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Understanding how the auditory system works recently gains increasing importance in
audio engineering. Its most widespread practical use is in perceptual audio coders, with
even more applications to be foreseen in the future. The construction of a mathematical
procedure that could transform acoustic signals heard by humans to data corresponding
to auditory sensation would open way to significant progress in audio engineering. In this
paper the issue is discussed and important research in the field is reviewed. The proposal
for a frequency analysis procedure appropriate for ear modeling is presented and verified.
This procedure is a form of the Wavelet Transform.

1. Introduction

Understanding how the ear works has been a challenge to researchers since Ohm
formulated his “acoustic law” in 1843. This knowledge, apart from purely medical, has
practical applications in such fields as construction of devices for people with handi-
capped ear, audio engineering [37] or noise control [11]. A new area of technology where
ear modeling is directly applied is the construction of low bit rate coders of digital audio
signals, usually referenced as perceptual coders.

Another, future-oriented application is the construction of an appropriate set of data
(data vector) to be used as an input to artificial neural networks.

The foundations for modern knowledge on this subject have been laid by von Bekesy
in 1947, with his pioneering work identifying vibration at the basilar membrane as trav-
elling waves. The efforts are continued, but functioning of higher (neural) stages of the
ear are still subjects of partial hypothesis, of which not one has been widely accepted
without questioning.

2. The auditory system as an acoustic receiver

Our ear perceives time functions of acoustic pressure as continuous evolution, or
sequences, of separate acoustic events, characterized by their pitches and timbres. It
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is able to perceive and comprehend speech of one speaker with many other voices
in the background, or to follow the melodic line of one instrument out of an ensem-
ble. The auditory system transforms a time function of acoustic pressure into separate
streams of information. Most of these complex functions are performed in higher stages
of the auditory system and little is known about them, but whatever the nature of
this information-processing mechanism is, it must rely on information received from the
peripheral stages of the auditory system. Therefore, any attempt to investigate these
processes must be based on a solid model of information supplied by the peripheral
auditory system to higher auditory stages.

The time function received by the ear is a linear superposition of acoustic pressures
from separate individual sources, while the separate streams of information isolated
by the ear build auditory sensations corresponding to sounds produced by each of the
sources individually. Although the number of those individual sources that can be si-
multaneously perceived by the ear is limited, the entire mechanism is so sophisticated
that no successful attempt has been made so far to implement it artificially.

3. General review of operations performed by the auditory system

In this paper the acoustical, the mechanical and a fragment of the neural path are con-
sidered. The last physiological (neural) element in this chain that is covered is cochlear
nucleus, so little more than the peripheral auditory system and only monaural hearing
will be discussed.

The outer ear plays roles of mechanical protection, microclimate control and direc-
tivity detection aid. Physically, it is a pipe with a length of about 2cm open at one end
thus enhancing waves of four time its length, i.e. frequencies around 4 kHz. The middle
ear, i.e. three ossicles: malleus, incus and stapes act as an impedance transformer, which
maximizes the energy transmitted into the inner ear, and eliminates reflections of waves
at the boundary of gas and liquid mediums. The cochlea (part of the inner ear) is filled
with a liquid (perilymph and endolymph), and because of complexity of mechanics of
the cochlea, the input impedance of the inner ear changes with vibration level and fre-
quency. At the oval window — the place where the stapes touches the cochlea and which
is a boundary between the middle and inner ears, the vibration of the stapes can still
be considered a time function, related to the acoustic pressure outside of the ear.

Inside the cochlea complex, but relatively well understood processes take place, which
~ can be functionally (but hardly physiologically) separated into two sub-processes. The
first is nonlinear mechanical filtering, the second is a transduction from mechanical
movement of the basilar membrane to electrochemical activity of neurones.

