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This is the first of two companion papers concerned with the nonlinear absorption of
Helmholtz resonators at a high amplitude incident wave. The phenomenon has been ex-
amined theoretically by use of a model of the acoustic field in the neighbourhood of the
resonator placed at the end of cylindrical tube. The calculation results have shown that
the peak of the absorption coefficient occurs when the nonlinear resistance is equal to
the radiation resistance of the resonator. The full experimental investigations of this phe-
nomenon and a comparison between theoretical and experimental data will be presented
in the companion paper (Part II).

1. Introduction

The nonlinear properties of Helmholtz resonators occur due to the dependence of the
resonator resistance on the particle velocity in the orifice. In the case of large amplitudes
of velocity a part of acoustic energy is lost on account of turbulent motion nearby the
edge of the orifice. The transfer of acoustic energy to the nonacoustic kinetic energy of
these turbulences influences the variability of the absorption coefficient of resonator in
the function of the sound intensity.

Nonlinear studies of Helmholtz resonators are scarce in number and relatively re-
cent. Important among these are the experimental investigations by INGARD [1], BIES
and WILSON [2], CZARNECKI [3, 4], Wu and RUDNICK [5], as well as the theoretical
work of ZINN [6]. One of the important results of these investigations is the observation
that the resistance of a Helmholtz resonator increases with growing an amplitude of
incident pressure. CZARNECKI [3] investigated an influence of the nonlinear properties
of Helmholtz resonators on acoustic conditions in enclosures. He found an increase or a
decrease of the absorption coefficients depending on the conditions of the resonator sur-
roundings. WU and RUDNICK [5] measured a variation in the resonant frequency at high
sound intensities. They observed shifts of the tuning curves of resonators towards higher
frequencies with increasing amplitude of sound pressure. They ascribed these shifts to
decrease of the end correction of the resonators at higher sound pressure.
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The aim of this first of the two companion papers is to offer a theoretical model
of the energy absorption mechanism, that occurs when a single Helmholtz resonator is
excited by high amplitude plane wave. In the analysis it is considered the case of low
frequency incident wave. The theoretical description of the acoustic field is based on
the momentum equation for incompressible fluid in the space with rotating fluid motion
and Bernoulli’s equation in the space where fluid motion is irrotational. In this manner,
the assumption used in earlier theoretical studies of acoustic nonlinearity [7, 8] that the
fluid motion might be treated as being irrotational is removed. A loss resistance derived
from the theoretical analysis is included in an impedance model of resonator to explain a
change in absorption coefficient of the resonator. In the second paper [9] the comparison
between experimental results and theoretical data will be presented.

2. Nonlinear effect at high amplitude incident sound

The present theoretical study is concerned with the interaction between high am-
plitude sound wave and a Helmholtz resonator placed at the end of cylindrical tube.
The resonator consists of a part of this tube, and at one end it is terminated by rigid
wall, while at the other one by a rigid plate with a centrally located circular orifice. The
resonator dimensions are considerably smaller than the acoustic wavelength. When the
amplitude of incident wave is large, the instantaneous flow pattern is different on both
sides of the resonator orifice. In the first place, attention is focused on a flow structure
during the first half of the cycle, when the flow is directed from tube to the resonator
cavity (Fig.1). Inside the tube, in the acoustic far field, the streamlines are parallel be-
cause only plane waves propagate in the area lying a long distance from the resonator.
At the inflow side of the orifice the streamlines converge producing an acoustic near
field, in which a reactive part of acoustic energy is concentrated. At the high amplitude
of incident sound and a small ratio between orifice and tube diameters, there is a strong
acoustic flow through the orifice which results in the separation of boundary layer and
the formation of high velocity axial jet. When the edges of the orifice are sharp, the
streamlines in the jet somewhat converge forming so-called vena contracta. The viscous
interaction of the jet with the quiescent surroundings results in the formation of vortex
ring that moves away from the orifice and dissipates into turbulence. During the second
half of the cycle the flow in the resonator orifice reverses direction and the formation of
the vortex ring occurs inside the tube.

