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A novel VC (voice conversion) method based on hybrid SVR (support vector regression) and GMM
(Gaussian mixture model) is presented in the paper, the mapping abilities of SVR and GMM are exploited
to map the spectral features of the source speaker to those of target ones. A new strategy of F0 transfor-
mation is also presented, the F0s are modeled with spectral features in a joint GMM and predicted from
the converted spectral features using the SVR method. Subjective and objective tests are carried out to
evaluate the VC performance; experimental results show that the converted speech using the proposed
method can obtain a better quality than that using the state-of-the-art GMM method. Meanwhile, a VC
method based on non-parallel data is also proposed, the speaker-specific information is investigated us-
ing the SVR method and preliminary subjective experiments demonstrate that the proposed method is
feasible when a parallel corpus is not available.
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1. Introduction

VC (voice conversion) is a technique which refers
to transforming the characteristics of a source speaker
to those of a target speaker. A wide variety of appli-
cations are available, ranging from expressive text-to-
speech synthesis and preserving speaker individuality
in an ultra low bit communication system, to aiding
the speech-impaired people.
Several VC methods have been proposed over the

past decades, such as the mapping codebook (Abe
et al., 1988), the discrete transformation function
(Mizuno, Abe, 1995), GMM (Stylianou et al., 1998;
Kain, Macon, 1998), and the ANN (artificial neural
network) (Desai et al., 2010). In the mapping code-
book method, the VQ (vector quantization) a cluster-
ing approach is applied to the spectral parameters of
the source and target speakers and the mapping func-
tion is obtained from the two resulting codebooks. One

main shortcoming of this technique is that the con-
verted parameters are limited in a discrete space, which
will cause severe degradation of the speech quality.
The discrete transformation using a piecewise linear
function has been then proposed to replace the map-
ping codebook method, however it results in discon-
tinuities in the converted speech. In the GMM based
VC method, the conversion is established on the ba-
sis of continuous probabilistic functions and the ex-
perimental results show that better results can be
obtained compared to the other prior transformation
methods. The ANN method as a continuous and non-
linear function has also been ved investigated and it
has been proved that results comparable to those of
the GMM method can be achieved, but there are sev-
eral main shortcomings, such as a greater computing
burden, multiple local minima depending on empiri-
cal risk minimization and always involving the over-
fitting problem. From the state-of-the-art references,
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the GMM is the most popular and well-established
VC method. Many improved GMM based methods
have been proposed, such as the GMM and DFW (dy-
namic frequency warping) method (Toda et al., 2001),
the GMM and MAP (maximum a posteriori) method
(Chen et al., 2003), and the GMM using ML (maxi-
mum likelihood) parameter generation method (Toda
et al., 2005). These methods can avoid more or less the
over-smooth phenomenon or discontinuity problem. In
fact, the relationship between the source and target
speakers is non-linear. Different from traditional GMM
or ANN methods, the SVR approach can perfectly map
the non-linear relationship between the source and tar-
get speakers, it needs less training data and is less
prone to local minima. So a hybrid SVR and GMM
VC approach is proposed, in which the SVR mapping
is carried out instead of the linear regression in each
component of GMM.
The above mentioned methods focus on the con-

version of the spectral envelope, but the prosodic fea-
tures, particularly the F0s, are also very important to
the speaker individuality. Most of the current VC sys-
tems often employ simple F0 transformations, such as
transforming the mean F0s from the source speaker
to the target one (Kain, Macon, 1998), and shifting
the means and variances of the F0 distribution to map
the source and target speakers (Inanoglu, 2003). The
strategy adopted in this paper is different from these
methods, the F0s and spectral features are modeled
in a joint model and the F0s are predicted from the
spectral parameters using SVR.
The common VC methods are carried out basing

on a parallel corpus, which contains the same utter-
ances of the source and target speakers. It is evi-
dent that collecting such a corpus is difficult and even

Fig. 1. Training structure.

Fig. 2. Conversion structure.

impossible in many cases. Several approaches have
been proposed to resolve this issue, similar to the
adaptation methods in speech recognition, the adap-
tation technique is employed to fit spectral features
of different speakers based on a previously trained
conversion function (Mouchtaris et al., 2004), the
conversion function is extended to a ML formulation
which requires non-parallel data of the source and tar-
get speakers (Ye, Young, 2006), and an iterative
method based on the acoustic distance is proposed
that proves to be suitable for the text-independent
and cross-language VC (Erro, Moreno, 2007). In
the paper, the SVR method is exploited to cap-
ture the specific information of the target speaker,
which can efficiently decrease the need for parallel
data.
The remainder of the paper is organized as follows.

