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The paper presents three diffusion models of sound propagation through a space with
obstacles proposed by Kurze, Kuttruff and Yeow. The models contain simple expressions for
the sound attenuation what makes them attractive to use.

Here, the models are applied to a segment of a built-up area. Considerable differences
appearing between the values of the sound excess attenuation confirm the fact that the diffuse
model can be used only as a tool for very rough field investigation.

One has to be very careful while intepreting the results obtained, bearing in mind all the
limitations of the models applied and the vague way of estimation of the model parameters.

1. Introduction

The noise abatement problem can be most efficiently solved at the stage of
planning. To this end, a tool for prediction of the sound pressure level is needed. Three
kinds of treatment are involved:

e development of empirical formulae,

e scale modeling,

e mathematical model.

The procedure of noise prediction in urban area usually includes a source model
and a propagation model.

For the source model construction [13], [25], [26], [28], [30], [31], [38], [41] the way
of developing empirical formuale is mainly used. The simplified mathematical source
models contain also the averaged values of the parameters established by field
measurements.

For construction of the propagation model all three kinds of treatments are
applied. The emprical model [27], founded on a large number of measurements, offers
a general description of noise propagation in a built-up area. The generality of
description is achieved at the expense of accuracy, since an urban system is described
only by a single parameter: the ratio of the ground area of buildings to the site area.



202 E. WALERIAN AND R. JANCZUR

The scale modeling with, for example, the scale factor 1:30 raises a lot of
problems of the site modeling with proper frequency dependence [6]. Investigation
with such a scale factor requires special instrumentation and is not easily adjustable to
changing the sites.

More advisable is the application of scale models for a small segment of a built-up
area [8], [33], [35] or investigation of some special effects such as, for example,
transmission between rooms, through windows, by semi-reverberent space in a bu-
ilt-up area [7]. For such cases the scale factor 1:4>0.1, does not create so many
problems in modeling.

The most flexible and widely applicable are the mathematical models. The
principal problem is, how should we describe the acoustical field in a space with
reflecting obstacles. This is the case when noise propagates in industrial halls, and
from a highway into the urban area. One of the possibilities is a detailed simulation of
the wave path. Another possibility is offered by the statistical description of acoustical
energy distribution.

The detailed noise propagation models for a built-up area, with several obstacles,
involve multiple reactions with obstacles [4], [9], [32], [34], [39], [40]. As elementary
interactions, the specular reflections and diffractions at the edges are included.
Despite the relative complexity of the model, which comes from incorporation of
diffraction [36], [37], the model can provide any required accuracy. The models using
ray tracing [1], [29], [42] are less accurate.

For a built-up area there is a custom to treat separately rush streets, applying for
them the wave-guides propagation models [5], [17], [20], [24]. For an area relatively
distant from a highway, statistical description is advised [16], [23], [43], [44].

In industrial halls, by modeling the acoustic energy distribution as phonon
random walk in a fitted space, statistical description is applied [11], [12], [18], [19].

The same statistical description as that used for industrial halls can be applied for
a built-up area. In the extreme, this description results in application of the diffusion
equation [2], [14], [15], [16], [43].

Here, a special attention is paid to the description of noise propagation as
a diffusion process.

2. Noise propagation as a statistical process

When sound propagates through an irregular structure, where many of interac-
tions take place, it can be described in a statistical way. The propagation process is
observed as a macroscopic one but, it appears as a consequence of a large number of
microscopic ones.

In statistical description, the sound wave is regarded as a stream of particles
(phonons). Travelling through a structure, the particles are scattered. In the case of an
urban enclosure, the structure contains the ground with sited buildings. Interaction of
phonons with a building as an obstacle is characterized by the building scattering
cross-section (Q).
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In a two-dimensional space, an obstacle is modeled as a cylinder. The obstacle
circumference (C) is made equal to the circumference of a cylinder (C =2nr,) for which
0.=2r,=2mnr [n [21]. Thus the building scattering cross-section is

Q = C/n [m]. 6))

In a three-dimensional space, an obstacle is represented by a sphere for which
Q,=nrZ[22]. The obstacle surface area (S) is equalized to the surface area of the sphere
(S=4nr?), and thus

Q = S§/4 [m?. @

The probability density distribution for travelling a path r without collision is
assumed to be exponential and it is related to scattering cross-section (Q) of the
obstacles and their space density () by equation [22]

w(r) = exp(—Qnr), (€)

where the density of obstacles is expressed in m~2 or in m ™3 for a two-dimensional
space and a three-dimensional space, respectively.
Now, the free path is defined by

” 1
A= |wr)dr=—. 4
; o i
When a certain physical quantity (F) obeys the continuity equation
oF
and its flow J fulfills the equation
= —DV=*F, ©)
it is governed by the diffusion equation
oF
el Ly
5 V2F, : ™

where D is a constant (see Eq. (11)).

The Eq. (6) is modified depending on the particular nature of diffusion. As
a consequence, in Egs. (5), (6) appear the terms describing attenuation and action of
the additional sources.