To proceed with theoretical development the following assumptions will be required:
(I) the frequency of incident wave is low; under this condition the fluid in the neigh-
bourhood of the orifice may be treated as incompressible, (II) viscous forces are small
compared with inertia forces, (III) the formation and the dissipation of the vortex ring
occur in the small distance from the orifice, (IV) the flow pattern at the outflow side of
the orifice is symmetrical during the cycle.

First we will consider the situation when the acoustic flow is directed from the tube to
the resonator cavity (Fig. 1). The assumption, that a fluid motion between cross-sections
1 and 4 behaves as if it were incompressible and nonviscous, yields the following mo-
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Fig. 1. Streamlines in the neighbourhood of the resonator orifice at high amplitude incident plane
wave.

mentum equation
ou
Ty + o(U-V)U + grad(P) = 0. (1)

In the above equation p, U and P respectively denote the density of fluid, the velocity
vector and the total pressure, P = p + pg, where pg represents the equilibrium pressure.
The velocity U is a superposition of the acoustic velocity u and the velocity v induced
by ‘the vortex ring which was formed at the outflow side of the orifice. At the inflow side,
in the area between cross-sections 1 and 3, the fluid motion is irrotational (v = 0), then
the momentum equation (1) may be reduced to Bernoulli’s equation

%ztk + 7 + P = const, (2)
which describes the relation between the pressure, the acoustic velocity and the velocity
potential v along the streamline defined by u. Since the streamlines in the cross-sections
1 and 3 are parallel then the pressures Py, P; and the velocities u;, us in the planes 1
and 3 are uniform. In this case the mass conservation law gives

Siur = Soug , uz = Uo/Cc, (3)

where S, = ma? and Sy = 7wb* respectively denote the cross-sectional area of the tube
and the orifice area, C. is a contraction coefficient and wo is the average velocity in the
orifice area

2m

ug(t) = —L/
0 S
0

b
/ us -0, 7 dr do, (4)
0
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where uy is the velocity in the cross-section 2 and n, is the unit vector in a direction of
the 2 axis. The coefficient C, is an experimentally determined quantity, and it is known
to be quite sensitive to orifice shape. In the case of sharp-edged orifices C, approximately
equals 0.61 [10]. A combination of Eqs. (2) and (3) gives

0 ou /1 §2
— Py = —p— — S0 _—_ _ 20} 5
P1+po— Ps Qat(¢1 ¥3) + 5 <C¢:2 S2 (5)
A difference between potentials Y1 and 13 has the same value along each streamline.
If we consider the streamline along the axis of the orifice, we have ¢ = f u,dz, where
u(2,t) is the velocity in the direction of z axis. The equation (5) can thus be written
in the form '

3
dug oud (1 S2
tro-Ps=po—— [ F(z)dz + 2 [ — - 22 ), 6
P1+po — Ps Qat/(z)z+2 cz 3 (6)
1
where F'(2) = u,/ug. The first term on the right-hand side of Eq. (6) is the pressure
drop caused by an energy concentration in the reactive acoustic field. The integral in
this term represents the effective orifice thickness being a sum of two parts

3 2
/F(z) dz = w.d + /F(z) dz = w.d + Ad, , (7)
1 1

where w, is the correction factor of orifice thickness d, 1 < w, < 1 /C., and Ad, is the
outside end correction which results from the convergence of streamlines on the external
side of the resonator orifice. It is reasonably to expect that Ad, is very close to the
end correction at a small amplitude incident wave (linear case). Thus, the analytical
determination of this quantity requires a more detailed analysis of acoustic field in the
vicinity of the orifice.

Inside the resonator cavity, in the volume V bounded by the cross-sections 3 and
4 (Fig. 1), the fluid motion is rotational due to the formation of vortex ring. The total
velocity U is thus a sum of the acoustic velocity u and the velocity v induced by the
vortex. In the plane 3 the velocity satisfies the condition of continuity ug = Us, while
the pressure is uniformly distributed because outside the orifice, on the rigid wall, the
pressure is approximately the same as in the jet [11]. In the plane 4, where the velocity
v vanishes, the acoustic velocity is uniform and has the value ug = u9Sp/S;. Since in the
volume V' the condition divU = 0 is satisfied then taking into account the identity [12]

/ [(a- V)b + b(diva)ldv = 7{ b(a-n,)ds, (8)
S

v

which is true for any vectors a and b, it is possible to perform the momentum equation
(1) into the following integral form

