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Numerical methods are mostly used to predict the acoustic pressure inside duct systems. In this
paper, the development of a numerical method based on the convected Helmholtz equation to compute
the acoustic pressure inside an axisymmetric duct is presented. A validation of the proposed method was
done by a comparison with the analytical formulation for simple cases of hard wall and lined ducts. The
effect of the flow on the acoustic pressure inside these ducts was then evaluated by computing this field
with different Mach numbers.
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1. Introduction

To predict noises from compressors, aircraft en-
gines, and ventilation systems which are generally com-
posed of an acoustic source and rigid wall or lined
wave guides, many theoretical and experimental works
were developed to characterize the acoustic propaga-
tion and radiation of sound from ducts with geometry
and impedance discontinuities. The objective of these
works is the development of efficient tools which can be
used in the design phase to optimize the lining, geome-
tries, and forms to reduce the radiated noise. Works
based on the analytical theory such as (Bi et al., 2003;
2006), and (Leroux et al., 2003) presented the Multi-
Modal Propagation Method (MMPM) based on ex-
panding sound pressure and axial velocity into double
infinite series using the rigid duct modal basis and the
projection coefficients evolution along the duct axis.
This method was used to evaluate the scattering ma-
trix and the acoustic pressure inside the duct of axially
and circumferentially non uniform lined ducts.Meiss-
ner (2010) proposed an analytical method based on
a general acoustic impedance expression and on condi-
tions of impedance continuity at duct section changes
to model the plane wave motion in a duct. This method

was tested with one, two and three discontinuities in
the duct cross-section. It was validated by a compar-
ison with numerical results calculated on the basis of
the oscillator method with a finite difference algorithm.
Owing to the limitations of the analytical methods, es-
pecially when the geometry and impedance repartition
become complicated (section variation, complicated
segmented liners. . . ), the numerical methods were de-
veloped: Watson et al. (1996) presented a finite ele-
ment propagation model based on the Galerkin tech-
nique to extract the acoustic impedance of the liner.
This method is interpreted as an approximation of the
continuous acoustic field seen as an assemblage of rect-
angular finite elements. Lin (1998) developed a nu-
merical method based on a least-squares finite-element
method to solve the two dimensional Helmholtz equa-
tion in rigid walls and lined ducts. The validation of
his proposed method was made by comparison with the
boundary element method. Dykas et al. (2010) pro-
posed a numerical method of modeling acoustic waves
propagation based on the resolution of the non-linear
Euler equations. The resolution is made with the use
of a numerical scheme of third-order accuracy in space
and time. The method was successfully tested and val-
idated. The above methods present efficient tools to
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understand and control duct systems, but in indus-
trial applications, the flow is present and has an im-
portant effect on the acoustic behavior of these sys-
tems. Hence, this parameter was incorporated in devel-
oped theoretical techniques. Elnady (2004) presented
a combined analytical collocation mode matching tech-
nique to evaluate the inside acoustic pressure field
of a rigid-lined-rigid duct in the presence of a mean
flow. Peat, Rathi (1995) proposed a finite element
formulation for modeling the sound field in a duct
lined by porous materials in the presence of a mean
flow. Watson, Jones (2006) made a comparison be-
tween two impedance eduction techniques based, re-
spectively, on the convected Helmholtz equation and
the Euler equation in the presence of a mean flow.
Due to the complexity of three-dimensional geome-
tries and flows inside modern nacelles which present
complicated factors, the two-dimensional modelling of
duct systems in the presence of a mean flow remains
limited, and new techniques were developed based on
three-dimensional modelling taking into account the
complicated flow. Nark et al. (2003; 2005) developed
a code taking into account the three-dimensional ge-
ometries and tested the method using a rectangular
section by comparison with the analytical solution.
Lan, Bread (2005) presented a numerical modelling
of the acoustic propagation inside a lined duct by using
a parabolic approximation of the convected Helmholtz
equation based on the Dougherty formulation proposed
by Dougherty (1997; 1999) to solve it with efficiency
and with low computational costs in the case of com-
plex three-dimensional geometries. A development of
this method for different kinds of flow (mean, grazing)
is presented and validated in (Watson et al., 2005;
Jones et al., 2005), and (Nark et al., 2006). Lapka
(2009) developed a numerical method to compute the
Insertion Loss of spiral ducts. For this, a three dimen-
sional model using the finite element method was used.
The numerical results were validated by comparison
with experiments. The results of (Lapka, 2009) con-
firm that the use of a spiral duct has a great potential
to attenuate noise in duct systems. In a previous work
(Taktak et al., 2011) proposed a numerical method
of sound propagation modelling in three-dimensional
ducts in the presence of a flow. This method is based on
a three-dimensional finite element formulation. The re-
sults are compared to an analytical solution and show
the validity of numerical implementation. They also
illustrate the flow effects on the sound propagation in-
side the duct. In the literature, other techniques are
used to model the duct system like the time domain
method which was developed by (Özyörük, Long,
1996; Stanescu et al., 1999; Reichert, Biringen,
1997) and (Sbardella et al., 2001) because of its low-
cost computing power and the frequency-domain meth-
ods by (McAlpine, Fisher, 2003) and (Özyörük
et al., 2004) which are also used because they are much