The basilar membrane with perylimph surrounding it was long considered to be a
passive mechanical filter. Vibration at the oval window is the source of waves travelling
along the membrane up to the point of maximum amplitude, and then decaying rapidly.
The basilar membrane can be considered as a bank of bandpass filters. As all filters have
steep upper slope and mild lower slope simpler models often simulate it as a chain of
low-pass filters. The estimation of the resolution of this mechanical filter has changed
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substantially. Earlier experiments indicated that the Q factor of a typical basilar mem-
brane — based bandpass filter was on the order of 1, that is far lower than the overall
@ value of the entire auditory system estimated at 100 (or even 200 by some researchers
[39]). Over the past 25 years more sophisticated measurement methods were developed
and evidences became available that the true value of Q of the membrane is much higher
(28]. No passive mechanical model can explain such a high selectivity.

It is now agreed by most researchers that there is some active process in the cochlea,
supplying energy to the basilar membrane in a positive feedback which provides this
high frequency selectivity, and that outer hair cells in the organ of Corti, a small organ
distributed along the basilar membrane, play a key role in this process.

The other sub-process performed in the cochlea is a transduction of vibration at
specific place along the basilar membrane to the appropriate neural signal [34, 39]. This
process is performed inside the organ of Corti, and transducers are inner hair cells. The
vibration sensed is, in terms of signal processing, rectified, and then converted to series
of neural spikes further transmitted along the auditory nerve (composed of around 30000
neural axons) to higher stages of the auditory system. The rectification mentioned is only
approximate and has physiological origin: the processes resulting in the excitation of hair
cells are in the most part those accompanying the deflection of the basilar membrane in
one direction.

There is a long lasting controversy among researchers of the hearing system. One
point of view attributes most meaning to the analysis of places of excitation on the
basilar membrane (“place theories”) while the other emphasizes the role of information
contained in the time structure of a signal from a particular area on the basilar membrane
(“time theories”). :

Nonlinearities in the operation of the cochlea have three sources. One is mechanical
nonlinearity of the basilar membrane. The second is inherent nonlinearity of the elec-
trochemical processes in mechanical to neural transduction. This latter nonlinearity is
of the “hard limiting” type and is seriously limiting the dynamic range of any single
hair cell. However, the entire transduction mechanism compensates for this, by way of
combining many haircells with different thresholds of activation [28].

The third source of nonlinearity is the positive feedback in the cochlea mentioned
above, and is least known.

Experiments aimed at estimation of the Q value at different stages of the neural path
of the auditory system have shown that the shape of tuning of neural responses along
the higher stages of the auditory system is similar to the response at the auditory nerve
leaving the cochlea and is not very sharp. The origin of the ear’s high Q factor is still
not quite clear [28].

One feature, commonly agreed upon is that the representation of neural activity
leaving the cochlea is tonotopic throughout the rest of the auditory system, that is spatial
distribution of neural cells conveying information from particular fragments of the basilar
membrane is preserved along the subsequent stages of the auditory system. There is
evidence that this tonotopic distribution becomes two-dimensional in the auditory cortex
[41]. The higher stages of auditory processing are fairly well known in their physiological
construction, also neural responses in different stages have been intensively studied [28].
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However, functional explanation of the entire system is still rather unclear. Apart from
higher functions mentioned in Sec.2. the seemingly simpler mechanism of a very high
frequency selectivity of the ear has not yet been understood.

One more physiological stage of neural processing within the scope of this article is
the cochlear nucleus. There are evidences that the process called lateral inhibition takes
place there. When largely simplified and in the context of spectral analysis performed by
the ear, it can be described as enhancing stronger spectral components while suppress-
ing neighbouring weaker components. However, it is not clear whether this mechanism
contributes to the sharpening of ear’s overall frequency selectivity.