0 %—?dv + 7{ [0U(U -ny) + Pny)ds = 0, (9)
v s
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where S is a boundary of the volume V and ng is a unit vector directed away from the
surface S. Because a normal component of velocity vanishes on rigid walls (U-ns; = 0)
and a pressure distribution in the volume V is axially symmetrical then from Eq. (9) one
can obtain

sz S
P3; —py—po = S' En /(U n;)dv + oud <S—%—m) (10)

Using the mass conservation law it can be shown that

27 a

/(U-nz)dv=/ // (U-n,)rdrd¢| dz —Souo/dz—Soqul (11)
v

3

where Al is a distance between cross-sections 3 and 4. Substituting Eq. (11) into Eq. (10)
and using Eq. (6) to eliminate the pressure P; yields the following equation that deter-
mines the pressure drop p; — ps during the first half of the cycle

2
P —pa= Q = (wed + Ady + SoAL/S1) + il (i - &> . (12)
2 \C. S
Taking into account the assumption (IV) it becomes easy to proceed with the theoretical
analysis during the second half of the cycle, when the flow is directed from the resonator
cavity to the tube. Because of a different shape of acoustic near field on both sides of
the orifice, the considerations analogous as made above give the following equation

2

pL—py = gaat (wed + Ad; + SoAl/Sy) — "’2‘0 (Ci - %‘11) , (13)
where Ad; is the inside end correction. The opposite sign in front of the term proportional
to u3 is a main difference between Egs. (12) and (13) because the outside and inside end
corrections, as will be shown in Sec. 3, considerably differ only at very small ratios /a,
where [ and a are the resonator length and the cavity radius. These end corrections are,
however, nearly equal for a typical resonator geometry, in which I/a is usually not too
small ([/a > 1/2). In this case Egs. (12) and (13) may be written as one equation

Oug ou 1 S\’
=o—(d+Adp) 2| =—-=] , 14
p-pi= o a2 88 (L - ) (19
that applies throughout the duration of the whole cycle. In the above equation Ad,, on
the analogy of linear case, denotes the total end correction at high amplitude

Ady = (we — 1)d + %Ad+ SeAl/Sh, (15)

where Ad = Ad; + Ad, is the total end correction at small amplitude incident sound. In
Eq. (14) the pressure drop defined by the first term on the right-hand side is associated
with an acoustic reactance. It is a part of the total reactance of resonator because it only
describes a mass inertia in the orifice and the near acoustic field. The second term on
the right-hand side, which not appears in the linear case, is a resistive term associated
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with losses due to the conversion of acoustic energy into vortical energy. Since this term
is proportional to the square of mean orifice velocity, it represents a nonlinear part of
acoustic pressure.

It follows from Eq. (14), that in a range of high amplitude of the orifice velocity the
resistive term is much larger than the reactive one. Now, if one suppose that the pressure
drop Ap = p; — p4 is a harmonic function of the time, Ap ~ cos(wt), then from Eq. (14)
one can conclude that

uo(t) ~ £Up| cos(wt)|'/2, (16)

where Uy denotes the peak value of orifice velocity and the plus sign holds when cos(wt) >
0, while the minus sign when cos(wt) < 0. The expression for 1y may be expand in a
Fourier series and according to INGARD [13]

uo(t) = Ugr/m/2 i[F(?M +n)I'(3/4 —n)] ™! cos[(2n + 1wt]
n=0
= Uo[1.11 cos(wt) — 0.159 cos(3wt) + 0.072 cos(5wt) — 0.043 cos(7wt) + ...}, (17)

where I" is the Gamma function. Thus, due to the nonlinearity the orifice velocity will
be distorted so that its frequency spectrum will contain harmonic components.

