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A method is given of calculating second-order singularities which are related to inflection
points of slowness curves. An approximated formula is derived for the effective permittivity
function in the neighbourhood of its singular points. A numerical analysis is presented of
several piezoelectrics, and crystal cuts are calculated for the singular points. The analysis
shows that inflection points may appear for almost every crystal cut, as is the case of
lithium niobate and langasite.

1. Introduction

The effective permittivity [1, 2] of a piezoelectric half-space is a complex-valued
function Y'(r) where r is the surface wave slowness. The well known Ingebrigtsen ap-
proximation of the imaginary part of this function is valid in the neighbourhood of the
Rayleigh wave slowness r;.

The function Z(r) = 1/Y(r) is infinite for 7 = r;. Such a singularity of Z(r) will
be called zero-order. For r < r; the function Z(r) has three other singular points that
coincide with cutoff slownesses of the three bulk waves. At these points Z(r) is finite
but its first derivative may be infinite. These are first-order singularities.

The Ingebrigtsen approximation has been improved by including contributions from
the first-order singularities in the special case of SH waves [3]. In the general case, an
approximation of the function Z(r) has been found in the neighbourhood of the cutoff
slowness 7¢ of bulk waves [4]. The method that leads to the approximation can be applied
to the remaining two first-order singularities.

A slowness curve is described by the function s = s(r), where s(r) is the real part
of the normal component of slowness (normal to the boundary of the the piezoelectric
half-space). At the cutoff point of the curve, the first derivative of the inverse function
r = r(s) is equal to zero. The second derivative is usually different from zero, and is
related to the curvature of the slowness curve at the cutoff point.

In the paper, we examine singularities of the function Z(r) at points of a slowness
curve different from the cutoff point and such that both the first and second derivative of
the inverse function are equal to zero. These are inflection points of the slowness curve.
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Such singularities of Z(r) will be called second-order. At these points Z(r) is finite but
its first derivative may be infinite.

2. Second-order singularities

We adopt notations and conventions of Refs. [4] and [5]. The function Z(r) is given
by the equality Z(r) = —Z,,(r), where Z, is the element (4, 4) of the 4 x 4 matrix

ZlifL = RiJLj:L (1)

with the minus superscript. This matrix is determined completely by eigenvectors of the
eigenvalue problem that is related to the electro-mechanical field equations as explained
in Ref. [4].

Suppose we know the function s(r) that describes the slowness curve corresponding
to the J-th eigenvalue in the (r, s) plane near the inflection point (r¢, s¢). Regarding the
eigenvector F‘,((J) as a function of the variable s we can write, in the neighbourhood of
r¢, the Taylor expansion

FO(s) = B (s¢) + Fol) (s5) As, @)

where the higher-order terms are neglected. The dot denotes differentiation with respect
to s, and As = s — s¢. )

In the neighbourhood of r¢ the slowness curve can be approximated by an algebraic
curve of third order. If the tangent to the slowness curve at the inflection point is parallel
to the s axis then we may use the algebraic curve given by the equation

(s—s)+a®(r® -rf) =0, (3)
where « is a constant coefficient to be calculated. Hence
As=ap(r), o(r)=(rf —1%)"5 (4)

Straightforward differentiation of Eq. (3) with respect to s shows that o® = —2/r2re**,
where 7°°® denotes the value of the third derivative for s = s.

To calculate the coefficient « in terms of the derivatives with respect to r we choose
another approach. Inflection points are located on slowness curves so that the tangent
at an inflection point is usually not parallel to the s axis. In other words, the derivative
s' (the prime denotes differentiation with respect to ) is finite for r = r¢. The system of
coordinates (z,y, z) should be rotated about the y axis by the angle ( = —atan(1/s'(r¢))
in order to make the tangent parallel to the s axis. This means that second-order sin-
gularities of Z(r) appear only for particular crystal cuts. Now, the coefficient o can be
calculated for an arbitrary inflection point, and then used in Eq.(3) after a suitable
rotation of the system of coordinates. We have

o® = 2(1+(s")%)*/s" (res' — s0)?, (5)

where s’ and s’ denote the values of the derivatives for r = r¢.
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The value of s is changing fast for r — r¢ (the first derivative of s tends to infinity
in the rotated system of coordinates), and so do the corresponding eigenvalue ¢(*) and
eigenvector F . Other eigenvalues and eigenvectors may be considered constant in the
neighbourhood of r¢. Thus, it suffices to take into account only the eigenvector F}< ) , to
find its approximation given by Eq. (2), and to calculate the function Z(r) with the use
of Eq. (1).