4. Different approaches to modeling the auditory system

This task is enormously complex for two main reasons:

a) The elements of the auditory system are highly nonlinear and difficult to separate
into independent blocks performing specific functions. Modeling its higher stages is yet
more difficult because their operation is hardly known.

b) When modeling the entire auditory system we have to deal with the output signals
which are very difficult to measure since we neither have a measuring device nor a unit
of measure. If such a unit existed, it would have to be multidimensional. Some works
addressed the problem of multidimensional timbral space, trying to locate sounds of
musical instruments there [33]. It is difficult to express subjective percepts in our brain
in a quantitative way. Auditory percepts are the domain of psychoacoustics and some
quantitative measures of auditory sensations have been developed there, for example the
sone scale for measurement of sensation of loudness. Although psychoacoustics can help
us to measure the sensations of loudness and pitch, we are still unable to measure more
complex, multidimensional percepts such as timbre.

The problem of modeling can be approached by looking at it from two different
perspectives.

Psychoacoustical approach. It seems that many of the test stimuli used in psychoa-
coustical experiments may not engage more complex functions of the higher stages of
the auditory system, so that they may not reveal some features of the ear.

Physiological approach. Here an attempt is made to divide the auditory system to
some physiologically separate parts and model their functions mathematically. A model
encompassing all peripheral stages and higher stages up to the cochlear nucleus, with
consequent mathematical formalism can be found in [39]. However, only limited verifi-
cation of this model is given.

Fairly well verified models of this sort exist, but most of them encompass only limited
part of the auditory system, mainly in its peripheral stages.

Some works try to model particular functions of the ear, instead of its physiological
parts. Such models differ from the psychoacoustic approach in that in building these
models they use knowledge about physiological construction of the system and can be
seen as physiologically encompassing the complete system.
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The function most often simulated in such models is the sensation of pitch 8, 12,
27, 36]. The sensation of pitch is very suitable for modeling, for the ear is very sensitive
to pitch (high overall Q of the system seen as a filterbank) and it is probably the most
important percept upon which the ear analyses and qualifies sounds.

5. Techniques of modeling

Probably the largest number of physiologically-based models have been built for
the basilar membrane, from linear one-dimensional ones of various complexity [12, 39],
non-linear one-dimensional [21], to three-dimensional [3]. In [20, 24] models in the form
of chains of building blocks are presented. These implementations are analog and digital
respectively, and both include positive feedback activated by outer hair cells.

When modeling the peripheral part of the ear, the different physical quantities (me-
chanical and electrochemical) can be modeled as continuous or discrete functions of
time. Some researchers tend to exploit information theory and shift the problem from
the domain of deterministic signals to the domain of stochastic signals, like in (13, 30].

Modeling of higher neural stages requires sophisticated mathematical tools used in
pattern recognition, neural network modeling and probably some specific ones not yet
developed.

6. Decomposition of functions of the ear into blocks

The following block diagram of the ear may be proposed (Fig. 1), if we try to use
blocks to which appropriate signal processing procedures can be attributed This is a
framework generalizing the approach taken in some models. Such a generalized model
attempts to simulate all salient functions of peripheral stages of the ear, albeit in sim-
plified form.

acoustical .
path vibration path neural signal path
1 T f
T ———
I \—‘—u-’_‘\_,a
cr%mwﬂ — P——Q——L\/\f —-- T ==
i £ f - i el | e
outer + middle cochlea: cochlea + other  cochlea + spiral l w:__w—\,_,
ear: frequency stages: ganglion + l —— 5 t
flat bandpass analyser nonhnm}’lty; cochlear nuclei + ?7: hypothetical internal
filter W - exctation,  spectral representation
continuous line - enhancement of acoustic wave
shows the use of on the output of
signal rectification peripheral auditory
in the model system

Fig. 1. Simplified functional diagram of extended peripheral auditory system.
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A common element of all models of the ear is some sort of frequency analysis (Fig. 1),
as this function of the cochlea is unquestionably agreed upon as probably the most
fundamental. Many models in fact perform only this one function and still are successful,
especially when frequency analysis is combined with a simplified form of the fourth block
in Fig. 1 — spectral enhancement.

The nonlinearity, performed in the third block is being simulated by different means,
and with very different effect on processing of the signal. However, due to its very
complex nature and many places of the auditory system where it can be found, it is
rather difficult to simulate its effects [28, 43]. Some models include the automatic gain
control as the only nonlinearity, as such mechanism is certainly present in the auditory
system. This stage will not be discussed in more detail.