3. Impedance of resonator

The losses resulting from the absorption of acoustic energy by vortical field may be
included into a impedance model of the resonator by insertion of an additional orifice
resistance. Since in Eq.(17) the first term in the Fourier series is much larger than
the next ones, then it is possible to define this resistance in terms of a fundamental
component of the orifice velocity

vo(t) = 1.11 Uy cos(wt) = Vj cos(wt). (18)

Thus, using the approximation wg & vp in the reactive term of Eq. (14) and Eq. (16) in
the resistive term yields the following expression for the pressure drop

9]
PL—ps = g-(9”7°(d + Ady) + mb*Ryvg , (19)
where R, is a loss resistance in the case of nonlinearity
Vo (1 S\
= T 20
Rn 2.467Tb2 (Cc Sl) ( )

Losses of acoustic energy at high sound intensity are then proportional to the amplitude
of fundamental component of the orifice velocity. Since in this case there is a square-law
relation between the pressure and the velocity amplitude, R,, is so-called the nonlinear
orifice resistance (at the low intensity of incident sound the relation between the pressure
and the velocity amplitude is linear). It is important to note that due to the form of
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Eq. (19) it is now possible to replace the orifice velocity vy by its Fourier representation
0o = Voe It Thus, the equation equivalent to Eq. (19) is following
P1—Ps
wb2 ’lh)o

., OC

where p; and p4 denote complex pressures. In order to find a dependence between the
orifice velocity and the incident sound pressure it is necessary to determine the pressures
P1 and pg. In the cross-section 1 a pressure distribution is uniform because the streamlines
are parallel (Fig. 1). Thus, p; is the pressure in a acoustic far field being a superposition
of plane incident and reflected waves, including the plane wave radiated by resonator.

The pressure p; inside the tube in the far field area can be determined by use of a
classic theory of sound radiation. According to this theory, the response of resonator
under external excitation may be analyzed as a sound production by a vibrating rigid
piston located in the resonator orifice [14]. If the origin of a cylindrical coordinate system
(r,¢,z) lies at the center of the orifice, and in addition the plane z = 0 covers the
left-hand side of it, then for incident pressure p; = P;ei(#2=9t) 4 formula describing p;
can be written as

27 b

) ~ — 0 .

Pe(z,t) = 2P; cos(kz)e 7@t — o //Uo(t) 9¢(z0 = 0) ro dro déo , (22)
0 0

where g;(z, zo) represents Green’s function for the plane wave motion inside the tube and
(ro, do, z0) is a position of source point. The first term on the right-hand side of Eq. (22)
is a sum of incident and reflected waves. The quantity g; can be simply obtained from
the expression for the general Green’s function G; which includes both acoustic far and
near field components. The function G, is a solution of the wave equation and satisfies
the boundary conditions

96, 9G4

ar (r=a)= B_.ZO(ZO =0) =0, (23)
then for waves starting inside the tube from z = —oo is given by [15]
oo oo
Gi=Y " gmnc0s(kmnzo) exp(—jkmn2), (24)
m=0n=0

where

Im (YmnT /@) I (YmnTo /@)
kmn[l = (m/Ymn)?]J2, (Ymn)
and Ymn is the nth root of the equation dJ, (v)/dy = 0, kmn = [k? = (Ymn/a)?]*/2, and
€m is the Neumann factor, g = 1, €, = 2 (m > 0). As may be seen, the function g;
is determined by the first term in the series on the right-hand side of Eq. (24) which is
independent on r and ry. Following from this, one can write Eq. (22) as

bz, t) = 2P, cos(kz)e 7t — pc (b/a)*Vye Itkatuwt) (26)

Imn = ;.;_2 €m cos[m(qS - ¢0)] (25)

where the second term on the right-hand side represents the plane wave radiated by
resonator. Since it was assumed that a frequency of the incident wave is small, then a
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distance between the cross-section 1 and the orifice plane is much less than the wave-
length. Under this condition from Eq. (26) one can easily obtain an expression for the
unknown pressure p;

P1(t) = Pe(2,t)jkzms0 = [2131' - oc (b/a)2V0] eIt (27)

The same method, as presented above, will be used for a determination of the pressure
Pa- In order to simplify the analysis we move the origin of a coordinate system to a plane
which covers the right-hand side of the orifice (Fig. 1). In a small distance from the orifice
plane a pressure in the resonator cavity is uniform, because it represents a superposition
of multiple plane wave reflections. The formula for this pressure is thus given by

2w b

pelet) = op / / 30(t) ge(20 = 0) rodroddo , (28)