faster. Also, we note some works presenting optimiza-
tion methods for duct systems such as the works of
(Chiu, 2009) and (Chang, Chiu, 2010) to optimize
multi-mufflers flow ducts using, respectively, the sim-
ulated annealing technique.
In this paper, we begin by presenting the studied

problem and its governing equations in Sec. 2. The
proposed numerical method to compute the acoustic
pressure with a mean flow inside an axisymmetric lined
duct is also presented in Sec. 2. In this later section,
the numerical formulation and the finite element dis-
cretization are detailed. In Sec. 3, results of the pro-
posed numerical method are validated by a comparison
with the analytical results and discussed to evaluate
the flow effect.

2. Description of the physical problem

The studied duct is cylindrical. Figure 1 presents its
symmetric part. It does not present a sudden section
change but an impedance discontinuity caused by the
liner which is supposed to be locally reacting charac-
terized by its acoustic impedance Z. Ω is the acoustic
domain inside the duct. The edge of the studied duct
is composed of four parts:

• The rigid wall duct part ΓWD,
• The lined duct part ΓLD,
• The left transversal boundary ΓL,
• The right transversal boundary ΓR.

ΓWD, ΓLD, ΓL and ΓR are characterized respectively
by their normal vectors nWD, nLD, nL and nR. A uni-
form flow is present in this duct modeled by the vector
M0 defined as:

M0 =

(
U0

c

)
z =M0 z, (1)

M0 is the Mach number, U0 is the flow velocity, and
c is the sound velocity.

Fig. 1. Schematic of the studied problem.

2.1. Computation of the acoustic pressure field
within the duct

2.1.1. Governing equations

To compute the acoustic pressure filed inside the
studied duct, a modal pressure is imposed on the left
boundary of the duct ΓL in the direction of increas-
ing z, and a boundary condition is applied on the right
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boundary ΓR to eliminate the reflection phenomenon
inside the duct, as presented in Fig. 2. The acoustic
pressure inside the duct p is the solution of the sys-
tem containing the convected Helmholtz equation with
boundaries conditions at ΓWD, ΓLD, ΓL, and ΓR pre-
sented as follows (Reddy, 1993):

∆p+ k2p+
2iω

c
· (M0 · ∇ p)

−M0 · ∇ (M0 · ∇p) = 0 (Ω),

Z
∂p

∂nLD
=
ρ0
iω

(
−iω + U0

∂

∂z

)2

(p) (ΓLD)

∂p

∂nWD
= 0 (ΓWD)

p = P+
mn (ΓL)

∂p

∂nR
= ik+mnp (ΓR)

(2)

∆ is the Laplacien operator, k is the total wave num-
ber, ρ0 is the mass per volume unit and ω is the pulsa-
tion. ∇ =