Spectral enhancement (fourth block) is associated with the reduction of data. Such
a process takes place in the auditory system. A simplified implementation of this block
is achieved by assigning less meaning to parts of the spectrum which are weaker. Less
meaning leads to less bits of resolution and the procedure is governed by masking curves
supplied by psychoacoustics. This is the way all perceptual coders work.

7. Modeling the frequency analysis function of the ear

Bandpass filters appropriate for modeling the ear should have shorter impulse re-
sponse for high frequencies than for low ones [17, 19, 31]. Such are the “filters” in the
ear. This type of filters is usually referred as “constant @” type, i.e. the widths of band-
pass filters are proportional to their centre frequencies.

For frequency analysis typically either the spectral decomposition by means of an
appropriate transform, or a bank of bandpass filters is used. Throughout this paper,
the formulas will be given either in continuous or in discrete form, whichever is more
convenient.

Usually a sequence of block transforms:

yi = Hxy, (1)

where yj is k-th consecutive output vector, xj is k-th consecutive input signal vector
and H is a transform matrix (time-invariant) is used, to obtain a time — frequency
representation of the signal. Then the filtering approach is closely related. In their basic
forms both techniques can be shown to be fully equivalent [40]. However, differences
in implementations are meaningful. The comparison of both approaches, considered as
candidates for modeling of auditory spectral analysis, leads to the following conclusions.

The transform approach:

+ compact mathematical form, often resulting in powerful fast computing algorithms,

+ the transformed signal has a form readily available for monitoring, either for a
human observer or for an algorithm simulating further functions of the ear,

+ orthogonal transforms obey the Parseval’s theorem,

— only wavelet transforms have a very desirable feature of performing a constant ¢
type of spectral analysis, instead of most common constant bandwidth type,
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- distortion may be generated in boundaries of neighbouring signal blocks (blocking
effect), which requires means to alleviate or eliminate this problem.

The filtering approach:

+ is more natural in simulation of auditory filters,

+ arbitrary filter shapes can be designed, especially in the case when non-decimated
(operating at the sampling frequency of the input signal in all bands) filters are used,

+ has no blocking effects,

— non-decimated filters lead to very redundant spectral representation,

— decimated filters (critically sampled) can only be used when none or very limited
processing in spectral domain is to be performed, as those filters guarantee perfect
reconstruction only under such a condition,

— if some distortion is present resulting from imperfections of filters, they are very
different in nature than those produced by the ear.

7.1. Application of transforms

The Fourier Transform in its original form can only be used for either the analysis
of impulses shorter than ear’s resolution in time or for stationary signals, and hence
is impractical for ear modeling, where we require a representation in which the output
vector yj changes with time, as in (1). Such a distribution is the Short Time Fourier
Transform (STFT — the definition in continuous domains is given as more general) [29]:

STFT (1,w) = / s(t)h(t — T)eIwtat, (2)

— o0

where 7 is time around which we analyse the spectrum, w is radian frequency, s(t) is an
input signal, h(t) is time window through which we observe this signal. The shape of the
time window determines the parameters of the distribution obtained. It is easy to notice
that if we divide the integrand by e™7“¢ then we obtain the convolution of a time signal
s(t) with h(—t), i.e. the time window reversed in time. This is where equivalence between
a transform and a filter comes from. The Fourier transform H(w) of the function h(t)
is exactly the shape of the filter equivalent to the evolution with time 7 of one point of
the transform.

The STFT as a tool for ear modeling has two drawbacks. The first one is that
it performs a constant bandwidth analysis. The second results from the Balian-Low
theorem [23], which states that if we critically sample the STFT (to avoid redundancy)
then either time or frequency support of basis functions of the transform must go to
infinity, thus good time and frequency localization is not possible.