00
where g.(z, 20) is the Green’s function for the plane wave motion inside the resonator

cavity. It is a part of a general Green’s function G, derived for the resonator interior.
Since G must satisfy boundary conditions

3GC 6Gc 8GC
li— p— = e e —_ 2
o (r=a) 70 (z0=0) o (z=1)=0, (29)
then it may be expressed as follow
o o0
G.=j Z Z gmn €08(Kmn20) [sin(kmnz) + c08(kpnz) cot(kmnl)] . (30)

m=0n=0

Since the function g. is determined by the first term of this series then taking into
account Eq. (28) one can write the expression for the pressure p, as

Pa(t) = Pe(z,t) k20 = joc (b/a)*Vy cot(kl)e 7. (31)

Finally, substituting Eqs. (26) and (31) into Eq. (21) yields the following formula for the
acoustic impedance of resonator

2P,

= —————— r n ‘X’ 32
TV, R.+R,+j (32)

where R, = gc/(ma?) is the radiation resistance and X is the reactance of resonator
oc 5 oc

The end correction Ad = Ad, + Ad; which appears in a definition of Ad,, [Eq. (15)] rep-
resents the added mass effect at small amplitudes of incident sound. Thus, the quantity
Ad may be determined by calculating the co-vibrating masses m, and m; on both sides
of the resonator orifice. They are simply a product of air density and a result of double
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surface integration of these parts of Green’s functions G¢ and G, which depend on radial
coordinates

me = Q’/TbQAdO = g//(Gt - gt)lzm:o Tor d?‘gd’l” d¢0d¢,
So So

orb® Ad; = g//(GC = 9c)|z,z0=0 Tor drodr dgodg.
So So

(34)

m;

After integration one can obtain expressions for outside and inside end corrections

> 4aJ%(vonb/a) o 4aJ2 (v b/a) Yonl
Ad, = g Bt RV o S’ , Ad; = E 1“,,”—— coth ( n ) 35
’ ’anJOQ (’yon) A/gnJG (7071) a ( )

n=1 n=1

In the work of INGARD [1] it was assumed that for the cylindrical resonator placed at
the end of a tube the outside end correction equals the inside one. The formula obtained
for outside end correction agrees with Ingard’s result. However, the exact expression
for inside end correction derived in this paper indicates that Ad, and Ad; differ and
it results from the additional factor coth(yonl/a) in each term of the series. Since the
quantity yon is the nth root of the equation dJo(y)/dy = 0, then one has: Yo1 = 3.83,
Yo2 = 7.02, v3 = 10.17 ... . Thus, a difference between Ad, and Ad; is large at very
small values of I/a, but Ingard’s approximation Ad, &= Ad; is valid for I/a > 1/2.

4. Absorption coefficient of resonator

Inside the tube a long distance from the orifice plane an acoustic field is determined
by a sum of two plane waves which propagate in positive and negative z direction. The
first one represents an incident wave, while the second is a superposition of reflected and
radiated waves. To proceed with theoretical analysis it is now necessary to introduce a
complex reflection coefficient 3 which is defined as the ratio between pressure amplitude
of the wave travelling in negative z direction to that of the incident wave. Thus, Eq. (26)
for the pressure in the far field one can rewrite in the form

De(z,t) = Pemiwt — P, (eﬂ” + Be_jkz) eIwt, (36)
From Egs. (26) and (32) one can obtain the expression for the reflection coefficient
B =peX =1—24e9% (37)
where 8 denotes a modulus of the reflection coefficient and
R, ( ) T
A= , = arctan | ————— |, —=<p<
VR AR X7 R, +R, 2 =%

Equation (36) may now be used to express the modulus of a pressure in far field area in
terms of coefficient (3

]

. (38)

lﬁt| = |E|\/1+,32+2Bcos(2kz—x). (39)
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From Egs. (39) the modulus of 3 can be obtained
— lﬁt|max - IPtlmin

lPt|max + |Pt!min

and from this, the expression for the energy absorption coefficient

a=1- % =44[cos(p) — A]. (41)

= /1 +4A2 — 44 cos(yp) (40)

At low pressure amplitudes the nonlinear component of resistance can be neglected
(R, = 0). In this case the expression (38) for the quantity A yields