〈
∂/∂r im/r ∂/∂z

〉T
is the modified gradi-

ent for axisymmetric problems withm is the azimuthal
wave number. P+

mn = Jm

(χmn

a
r
)
eik

+
mn

z is the im-

posed acoustic mode propagating in the direction of
increasing z with n is the angular wave number. χmn

is the n-th root satisfying the radial hard-boundary
condition on the wall of the main duct and a is the
duct radius. k±mn are the axial wave number associated
to the (m, n) mode and defined as:

k±mn =
−M0k ±

√
k2 − (1−M2

0 ) k
2
t

(1−M2
0 )

, (3)

kt is the transverse wave number. The sign + means
that the axial wave number is calculated in the same
direction as the flow while the sign − means that the
axial wave number is calculated in the opposite direc-
tion of the flow.

Fig. 2. Schematic of the theoretical model for the
computation of inside acoustic pressure field.

2.1.2. Variational formulation

To solve the problem (2), the finite element method
is used. The weak variational formulation of this prob-
lem is written as follows (Reddy, 1993):

Π =

∫

Ω

− (∇q · ∇p) r dΩ +
1

c2

∫

Ω

((iωq +U0 · ∇q)

· (−iωp+U0 ·∇p)) r dΩ+

∫

∪Γi

(
q
∂p

∂ni
− 1

c2
U0 ·ni

· q
(
−iω + U0

∂

∂ni

)
(p)

)
r dΓi = 0, (4)

p and q are respectively the acoustic pressure in the
duct and the test function, dΩ = dr dz is the sur-
face element. ∪Γi presents the whole boundaries (i =
LD,L,R). The third integral includes boundaries con-
ditions. This integral is composed of three parts:

• Lined part ΓLD:
∫

ΓLD

(
q
∂p

∂nLD
− 1

c2
U0 · nLD

· q
(
−iω + U0

∂

∂nLD

)
(p)

)
r dΓLD

= −ρ0ω2

∫

ΓLD

q
p

iωZ
r dΓLD

− 2iωρ0U0

∫

ΓLD

q
∂

∂z

( p

iωZ

)
r dΓLD

− ρ0U
2
0

∫

ΓLD

∂q

∂z

∂

∂z

( p

iωZ

)
r dΓLD

+ ρ0U
2
0

[
rq

∂

∂z

( p

iωZ

)]zLD2

zLD1

(5)

with zLD1 and zLD2 being respectively the beginning
and the end axial coordinate of the lined part of the
duct.

• The left boundary ΓL:
∫

ΓL

(
q
∂p

∂nL
− 1

c2
U0 ·nL · q

(
−iω+U0

∂

∂nL

)
(p)

)
r dΓL

=

((
1 +M2

0

)
· ik+mn − iωU0

c2

)∫

ΓL

qr dΓL · Pmn. (6)

• The right boundary ΓR:
∫

ΓR

(
q
∂p

∂nR
− 1

c2
U0 ·nR · q

(
−iω+U0

∂

∂nR

)
(p)

)
r dΓR

=

((
1−M2

0

)
· ik+mn +

iωU0

c2

)∫

ΓR

q · pr dΓR. (7)

2.1.3. Finite element discretization

To solve the proposed problem, the domain (Ω) is
discretized with triangular finite elements, while edges
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are meshed by two-node finite elements, as presented
in Fig. 3. Computation of the integrals of Eq. (4) is
made by summing over the finite elements number of
the elementary integrals (Dhatt, Touzot, 1989):

Ie1 =

∫

Ωe

− (∇q · ∇p) rdΩe +
1

c2

∫

Ωe

(iωq +U0 · ∇q)

· (−iωp+U0 · ∇p) r dΩe,

Ie2 = −ρ0ω2

∫

Γe

q
p

iωZ
r dΓe

− 2iωρ0M0

∫

Γe

q
∂

∂z

( p

iωZ

)
r dΓe

− ρ0M
2
0

∫

Γe

∂q

∂z

∂

∂z

( p

iωZ

)
r dΓe,

Ie3 = ρ0M
2
0

[
rq

∂

∂z

( p

iωZ

)]zLD2

zLD1

,

Ie4 =

((
1 +M2

0

)
· ik+mn − iωM0

c2

)∫

Γe

qr dΓe · Pmn,

Ie5 =

((
1−M2

0

)
· ik+mn +

iωM0

c2

)∫

Γe

q · pr dΓe,

(8)

where Ωe and Γe are respectively the elementary tri-
angular and two-node finite elements.