More advanced transforms, related to the STFT have been developed and are used
in practical implementations of perceptual audio coders. They are easily interpreted as
filters. Most popular of them is the Modulated Lapped Transform also known as Modified
Discrete Cosine Transform (MDCT) [25, 35]. The more general framework that describes
them is called local trigonometric bases [44]. Being orthogonal transforms, in contrast
to the STFT they can achieve good localization in both time and frequency. They also



198 P. KLECZKOWSKI

meet a specific compromise between the @Q factor of filters, their distortion rate and
computational efficiency, and would be very good candidates for ear modelling, but they
perform constant bandwidth analysis.

Linear transforms related to the Fourier transform are all limited in their time-
-frequency resolution by the uncertainty principle. This limit could be relaxed by the
use of one of a family of time-frequency distributions which have much better energy
concentration in the time-frequency plane (Cohen’s class distributions) [7]. The most
widely investigated of them is the Wigner—Ville distribution:

W(r,w) = /oos‘ (7‘ + %) s* (7’ — %) e~ewt 3)

where s*(t) denotes complex conjugate of the signal. However, as can be seen from the
formula this representation is quadratic in s(¢) and therefore the distribution is nonlinear.
It has the so-called “cross-terms” which make the results quite obscure, despite their
excellent time-frequency resolution. It is also, in general case, non-invertible.

The cross-terms can be smoothed to some extent, but at the cost of reducing good
joint time-frequency resolution.

Some works have addressed the problem of finding a frequency analysis tool appro-
priate to analyze sounds of musical instruments. Although not directly referring to the
ear, their results are suitable for the problem discussed in this paper. A specific distri-
bution belonging to Cohen’s class, related to the Wigner distribution and called modal
distribution is given in [32]. This distribution suppresses cross-terms but is inappropriate
for transient — like sounds, such as musical sounds with sharp attacks.

There have been many attempts to modify the Fourier or related ransforms in order
to make it a constant () analysis. For the purpose of analysing musical sounds Brown
[4] proposed such a modification directly in the digital form, but it was not invertible.

The relatively new transform, the Wavelet Transform (WT), is of the constant Q
type, when used for frequency analysis [6, 10, 23, 38, 40]. The continuous WT(CWT) is
given by:

CWT(r,a) = %/s(t)h* (t ;T> dt, 4)

where a is a scale factor (corresponding to frequency), h(t) is a basic wavelet (or mother
wavelet). The h(t) can be real (more often used in practice) or complex; in this latter
case the complex conjugate h*(-) is used in (4) and the transform becomes complex. The
choices of h(t), and discretization steps for a and 7 (together forming a discretisation
grid in the time — scale plane) determine the features of the wavelet transform obtained.

The essence of the WT is that for any particular scale a the function h(-) of (4) is
dilated or contracted proportionally along the abscissa, thus fulfilling the postulate of
constant () representation.

Generally, there can be four forms of the WT: the continuous WT given by (4); the
discrete parameter WT, where parameters a and 7 are discretized; the discrete time
WT, where parameters and the signal under analysis s(k) is discrete; the discrete WT,
where the previous quantities and the h(a, 7, k) are discrete. A discrete mother wavelet
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h(k) can be a sampled version of its continuous time counterpart, but h(k) which do not
have a continuous version can be constructed. The latest case, with the basis value of a
equal 2, takes the form:

DWT(m,n) = 2™/ " s(k)h(2™™k — n), (5)
k
where m, n are integer values of parameters a and 7, k is a number of signal sample.
This form is most widely used in practice, because of two important advantages:

a) the scaling forms a simple “dyadic” structure, for which fast algorithms — Fast
Wavelet Transform exist;

b) the interpretation as a filterbank is straightforward.

The big disadvantage, when used for modeling of the ear, is that the analysis defined
by (5) is an octave band analysis, so its frequency resolution is insufficient.

