to their acquired kinetic energy of rotation,
they enter alternatingly into regions of the higher pressure and of the lower one, then
a rapid switching action between two pressure levels takes place. Those phenomena
are, of course, transported in space forward with jet velocity, however, they may be
treated as independent of their position in space, within a certain time, sufficiently
long in comparison to several oscillation periods.

The main simplification of the jet action characteristics depends on an assumption
of the plane front edge of the jet. Then only one coordinate is variable, while those
representing the second and the third dimension, adopt constant values, thus,
although ineffective in circuit description, they permit to keep the proper unit
denominations for the corresponding quantities. None the less, the value of an air
resistance, keeping its dimension, remains a real quantity.

Basing on those assumptions, a quasi-static characteristics of the jet action may be
sketched, see Fig. 9. The two straight sections, marked with a heavy line, and denoted
by H (for higher) and L (for lower pressure) represent the relation between pressure
and particle velocity, for the two operational levels of static pressure.

Due to mentioned process of turbulence in the jet boundary layer, some portions
of air at higher pressure are injected into the lower pressure region, from where, after
a time, some portions are again injected into the higher pressure region. This was
schematically depicted in Fig. 9. Such injection-switching may occur at velocities
either slightly above the mean jest velocity, taken here as zero value on the abscissae
axis, or equal, or slightly below it, so as it is shown on the diagram with broken lines.
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Fig. 9. A quasi-static characteristics of a jet action.
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The derived, quasi-static characteristics of the jet action is quite similar to a static
current-voltage characteristics of a two-pole, compound of a N-shaped, symmetric,
negative conductance two-pole, with a resistance in series. The components and the
resultant nonlinear characteristics are shown in Fig. 10. Authors investigated
oscillators of this kind several years ago, and found them advantageous in various
applications, due, mainly, to their stable operation [1].

Fig. 10. A negative conductance two-pole characteristics with bistable operating point.

Treating the coordinates of the diagram shown in Fig. 10 as phase-plane
coordinates, i.e. assuming they have been appropriately reduced and compensated,
according to a parallel connected resonant circuit, it is possible to draw phase point
trajectories, which show us the circuit oscillatory behaviour. For small displacements
the phase point tends to one of the stable operating points, A" or A”. For larger
elongations it tends to a stable limit-cycle, i.e. periodic oscillation are maintained.
This is a case of a hard excitation.

Quite similarly operates the considered circuit of an acoustical oscillator,
combined of the equivalent circuit shown in Fig. 8, with a nonlinear characteristics
shown in Fig. 9. It may serve as a model of the labial pipe excited into oscillations by
an appropriately matched blast.

6. Applications to oscillator models

Thanks to above considered principles of analogies between electrical, mechanical
and acoustical equivalent circuits it is relatively easy to analyze oscillators by means
of their phase-plane models.

A main drawback of the phase-plane method in the past was a labourious process
of geometrical constructions of phase-point trajectories. Actually it may be easily
replaced by an appropriate computer program.



119

AcCoUSTIC ANALOGIES

Beneath, a few selected examples of the phase-plane solutions are presented.
Models were executed by means of a PC AT computer with a special program written
in the Turbo Pascal language. For calculations the Runge-Kutta method was applied.
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Fig. 11. Modelled oscillations of a bowed string; case of a bow velocity and a high bowing force;
— saw-tooth waveforms represent force vs. time,
— cut-off sines represent velocity vs. time.

The first example represents the case of string vibrations maintained by bow
action at very low bowing velocity, see Fig. 11. Both waveforms, of velocity and of
displacements are quite similar to those observed by many authors in such conditions,
i.e. for a bow position very near to the bridge. A high value of applied bow force
enhances the typical saw-tooth shape of displacement waveform.
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Fig. 12. Modelled oscillations of a bowed string; case of a high bow velocity and a low bowing force;
— velocity waveform shows typical distortions caused in intervals when string ahead of bow.
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The second example concerns the conditions extremely different from the first

one, see Fig. 12. The bow force is smaller at high bowing velocity. The waveforms
result of almost sinusoidal shape. The “‘sticking” parts of period became very
short, almost unremarkable. Besides, a peculiar distortion of the cycle takes place
every period just before its “sticking’ part. It occurs due to the locally higher
velocity of the spring than that of the bow. The potential energy stored by the
spring under bowing action at lower velocity part of the period is transformed into
kinetic energy, which at relatively low spring mass results in higher spring
velocity. At the same time the string force passes locally over the maximum
friction force and therefore the string can overtake the bow. This situation,
although easily observable in many recorded string waveforms, remains without
an appropriate comment in the literature. At any rate, it suggests that the ““stick
and slip” interpretation of the bowing mechanism, widespread in textbook on
musical acoustics, is only valid for a particular range of variables.

The third example put in evidence a possible easy analysis of transient
build-up and decay in an acoustic oscillator maintained by jet excitation. This
analysis, shown in Fig. 13 and 14, is, of course, oversimplified, because it
assumes an abrupt start of the jet flow, as well as an abrupt stop of its action,
however, it makes evident a distinctly longer build-up — than a decay-dura-

tion.
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Fig. 13. Phase-plane model of a build-up transient in a flue pipe.

Numerous other examples were studied as models helpful in better understan-
ding and interpretation of the mechanical and acoustical oscillators behaviour,

thanks to application of analogies.
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Fig. 14. Phase-plane model of a decay transient in a flue pipe.

7. Conclusions

The presented enlargement of the application of the electroacoustical analogies
onto a class of nonlinear two-poles, able to maintain oscillation in resonant circuit,
has allowed to analyze easily mechanical and acoustical oscillators. It has been
achieved thanks to possibility of comparisons to very well known and easy to
investigate properties of electrical oscillators.

The above described approach has afforded new concepts and new interpretations
concerning the mechanism of oscillation maintenance in mechanical and acoustical
oscillators. Those new ideas may be usefully applied to investigations of
self-oscillatory or self-vibratory phenomena occurring in musical instruments. Furt-
her applications to studies of wind-borne structure oscillations, of atmospheric
oscillations, and of aeroacoustically excited sounds seem to be expected.

A concluding remark concerning the use of analogies may be formulated as
follows. The so far employed principles of analogies do not make the most of their
possible applications. Further studies should enlarge and precise the above presented
concepts. The contributions of Professor I. Malecki to that matter [8, 9] have
suggested a fruitful direction of research. ;
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