Fig. 3. The finite elements mesh of the studied duct
element.

2.1.3.1. Elementary computation of the triangular

finite element. For the triangular finite element com-
posed of three nodes (1, 2 and 3), the integral Ie1 is
written as follows:

Ie1 =
〈
q1 q2 q3

〉
Ke1

〈
p1 p2 p3

〉T
, (9)

[Ke]1 =

∫

Ωref

−
(
∇q · ∇pT

)
det jr dξ dη

+

∫

Ωref


i

ω

c





N ′
1

N ′
2

N ′
3





+U0 · ∇q




·
(
−iω

c

〈
N ′

1 N
′
2 N

′
3

〉
+U0 · ∇p

)
det jr dξ dη, (10)

j is the inverse matrix of the Jacobien matrix J of the
transformation from the reference element to the real
base. N ′

1(ξ, η), N
′
2(ξ, η) and N

′
3(ξ, η) are the interpola-

tion functions of the triangular finite element (Dhatt,
Touzot, 1989) defined by:

N ′
1 (ξ, η) = 1− ξ − η,

N ′
2 (ξ, η) = ξ,

N ′
3 (ξ, η) = η.

(11)

2.1.3.2. Elementary computations of the two-node

finite element. For a two-node finite element belong-
ing to the lined part of the duct composed of two nodes
(1 and 2), Ie2 and Ie3 are computed as follows:

Ie2 =
〈
q1 q2

〉
Ke2

{
p1
p2

}
, (12)

Ke2 = Ke21 +Ke22 +Ke23, (13)

Ke21 = ρ0iω

1∫

−1

{
N1

N2

}〈
N1 N2

〉

·
〈
N1 N2

〉

〈
Z1 Z2

〉{N1

N2

} · Le

2
r dξ, (14)

Ke22 = −2ρ0U0

1∫

−1

{
N1

N2

}



2

Le

〈
−1

2

1

2

〉

〈
Z1 Z2

〉{N1

N2

}

−
〈
N1 N2

〉

2

Le

〈
Z1 Z2

〉




−1

2
1

2





(〈
Z1 Z2

〉{N1

N2

})2




Le

2
r dξ, (15)

Ke23 =
ρ0U

2
0

iω

1∫

−1

2

Le





−1

2
1

2








2

Le

〈
−1

2

1

2

〉

〈
Z1 Z2

〉{N1

N2

}

−
〈
N1 N2

〉

2

Le

〈
Z1 Z2

〉




−1

2
1

2





(〈
Z1 Z2

〉{N1

N2

})2




Le

2
r dξ, (16)

Z1 and Z2 are the acoustic impedance of each node
of the two-node finite element; Le is the two-node fi-
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nite element length. N1(ξ) and N2(ξ) are the interpo-
lation functions of the two-node finite element defined
by (Dhatt, Touzot, 1989):

N1(ξ, η) = (1 − ξ)/2,

N2(ξ) = (1 + ξ)/2.
(17)

Computation of Ie3 is done for the two-node finite el-
ements on the lined part extremities.

Ie3=
〈
q1 q2

〉
Ke3Z2

{
p1
p2

}
−
〈
q1 q2

〉
Ke3Z1

{
p1
p2

}
, (18)

Ke3Z2 =
ρ0U

2
0

iω
· 2

Le

{
0
1

}



〈
−1

2

1

2

〉

〈
Z1 Z2

〉{ 0
1

}

−
〈
0 1

〉
·

〈
Z1 Z2

〉




−1

2
1

2





(〈
Z1 Z2

〉{ 0
1

})2




·
〈
r1 r2

〉{ 0
1

}
, (19)