If {hm n} form an orthonormal basis set, then the inversion formula takes the simple
form of the sum of appropriate inner products between transform coefficients and basis
functions:

s(k) =" 27?127k — n)DWTyp . (6)
m n

The mathematics related to the choice of the mother wavelet is fairly complex [10],
however, if we can accept large redundancy in our data, which in practice means choosing
a relatively dense sampling of the time-scale plane, then we have large area of freedom
in this choice.

In the redundant case the basis vectors of the tranformation will not be orthogonal,
the only requirement is that they must span the vector space. The set of basis vectors

is then called a frame. A condition for a set to be a frame is that for any m x 1 vector s
[6, 10, 23, 38]:

n
Allsl® <D Is,ba)* < Blisl®,  n>m, (7)
=1
where A and B are positive constants (“frame bounds”), s is input signal vector, (s, h)
is the inner product of vectors. According to (7), the energy of the (discrete) wavelet
codtficients relative to that of the signal must be within the two bounds.

The reconstruction from a frame is more difficult, as instead of the set {h;} another
set, called dual set {h;} is used [10], and its computation from {h;} is not easy. When
in (7) A = B, then the frame is called tight frame and {h;} = {h;} holds.

When the ratio of B/A is close to 1, then a frame is an approximation to the tight
frame, and signals can be approximately reconstructed with the use of an original basis
set {h;}. It depends on the application and the particular mother wavelet, how close to
1 the B/A ratio should be.

Working with the discrete parameter WT, we can obtain frames arbitrarily close to
tight frames, by dense sampling of the CWT in both time and scale, i.e. the a and 7
parameters. For a given mother wavelet there are threshold values (ag, 70), below which
the {hm n} will always form a frame [6].

The fact that it is possible, albeit not easy, to use bases which are not orthogonal and
thus to have large flexibility in the choice of a mother wavelet is crucial in the task of ear
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modeling: it allows to construct h(t) which simulates the impulse response of auditory
filters.

IRINO and KAWAHARA [18] used a simulated response of the auditory filter as the
mother wavelet, and called it the Auditory Wavelet Transform. As this resulted in a
non-orthogonal transform, the reconstruction (as mentioned in Sec.7.1) was not easy,
and they used two indirect methods.

7.2. Application of filters

Besides the traditional classification of digital filters to FIR and IIR types, modern
filters could be divided to non-decimated (standard) and decimated (usually critically
sampled) filters. While critically sampled filters do not increase the data rate of the
input signal they impose several important practical limitations. The construction of
banks emulating constant @ filters is possible with the use of wavelet packets [44] and
excellent filterbanks for the use in audio technology have recently been designed [2].
However, they tolerate little modifications to the channel signals, which are needed in
ear modelling, e.g. in blocks no. 3. and no. 4. of Fig. 1.

Non-decimated filters offer much better flexibility, computational stability and ro-
bustness to distortion, and are thus more suitable for ear modelling. The cost of non-deci-
mating is very high redundancy of the channel (output) data. Constant @, one-third
octave band or so-called Bark filters (with bandwith corresponding to 1 Bark) are often
used [37].

Non-decimated filters with impulse responses simulating that of the cochlea have been
investigated. In several models the so called “gammatone” linear filter has been used.
Recently IRINO [17, 19] has proposed a more advanced filter called “the gammachirp”
with level — dependent, asymmetric characteristics, showing that it was theoretically
optimum filter, with minimum uncertainty in a joint time frequency representation. It
is given by [17]:

gc(t) = at" ' exp(—27b ERB (f,)t) cos(2m frt + clnt + ), t >0, (8)

where a, b, ¢, n, are parameters, which are tuned to obtain best results, f, is the cen-
tre frequency of the filter, ¢ is the phase of the cosine carrier, ERB is the Equivalent
Rectangular Bandwidth and ¢t is time. As the ERB is a function of f, the bandwidths
of cochlear particular filters can be precisely tuned to experimental data, thus offering
better fit that the constant @ filters do.

Without the frequency modulation “chirp” term (clnt) the impulse response in (8)
is equivalent to the earlier “gammatone” filter.