Section 2 describes the conversion methods of spectral
parameters in details and also gives a new F0 transfor-
mation approach. Section 3 introduces the VC based
on a non-parallel corpus. The experimental results are
given and discussed in Sec. 4. The conclusions are fi-
nally drawn in Sec. 5.

2. Hybrid SVR and GMM based on VC

The flowcharts of VC using the proposed met-
hod are shown in Fig. 1 and Fig. 2, respectively,
the STRAIGHT (Speech Transformation and Rep-
resentation based on Adaptive Interpolation of
weiGHTed spectrogram) analysis and synthesis met-
hod (Kawahara et al., 1999) is adopted to extract
the spectral features and F0s, and DTW (dynamic
time warping) technique is used to align the spectral
features.
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2.1. Baseline GMM based on spectral conversion

There are two mainstream VC approaches based
on GMM, the LSE (least squared estimation) method
(Stylianou et al., 1998) and JDE (joint density es-
timation) method (Kain, Macon, 1998) respectively.
They show equivalent performance and the latter one
is chosen as the baseline of the presented method.
Let x = {x1, ...,xN} and y = {y1, ...,yN} be the

sequences of the spectral parameters of source and tar-
get speakers, respectively, where xi = {xi1, ..., xiJ}
and yi = {yi1, ..., yiJ}. x is aligned to the counter-
part y to get a parallel sequence pair z = (xT,yT)T

(where the superscript T denotes transposition), which
is used to train the joint GMM parameters (α,µ,Σ).
The GMM can be written as a sum of M Gaussian
components, which takes the form

p(z) =

M∑

i=1

αiN (z,µi,Σi), (1)

where αi denotes the prior probability of the i-th com-

ponent and satisfies
M∑

i=1

αi = 1, µi and Σi are the

mean and covariance matrices of the i-th component.
Minimizing the mean squared errors between the con-
verted and target speech, the conversion function can
be written as

F (x) = E(y|x) =
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and pi(x) is the probability of x belonging to the i-th
component.

2.2. Proposed hybrid SVR and GMM methods

A novel hybrid SVR and GMM VC approach is
proposed in this paper, the SVR is adopted in each
GMM component, which is radically different with tra-
ditional GMM or ANN methods. It performs a per-
fect non-linear mapping between the source and tar-
get speakers and can efficiently avoid the over-fitting
problem, and finds always the global minima. Differ-
ent from the traditional one-dimension output SVR,
a multi-dimensional SVR based VC is proposed; the
conversion function as a regression in the m-th com-
ponent is given by

fm(x) = 〈W, ϕ(x)〉+ b, (4)

where ϕ(x) is a non-linear mapping function from a low
dimensional space to a higher one,W = {w1, ..., wJ}T
and b = {b1, ..., bJ}T define two J-dimensional regres-
sors in the higher dimensional space, respectively. The
regression function can be resolved by the optimization
problem:

min
1

2

J∑

j=1

‖wj‖2 + C

N∑

i=1

L(ξi),

s.t. ‖yi − 〈W, ϕ(xi)〉 − b‖ ≤ ε+ ξi,

ξi ≥ 0, i = 1, ...,N.

(5)

Here C is a penalty factor, ε and ξi are variables to
cope with the cost errors on the training points, and
L(ξi) denotes the cost function. Instead of the hyper-
cubic intensive zone used in the ε-based SVR, a hyper-
spherical insensitive zone is adopted to cope with the
multi-dimensional output, and an IRWLS (iterative re-
weighted least squares) method (Perez–Cruz et al.,
2000; 2002) is employed to resolve the Lagrangian as
follows

L(W,b) =
1

2

J∑

j=1

‖wj‖2 + C

N∑

i=1

L(ξi)

−
N∑

i=1

αi[(ε+ξi)
2−‖yi−〈W, ϕ(xi)〉−b‖2]−

N∑

i=1

µiξi, (6)

where αi and µi are Lagrange multipliers. Introduc-
ing the kernel function and iteration procedures, the
unknown wj and bj parameters will be computed in
each dimension. So the GMM based VC function can
be modified as

F (x) =

M∑

i=1

pi(x)fi(x). (7)

As is well known, the selection of kernel is the key
to the SVR performance; The RBF (radial basis func-
tion) and the polynomial function are two typical ker-
nel methods. As shown in the literature (Smits, Jor-
dan, 2002), the RBF Krbf has a better interpolation
performance, while the polynomial function Kp shows
a better extrapolation ability, a mixed kernel is intro-
duced to improve the conversion performance.