Ke3Z1 =
ρ0U

2
0

iω
· 2

Le

{
1
0

}



〈
−1

2

1

2

〉

〈
Z1 Z2

〉{ 1
0

}

−
〈
1 0

〉
·

〈
Z1 Z2

〉




−1

2
1

2





(〈
Z1 Z2

〉{ 1
0

})2




·
〈
r1 r2

〉{ 1
0

}
, (20)

r1 and r2 are the radiuses of each corresponding real
node.
Computation of the integral Ie4 of a two-node fi-

nite element belonging to the left boundary is made as
follows:

Ie4 =
〈
q1 q2

〉
·
{
P1mn

P2mn

}
,

Pjmn =

((
1 +M2

0

)
· ik+mn − iωU0

c2

)

· Pmn ·
1∫

−1

Nj (ξ)
Le

2
r dξ, j = 1, 2.

(21)

Computation of the integral Ie5 of a two-node finite
element belonging to the right boundary is:

Ie5 =
〈
q1 q2

〉
·Ke5

{
p1
p2

}
,

Ke5 =

((
1−M2

z

)
· ik+mn +

iωU0

c2

)

·
1∫

−1

{
N1

N2

}〈
N1 N2

〉 Le

2
r dξ.

(22)

Integration of the above integrals is made using the nu-
merical Gauss integration method (Dhatt, Touzot,
1989). The assembly of different elementary integrals
computed before is obtained as follows:

K1 =

NelT∑

1

Ke1,

K2,3 =
NelLD∑

1

(Ke2) +Ke3Z1 +Ke3Z2,

K5 =
NelR∑

1

Ke5

(23)

with NelT being the number of triangular finite ele-
ments, NelLD being the number of two-node finite el-
ements along the lined part, and NelR being the num-
ber of two-node finite elements at the right boundary
of the duct. To solve the variational formulation (4),
the matrices are arranged to obtain the following sys-
tem:

〈
q1 . . . qM

〉
M
KM×M





p1
...
pM





=
〈
q1 . . . qM

〉
M



 F





M

, (24)

K = K1 +K2,3 +K5, (25)

{F} = {Pj mn}NnodeL , (26)

M is the number of nodes and NnodeL is the number
of nodes at the left boundary. The resolution of this
system allowed determination of the acoustic pressure
in each node within the studied duct.

3. Numerical results

To validate the proposed finite element method,
two cases of ducts were studied: a rigid wall and
lined ducts. The chosen example consists in apply-
ing a modal pressure P+

mn on the left boundary ΓL of
a cylindrical duct. The geometric characteristics of the
studied duct are: the radius a = 0.1 m and the length
L = 0.5 m. On the right boundary of the studied duct,
an acoustic condition is applied to eliminate the re-
flection effects. The mesh of the studied duct is done
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by using 1128 finite elements. Afterwards, we compare
the acoustic pressure fields obtained with the present
numerical method and by an analytical formulation
(Lesueur, 1988). The acoustic pressure is a complex
value, hence, the real and the imaginary parts of the
numerical and analytical values of the pressure are pre-
sented.

Analytical

Numerical

Fig. 4. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied wall duct
at f = 1000 Hz and for M0 = −0.2 when imposing the (0,0) mode.

Analytical

Numerical

Fig. 5. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied wall duct
at f = 1000 Hz and for M0 = 0 when imposing the (0,0) mode.

Analytical

Numerical

Fig. 6. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied wall duct
at f = 1000 Hz and for M0 = 0.2 when imposing the (0,0) mode.

3.1. Case No. 1: Cylindrical rigid wall duct

The (0,0) mode is imposed to the studied wall
duct. Figures 4, 5, and 6 present a comparison be-
tween the analytical and numerical solutions of the
acoustic pressure fields inside the duct at the frequency
f = 1000 Hz, respectively, for M0 = −0.2, 0 and 0.2.



M. Taktak et al. – Numerical Modelling of the Acoustic Pressure Inside an Axisymmetric Lined Flow Duct 157

Analytical

Numerical

Fig. 7. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied wall duct
at f = 5000 Hz and for M0 = 0.2 when imposing the (0,2) mode.