8. Spectral enhancement

Since a seminal paper by MCAULAY and QUATIERI [26] several procedures for dis-
carding weaker parts of the spectrum have been proposed. Such an operation has its
foundations in physiological phenomena of masking and lateral inhibition (mentioned in
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Sec.3). It can be assumed that they both contribute at peripheral auditory stages to
the overall ear’s ability to isolate signals of interest out of an acoustic background. The
procedures in [9, 16, 26] and many others are peak picking algorithms. They consist of
finding local spectral peaks in subsequent spectra evolving with time and then in forming
continuous traces in the three-dimensional amplitude versus time and frequency space.

On their output they all produce plots resembling the rightmost diagram in Fig. 1.
Usually they provide substantial amount of data reduction. They differ in time-frequency
analysis method used, selection (peak-picking) method, elimination of blocking effects
and other details.

A simple way of achieving the same goal, albeit applicable only for stationary sounds
of acoustic instruments with harmonic spectra was proposed in [22].

A different approach to modeling spectral enhancement was presented in [41, 42, 43].
The authors tried to simulate more precisely the physiological processes, with mixed
partial derivative with respect to both time and space of the basilar membrane patterns
as key contrast — enhancing operation, followed by nonlinearity (rectification).

9. Postulates for Auditory Transform

Auditory Transform is meant to be a multi-stage computational procedure (the term
“transform” is used in a wide sense) which should serve two goals:

a) analyse an audio signal yielding a result similar to its internal representation at a
suitable stage of the auditory system;

b) model the peripheral auditory system.

The most desirable properties of Auditory Transform are proposed below:

a) The first stage should be linear and perceptually invertible, i.e. a listener should
not perceive any difference between an original signal and the reconstructed signal.

b) The careful design of frequency analysis part of this procedure is essential. If the
WT is used for this stage, a good candidate is based on a mother wavelet that in some
way approximates the characteristics of an auditory filter.

c) The subsequent nonlinear spectral enhancement procedure should eliminate re-
dundancy from frequency analysis stage.

10. A proposal for a narrow-band wavelet transform

Following the discussion presented above, the author designed a specific wavelet
transform to model the frequency analysis function of the ear. The choice of wavelet
leads to a redundant (frame-based) wavelet transform. The construction and verification
of the proposed WT is only summarized in this chapter.

There is a way of densely sampling of the CWT, keeping a simple structure of time
allocation of transform coefficients. This is obtained by preserving a dyadic structure of
sampling in time, with appropriate oversampling, while samples in the scale (frequency)
domain are taken by filling the dyadic scale with additional samples, taken at fractional
powers of two. Such samples in the scale domain are called “voices”. If we denote the
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continuous wavelet at scale (octave) m by h,,(t), then the voice number j in that scale
will be given by:

Bm,j(t) = 279/ Mp,, (279/M¢), (9)
where M is the number of voices per one octave.

The mother wavelet chosen for that transform was similar to the Morlet wavelet. The
original Morlet wavelet [6] is the basis function of the Gabor Transform, i.e. it is the
complex sinusoid windowed by the Gaussian envelope. Its important advantage is that it
directly preserves phase, as the basis functions are complex. The frequency resolution of
the original Morlet wavelet was found inappropriate and a specific window was proposed
instead of the Gaussian. This window was derived from the modified Blackman window
[14], by tuning its coefficients so that the spectrum of the window is as close as possible
to frequency characteristics of auditory filters, within limitations of real-valued windows.
The discrete formula for the window was the following:

2T 2T
w(n) = 0.4205+0.4995 cos [F} +0.08 cos [—N_—2n] , n=-—,...,0,... (10)
where N + 1 is the length of the window in samples. Odd length was used following
the practice used in FIR filter implementations, where it is usually better to have the
filter response sampled exactly in its center. The amplitude spectrum of this window is

shown in Fig. 2. The frequency resolution of the resulting wavelet is much better that
than offered by responses of filters described in [17] and [19].
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Fig. 2. Amplitude spectrum of the window used in the construction of the wavelet transform proposed.