Kmix = λKrbf + (1− λ)Kp, 0 ≤ λ ≤ 1. (8)

The weight λ varies between 0 and 1 at a 0.05 step
size, and was finally optimized as 0.85 in the paper.

2.3. F0 transformation

A typical F0 transformation method is based on
GMM (Inanoglu, 2003), which takes a form similar to
formula (2). Many studies have indicated the relation-
ships existing between spectral parameters and F0s.
The joint GMM is used to model F0s and spectral fea-
tures (En-Najjary et al., 2003). The F0 prediction
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from the MFCC (Mel-frequency cepstral coefficient)
vectors using GMM and HMM (hidden Markov model)
methods (Shao, Milner, 2004) indicates that they
can achieve satisfactory results as predicted, but there
still exist some shortcomings, such as the non-linearity
of the relationships between the spectral parameters
and F0s, and need of a large corpus in the training
phase. So the SVR method, which makes non-linear
mapping with less training data, is adopted and the
F0s are predicted from the spectral parameters. Differ-
ently from the traditional F0 transformation methods,
only the target features are necessary for the training
process. The F0 modification is carried out as the fol-
lowing steps:

Step 1. In the training phase, the sequences of spectral
parameters y = {y1, ...,yN} and F0s f = (f1, ...fN ) of
the target speech are calculated using the STRAIGHT
method (Kawahara et al., 1999), respectively.

Step 2. Then the EM (expectation maximization) al-
gorithm is employed to model y and f in a joint GMM.
In each component of GMM, the conversion function
is trained between y and f using the ε-based SVR with
the mixed kernel.

Step 3. In the conversion phase, the F0s are esti-
mated from the converted spectral parameters using
the trained SVR conversion functions.

3. VC based on the non-parallel corpus

The previously discussed VC methods are based
mainly on parallel training data, which requires the
same utterances of the source and target speakers. Re-
cent approaches using a non-parallel corpus have been
investigated (Mouchtaris et al., 2004; Ye, Young,
2006); they can get satisfactory results, but still need
some prior information from the mapping function be-
tween the source and target speakers, which is not al-
ways feasible in real applications. In this paper, a SVR
method is adopted to capture speaker-specific infor-
mation, which doesn’t need any prior information from
the source speaker and makes it possible to do VC from
an arbitrary source speaker to the target one.
The idea is stimulated by the speaker-specific map-

ping for speaker recognition (Misra et al., 2003). Let
L denote the linguistic information, and LS correspond
to the linguistic and speaker information; a mapping
function Ω(L) is calculated to get the relationships be-
tween L and LS and computed using the LSE method
on the training data so as to minimize the squared
errors,

εSE =

N∑

i=1

‖LSi −Ω(Li)‖2. (9)

Assuming m and n are the orders of L and LS, re-
spectively, which are difficult to determine. Accord-
ing to the literature (Misra et al., 2003), a low or-

der of the LP (linear predictive) analysis (m: 4∼8)
can grossly capture the linguistic information of the
speaker, while a higher LP order (n: >12) can capture
both the linguistic and speaker-specific information.
Figure 3 shows a flowchart of the training process of
SVR based on VC using speaker-specific information;
a VTLN (vocal tract length normalization) technique
as the pre-processing module is adopted to extract the
linguistic information.

Fig. 3. Training structure of VC using speaker-
specific information.

4. Experiments and discussions

The work was based on the ARCTIC database
(Kominek, Black, 2004). Two U.S. females and two
U.S. males were chosen to evaluate the performance of
the proposed VC method. The tests were performed
for four speaker pairs: male-to-male (M-M), male-to-
female (M-F), female-to-female (F-F), and female-to-
male (F-M). 200 phonetically balanced utterances with
the same linguistic contents of each speaker were se-
lected, 100 sentences were chosen as the training data,
while another 100 sentences were used for testing.
The 16-order LSFs (line spectral frequencies) were ex-
tracted as spectral parameters, and F0s were derived
in a log-scaled domain. Three types of VC methods
using parallel corpus were compared: the JDE GMM
method (Kain, Macon, 1998), the proposed hybrid
SVR and GMM methods, and the proposed VC with
the F0 prediction accordingly. The GMM based F0
conversions were performed for the first two methods,
and finally they all were evaluated by objective and
subjective tests. The VC using non-parallel data was
also assessed by subjective tests, the orders of L and
LS were optimized as 4 and 16 respectively, and the
number of the GMM components M was set as 64.