Analytical

Numerical

Fig. 8. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied wall duct
at f = 3000 Hz and for M0 = 0.2 when imposing the (1,0) mode.

Figures 4, 5, and 6 show a good agreement between
the numerical and analytical solutions. These figures
show well the propagation of the plane wave inside the
duct, as well as the flow effect. The increase of the
Mach number in the same z direction generates a shift
of the wave in the same direction: the maximum of the
real part of the acoustic pressure (1.5 Pa) located at
z = 0.35 m in the no flow case is shifted to z = 0.41 m
when M0 = 0.2 and to z = 0.27 for M0 = −0.2. The
same remark is observed for the imaginary part: the
maximum of the imaginary part located at z = 0.44 m
for the case of no flow is shifted to z = 0.5 forM0 = 0.2
and to z = 0.35 m for M0 = −0.2.
As a second step, we impose a radial mode on the

left boundary of the studied rigid wall duct. Figure 7
presents a comparison between the numerical and an-
alytical solutions of the inside acoustic pressure when
imposing (0,2) mode at f = 5000 Hz and forM0 = 0.2.
Like in the (0,0) mode case, a good agreement between
the numerical and analytical results is observed. Fig-
ure 8 presents the acoustic pressure field inside the
studied wall duct when imposing the azimuthal mode

(1,0) at f = 3000 Hz and withM0 = 0.2. These figures
show a good agreement between the numerical and an-
alytical results.

3.2. Case No. 2: Cylindrical lined duct

The studied duct in this case has the same geomet-
rical characteristics as this of the first case but totally
lined by a liner with a constant acoustic impedance
Z = ρ0c0(1+ i). We begin by imposing the (0,0) mode
at the left boundary of the duct. Figures 9, 10, and 11
present a comparison between the analytical and nu-
merical results of the inside acoustic pressure fields at
f = 1000 Hz respectively for M0 = −0.2, 0 and 0.2.
Figure 12 shows a comparison between the numerical
and analytical pressure fields inside the studied lined
duct at f = 7000 Hz with M0 = 0.2 by imposing the
(2,1) mode at the duct entry. Figure 13 presents a com-
parison between the numerical and analytical pressure
fields inside the studied lined duct at f = 7000 Hz
withM0 = 0.2 by imposing the (0,2) mode at the duct
entry.
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Figures 9 to 13 reveal that even if the duct edges are
lined, the developed numerical method gives good re-
sults in accordance with the analytical results. These
results show the effect of the liner on the propaga-

Analytical

Numerical

Fig. 9. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied lined duct
at f = 2000 Hz and for M0 = −0.2 when imposing the (0,0) mode.

Analytical

Numerical

Fig. 10. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied lined duct
at f = 2000 Hz and for M0 = 0 when imposing the (0,0) mode.

Analytical

Numerical

Fig. 11. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied lined duct
at f = 2000 Hz and for M0 = 0.2 when imposing the (0,0) mode.

tion wave which is attenuated when propagating in-
side the duct. It is also observed that if the Mach
number increases the attenuation of the wave de-
creases.
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Analytical

Numerical

Fig. 12. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied lined duct
at f = 7000 Hz and for M0 = 0.2 when imposing the (2,1) mode.

Analytical

Numerical

Fig. 13. Real part (left) and imaginary part (right) of the acoustic pressure in Pa inside of the studied lined duct
at f = 7000 Hz and for M0 = 0.2 when imposing the (0,2) mode.

From these results we conclude that whatever the
frequency, the imposed mode, and the edge boundaries,
the proposed numerical method gives good results in
accordance with the analytical ones.

4. Conclusion

In this study, a numerical method for the modeling
of the acoustic pressure inside an axisymmetric lined
duct in the presence of a flow was developed and pre-
sented. This method is based on the resolution of the
convected Helmholtz equation with boundaries condi-
tions. The proposed method gives good results as com-
pared with the analytical ones. By varying the flow ve-
locity, its effect was evaluated: the increase of the flow
decreases the attenuation of the acoustic pressure in-
side the duct. Several ameliorations can be added to
the proposed finite element method to model three-
dimensional flow ducts.
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