The number of voices per octave (M in (9)) was chosen to be equal to 12, thus
forming the 1/12 octave spacing of bands of frequency analysis, corresponding to the
equally-tempered musical scale.

For computational reasons, the audio frequency range in the experimental system
was reduced to from 30Hz to 16kHz. Also, the so-called scaling function, needed to
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represent the lower part of the frequency spectrum was not used, without any audible
effects. This range encompasses 9 octaves. Together, the transform proposed analyses
the signal in 108 (9 x 12) frequency bands.

The overlapping factor in the time domain, after initial experiments has been chosen
at 75% for the highest voice in an octave. The wavelets for subsequent, lower voices are
scaled to be longer by appropriate fractional powers of 2 and effective overlapping range
increases. Four coefficients are computed for any signal frame equal to the length of the
window.

The 1/12 octave spacing between the bands did not determine their width. According
to the discussion in Sec. 7.1, the transform was designed to be redundant, which means
not only overlapping of frameanalysis in time, but also overlapping of bands in scale
(frequency) domain. Thus, the appropriate balance between the resolutions in frequency
and in time had to be found. The width of the bands was chosen so that the point of
intersection of amplitude spectra of neighbouring bandpass filters was approximately at
—3dB. That width is determined by the length of the mother wavelet. The wavelet for
the lowest scale used (shortest wavelet) was 48+1 samples long, with other wavelets in
this highest octave being longer. The mother wavelet consisted of 16 windowed cycles of
the complex sinusoid (real part). The experiments have been carried with the sampling
frequency of 48 kHz, thus the centre frequency of the highest wavelet was equal to 16 kHz.
The transform encompassed 9 octaves, and the length of the lowest scale wavelet in the
bottom octave was 23196+1 samples and its frequency was centred at 33.1 Hz.

The reconstruction of the signal by inverse WT, for unit impulse test signal shows
some distortion, resulting from the frame used still being not tight enough. The ampli-
tude of these distortions can be estimated at below —40dB in relation to the amplitude
of the unit impulse. However, when tested on many different samples of audio signals,
no audible difference has been heard by a group of listeners. The distortion could be
reduced by increasing the redundancy, but then its rate would be impractically high.
The WT presented above produces exactly 4 times more of data than there were samples
in an input signal. In fact, this number can be reduced to 3 without audible effect by
just less dense sampling of the time — scale plane. Higher reductions were obtained and
informally tested using specific procedures relying on rules from psychoacoustics. These
procedures could be a basis for algorithms for spectral redundancy. The experiments on
such procedures are currently conducted.

Figure 3 shows the plot of the analysis of a 150 ms fragment of the recording of an
orchestra. The result displayed is based on the modulus of complex coefficients obtained
from the WT proposed. For better clarity, the plot presented is of the discrete, black and
white type, instead of often used grey-scale type. The threshold used for classification
black /white was gradually lowered along the frequency scale, to compensate for the
usual decrease of energy of the acoustic signal towards higher frequencies. All frequency
bands in the plot are double-pixel wide for better visualisation, thus all short vertical
strips in the highest octave are showing single transform coefficients. Despite that the
very dense musical fragment was deliberately chosen and slightly smearing nature of the
black/white plot, concentration of energy in time-frequency plane is clearly visible, with
some horizontal strips indicating strong harmonic components.
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Fig. 3. The output of the transform proposed for a 150 ms fragment of orchestral music.

11. Conclusions

Analysis of the bibliography and the work performed by the author indicate, that
successful modeling of the ear requires a specific linear frequency analysis procedure,
which is a basis for any subsequent nonlinear operations. Its most important feature
is constant @ bandpass filtering characteristics. One such method was proposed and
tested. It relies on the Wavelet Transform with a modified Morlet mother wavelet, with
oversampling the frequency domain by means of “voices”. It performs well, but the data

must be redundant by about four times, in order that the transform is perceptually
invertible.
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