4.1. Objective evaluation

The normalized mean squared error was employed
to evaluate the distance between the converted and
target speech, which takes the form

εNE =

1

T

N∑

i=1

‖yi − F (xi)‖2

1

T

N∑

i=1

‖yi − µ
y‖2

. (10)

The figures below summarize the results of the con-
verted speech using the above mentioned three meth-
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ods based on parallel data. It is obvious that the nor-
malized errors of the proposed method are significantly
lower than those of the GMM baseline method. Com-
pared to the GMM based F0 transformation method,
the proposed F0 prediction method can efficiently de-
crease the normalized error. When the numbers of
GMM components increase above 64, the trends of nor-
malized errors become nearly constant, which means
that the number of training data is enough to train
the model.

Fig. 4. Normalized error (M-M).

Fig. 5. Normalized error (M-F).

Fig. 6. Normalized error (F-F).

Fig. 7. Normalized error (F-M).

4.2. Subjective evaluation

Subjective tests were carried out to evaluate the
identity and quality of the converted speech. 12 expe-
rienced listeners participated in all the tests. An ABX
test was carried out to evaluate the similarity between
the converted and target speech, in which three utter-
ances were shown to the listeners, who were asked to
judge whether A (source speech) or B (target speech)
was closer to X (converted speech). Experimental re-
sults are shown in the Table 1. It can be found that
the proposed hybrid SVR and GMM method achieves
the best performance with an 81.09% average correct
response. Adopting the F0 prediction instead of the
GMM based F0 conversion can enhance the VC per-
formance with an about 0.18% improvement of average
correct response.

Table 1. Results of the ABX test.

Methods
Correct response (%)

M-M M-F F-F F-M Average

GMM 80.23 81.27 80.68 79.04 80.31

GMM+SVR 80.72 81.69 81.23 80.01 80.91

GMM+SVR
with F0 81.06 81.87 81.28 80.13 81.09
prediction

A MOS (mean opinion score) experiment was also
conducted to evaluate the overall performance of the
converted speech. Each pair of the utterances includ-
ing the converted speech using different VC methods
and the target speech were shown to the listeners, who
were asked to rate the similarity using a 10-point score
from 0 for “totally different” to 9 for “identical”. The
pairs of speech were grouped with source speech, tar-
get speech, the converted speech using GMM, the con-
verted speech using hybrid SVR and GMM, and the
converted speech using hybrid SVR and GMM with F0
prediction. Different utterances were chosen to make
these pairs, so the listeners could judge the speaker
individuality instead of the sentence level similarity.
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Table 2 compares various VC methods with a crite-
rion of MOS and its standard deviation (SD), and the
confidence interval of MOS is 95%. The results clearly
reveal the efficiency of the proposed method, the score
of the hybrid SVR and GMM method greatly outper-
forms that of the traditional GMM method, while the
F0 prediction method can enhance the quality of the
converted speech.

Table 2. Results of the MOS test.

GMM GMM+SVR GMM+SVR with
F0 prediction

MOS 5.68 6.03 6.12

SD 0.65 0.59 0.62

Complementary experiments were also performed
to evaluate the performance of VC using speaker-
specific information. Two mentioned subjective tests
including ABX and MOS were adopted and the train-
ing utterances were all from the target speaker. Ta-
ble 3 depicts the average results of the ABX and MOS
tests, respectively. As seen from the table, with the
increasing number of the training data, the probabil-
ity of correct responses and the opinion scores show
an upward trend. Although the quality and identity of
the converted speech are not too satisfactory, the re-
sults indicate that VC using the target speaker-specific
information is feasible and can be used in the many-
to-one or even in the cross-language VC.

Table 3. Subjective tests of VC using speaker-
specific information.

Number of training
sentences

ABX test MOS test

Correct response [%] MOS SD

1 50.23 1.53 0.89

5 52.98 2.03 0.87

10 55.16 2.98 0.79

20 56.92 3.62 0.81

50 58.28 4.18 0.78

100 59.13 4.36 0.75

5. Conclusions

A novel VC method based on hybrid SVR and
GMM is proposed in the paper, which shows better
performance than the GMM baseline method. A new
F0 conversion approach is also presented to enhance
the VC performance, finally the VC based on non-
parallel data which needs only the specific information
of the target speaker has been also investigated. The
objective and subjective experimental results confirm
the efficiency of the proposed methods, but an ideal

VC should also take account of other aspects, such
as durations, speaking rates, and speaking styles. Fur-
ther research will focus on the conversion of these fea-
tures.
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