1
Tireo) cos(p),

and this means, according to Eq. (41), that the absorption coefficient o always equals
zero. This result is in full agreement with the basis of linear acoustics for nonviscous
fluids. Thus, the conclusion may be derived that at high amplitude the changes in the
absorption coefficient at the resonant frequency result from an increase of the resistance
R,. In accordance with the foregoing theory the absorption coefficient in the case of
resonance (X = 0),

(42)

4R, /R,
a=4A(1-A)= 0T R.JR) (43)
increases with the growth of the nonlinear resistance R,, as long as R, < R,. When
the equality R,, = R, is reached the absorption coefficient equals unity. It follows from
Eq. (43) that further increase in the resistance R, makes a contribution to decrease in
the coefficient a.
A value of a cannot be computed directly from Eq. (41) because the parameter A and

phase ¢ are dependent of the velocity amplitude Vy which is a solution of the equation
2|P;| — nb*Vo|Ry + Ry + jX| = 0. (44)

In order to solve Eq. (44) it is necessary to apply a numerical procedure because nonlinear
resistance R, depends on the orifice velocity [see Eq.(20)]. A simple analytic solution
may be obtained only in the case of resonance and the result is

R, 1 326 [ S 2 s
=1+ 25 (A - 1) |P] -
Rr 2 ocC S()Cc
Equation (43) together with this solution enables to determine a dependence of the
absorption coefficient « at a resonant frequency on the incident pressure amplitude |P;|.
As may be noted, there is such a value of | P;| for which the absorption coefficient equals

unity. This amplitude may be calculated directly from Eq. (45) putting R, equal R,.
The result is

(45)

B =

By = 2.460c(b/a)t

T /Ce~ (/e
s0, the pressure amplitude, at which the absorption coefficient is equal to unity, depends
on the ratio b/a only. Since this dependence would be useful in the practical resonator

(46)
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design it is reasonably to replace the pressure amplitude |]3,| by its level L; expressed
in decibels. In Fig.2, the level L; calculated from Eq. (46) is plotted against the ratio
b/a in the range 0.02 < b/a < 0.5. One immediately sees that at very small values of
b/a the maximum sound absorption occurs for relatively low pressure levels of incident
wave (L; ~ 60dB). With growing b/a the level L; fast increases, reaching the value
L; ~ 175dB for the ratio b/a = 0.5.

175

L; (dB)

50 LI S B | '[ 1 T | T T 17 | LI ' T 1 1 1 I
0 0.1 0.2 0.3 0.4 0.5

b/a

Fig. 2. Dependence of pressure level L; on ratio b/a.

5. Discussion and conclusions

The acoustic nonlinearity phenomenon, which occurs when the Helmholtz resonator
is excited by high amplitude sound wave, has been investigated in this paper. A theoret-
ical model has been presented in order to explain an increase in acoustic energy losses
with increasing sound intensity. It has been shown that the nonlinear loss mechanism is
associated with a flow separation on the orifice edge and a formation of high speed jet
on the outflow side of the orifice, because the interaction of jet with motionless medium
results in a generation of the vortical field which extracts energy from acoustic field.

In the theoretical study a pressure field was determined separately in the area with
irrotational and rotational fluid motion. It is important to emphasize that this theory
may also be applied in the case of high amplitude acoustic transmission through an orifice
plate in a pipe. As compared to the model of CUMMINGS [8], in which the rotational
fluid motion was totally ignored, the present study gives a more complete description of
the pressure field in the orifice surroundings.
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(1]
(2]
(3]

It was found that a total pressure drop due to the jet formation and generation of
vorticity is proportional to the square of the orifice velocity amplitude. This dependence
for sinusoidal excitation signals leads to a harmonic distortion of the orifice velocity. As a
result of this distortion the complications arise in definition of the resonator impedance.
In the present study this problem was overcome by determining this impedance for the
fundamental component of orifice velocity. If in the impedance model an acoustic energy
loss due to a viscosity is neglected, then the resistive part of the resonator impedance
consists of the radiation resistance and the nonlinear resistance. It has been shown that
the absorption coefficient of resonator reaches the unity when the radiation resistance is
equal to the nonlinear one and for a given resonator geometry it occurs at the exactly
determined value of incident pressure amplitude.
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