Since s(r) = q(r) r, then

SI — ql,r + q7 5“ — qllr + 2(1,, 5” Illr + 3qll (6)

(here s(r) denotes a complex-valued function). The derivatives ¢, ¢", ¢"’, and F ;((J) can
be found as follows ‘
Denote by H L the difference Hy — q(J Iy 1 where I is the identity matrix. The
equality
HigLFr =0 (7)
is satisfied for every r. Differentiating the both sides of Eq. (7) with respect to r gives
the recurrence of equalities

ML FL + 1L D = o, ®
HiD F +2H’“)F’“ +HOFY) = o, ©)
,HN/(J)F(J +37‘[“ J)F (J) +37‘[ H(J) +7‘[(J) F///(J) = 0. (10)

Let E ) be the left eigenvector corresponding to the eigenvalue ¢(/). We assume the
normahzatlon o o
FOFD =1, EDFD =1, (11)

for every r, and introduce the symbols
O = BPHGFY, o = BPHLFYD, Q) = B Y. ()

Multiplying each of Egs. (8) - (10) by El(,(‘,]) we obtain

¢ =@, (13)
¢'"Y) = QgJJ)_*_QE;(J)H'(J)I?/(J) (14)
" = QgJJ)+3E§g)H//(J)F J)+3E J)’H l/(J) (15)

The derivatives ﬁiu) and F Z ) can be represented as linear combinations of eigenvec-
tors, i.e. ; . p -
=N, FPD, Y= 202 F, (16)
I

where the constants C}; and C?; are to be calculated.
Inserting ﬁ‘iu) from Eq. (16) into Eq. (14) and taking into account Eq. (8) we obtain

¢ = +23 ¢, (17)

I#J
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where C}; = —(¢!D) - q(J))_ngu) for I # J, and
FY =y, FY 4 i), (18)

where C} ; = —ﬁi(J)F‘éj), and D} = ¥ ci,FD.
I#J
Similarly, inserting f’llj “) from Eq. (16) into Eq. (15), and taking into account Eq. (9)
and the last results, we obtain the derivative ¢"'(Y) given by Eq. (15) with

F/Y =2, B+ DY), (19)

ot

where 2, = — DX F) _ D FID, B _ z C3,FD, and

—1 1
Ci; = <q(1) _ q(J)) (_qu) +9 <q/(1) _ q/(J)) QU

+2> (" - q“))—lQi’“’”Q&”"> (20)
K#I
for I # J and K # J.

The above formulae are true for all eigenvalues and eigenvectors (for r different from
the cutoff values). In this way, we find the coefficient o from Eq. (5), and the derivative
Se(J =1(J
Fi ) = i (/5 (7).

Inserting the eigenvector given by Eq. (2) into Eq. (1) we get the approximated matrix

zE, (r) = 250 + 7P ap(r) (21)

(the higher-order terms are neglected) where the constant matrices Z £ and ZEV can
& KL KL

be easily expressed in terms of F I((J ), F;{(J), and the remaining seven eigenvectors for
r = r¢ (see Appendix of Ref. [4]). In particular,

Z(’f‘) = Zo - Zlozg('r), (22)

where the coefficients Zy and Z; are the elements (4,4) of the corresponding matrices in
Eq. (21).

3. Numerical search of inflection points

The location of inflection points on slowness curves is calculated with the use of
numerical procedures similar to those described in Ref. [5]. The main procedure solves
the eigenvalue problem associated with the field equations. A scanning is performed over
crystal cuts (triplets of Euler angles) for several piezoelectric media. The calculations
shows that for some crystal cuts there is more than 10 inflection points, and that inflec-
tion points may appear for almost every cut (the case of lithium niobate and langasite)
or for only a minority of crystal cuts (the case of bismuth germanium oxide).
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Fig. 1. Inflection points for lithium niobate (Euler angles: 20°, 160°, 120°).
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Fig. 2. Inflection points for bismuth germanium oxide (Euler angles: 0°, 40°, 20°).

Three examples of location of inflection points are given in Figs.1 to 3 for lithium
niobate, bismuth germanium oxide, and langasite. The crystal cuts have been chosen
from those with a large number of inflection points. It should be noted that some inflec-
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Fig. 3. Inflection points for langasite (Euler angles: 10°, 40°, 40°).

tion points may be missing due to finite precision of calculations. The appendices of the
slowness curves above the cutoff points (cf. Fig.1 of Ref. [4]) have been omitted. The
angle ( for each inflection point is given in Table 1. The inflection points are numbered
in the order of decreasing values of the variable r.

Table 1. The angle ¢ corresponding to the inflection points shown in the figures for lithium niobate
(LNO), bismuth germanium oxide (BGO), and langasite (LGS).

Inflection Point LNO BGO LGS
No. 20 160 120 | 0 40 20 | 10 40 40
¢ [deg] ¢ [deg] ¢ [deg]
1 ~9.2 -5.3 4.5
2 4.9 0.6 2.9
3 —34.9 —45.8 31.5
4 —34.4 42.7 56.6
5 59.6 65.4 30.3
6 58.3 38.2 ~69.9
7 —62.9 —65.2 54.1
8 —62.7 —36.9 —50.4
9 - 43.6 —
10 - —50.7 -

It is obvious that inflection points appear in pairs. A pair of inflection points is
related to a concave portion of a slowness curve, which is delimited by the two points of
the pair.
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4. Conclusion

In contrast to first-order singularities of the effective permittivity function, which
appear for every crystal cut, second-order singularities appear only for particular crystal
cuts. These crystal cuts correspond to isolated points in the three-dimensional space of
Euler angles. Nevertheless, for a crystal cut that is close to one of those points the first
derivative of the function Z(r) is very great for r = r¢, where r¢ is the singular point
corresponding to the isolated point in the angle space. Numerical calculation of values
of the function Z(r) cannot reveal this feature.

The method presented in Sec. 2 can be applied in the case of N-th-order singularities
of the effective permittivity function with N > 2. Such singularities are related to points
of slowness curves where all derivatives of r(s) up to the N-th-order are zero.
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