As macroscopically observed, the diffusion process results from elementary events
at a microscopic level. For example, when diffusion is observed in gases under normal
conditions, then the number of colisions in 1 cm? per sec is of the order of 10°, while the
molecule diameters range about 1078 cm, and the free path length is about 105 cm.
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When as the quantity under consideration the sound intensity () is used, then the
distance travelled by phonons in an urban structure have to be large as compared to
the mean free path (Eq. (4)), so that the number of interactions with buildings is large.
This means that the chosen segment of an urban structure has to be large enough, to
contain a large number of buildings which are irregularly scattered. The last condition
of irregular scattering of the buildings is usually not satisfied in a built-up area.

2.1. The Kurze model

Kurze [14] applied the diffusion equation to the three-dimensional space with
obstacles (scatters). His aim was to develop the noise propagation model in industrial
halls. Assuming propagation in half-space with reflecting ground, the model can be
applied to an urban enclosure. For a point source stationary radiation with the power
output P, the sound intensity of the scattered part of the field obeys the equation

Pc exp(r/A,)

73y S Sh e e Wl i
Dv IS xll (1 a’) 271.'7'2 ).z ’ (8)
where c is the sound speed.
Since the model is three-dimensional, we have
Q,=8/4, for nS>A,, &)
where A, is the sound wave length. The mean free path is defined by
A, =x4V[S, for k<1, (10)

where V is the total volume of the space considered, S is the total surface of the
scatters. The coefficient x is chosen arbitrary to achieve good agreement with the
experimental results. It reflects the fact that the investigated field is not sufficiently
homogeneous and isotropic [10].

The scattered field is formed by phonons which suffer at least one collision. In Eq.
(8), the first term on the left-hand side describes the spatial distribution of phonons,
with the diffusion constant

D = cA,/3. (11)

The second term describes the energy absorbed during collision, with
x/D =3a’/Az, (12)
o =—In(l1-ay), (13)

where « is the obstacle absorption coefficient.

The source factor on the right-hand side of Eq. (8) describes the rate of conversion
of the sound energy from the direct field to the scattered one.

After solving the diffusion equation (Eq. (8)) with

o <1/3, and r/i,>»1, (14)
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the scattered part of the field (Z,) is obtained. The total sound intensity for a far field
condition is '
10,) = I A)+1,(A;) =
= (P/2nr?){exp (—r/A;)+3 (r/1;) exp[— (3a') 2 (r/A,)]},
where, according to Eq. 3, the direct part of the field is
1,(4;) = (P[2nr?) exp (—r/4,), (16)

which is formed by the phonons that suffer an exponential decay as a result of
conversion of the direcrt sound energy into the scattered field.

(5)

2.2. The Kuttruff model

Kurtrurr [16] describes the penetration of phonons through a space with obstacles
using the phonon distribution function f{(r, ¢, #), which is defined in the phase space,
and satisfies the continuity equation. For isotropic scattering the function obeys the
Maxwell — Boltzman equation

- SRA lﬁtf+

il [fde. 17)

ot 4o

The changes in the distribution function are caused not only by the existence of its
gradient (the first term on the right-hand side in Eq. (17)). The second term and the
third term on the right-hand side in Eq. (17) describe scattering of phonons from their
original direction and rescattering to the original direction, respectively. For
a stationary process of propagation in a two-dimensional space (over the ground
plane), the equation reduces to

) 1¥0F 1 l1—a 2

a—fcos<p+r—£sm<p+zf=m {f(mp)dgo. (18)

In the Kuttruff two-dimensional model, the scattering cross-section (Eq. (1)) is

calculated on the ground area, containing the plot of buildings, and can be called the
visual building width:

0,=2a+b)r, 19)

where a, b are the lengths of the building sides.
The mean free path is

A =1/(nQ), (20)
where
_ buildings number

ground area

[1/m?, @D

is the average density of buildings.
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By solving (Eq. (18)) for the phonon density,

o) = | f(r.0)dp = A, K kr), @)
k= -V, @3)
A, = Nk?A /4nxc, (24)

where K(kr) is the Hankel function of zero order, and N is the number of

phonons per second emitted by a point source, the sound intensity of the scattered
part of the field is found

L=cpr)e, (25)
with the individual phonon energy
e = (1/N)(P,/h). (26)

The quantity (P,/h) is the mean sound energy, in the strip of the width & equal to the
average height of the buildings, rescattered back by obstacles, and

P, = p(h/2)(1—a) P, @7
where u(h/A,) is the special function approximated by the expression
u(h/A) = (h/A,)[0.423—In(h/A,)], for h<A, (28)
Thus, the scattered sound intensity is equal to
L) = K (kr) @—)P,/2nhd,. 29)

The total sound intensity is the sum of the direct and scattered parts.
The direct part is also calculated as the average value in the strip of width A:

I(A) = (P[2nr?) arctan (h/r) exp (—r/4,). (30)

The attenuation coefficient « appearing in Eq. (29), contains the attenuation at
reflection surfaces, the air attenuation, and the effect of leaving the propagation plane
by phonons after collision (what is characteristic for two-dimensional problem). For
a loosely built-up area with the low buildings it is assessed to be:

oa=0.5. 31)
With this value of the absorption coefficient, for far-field conditions, where:
K (x) = (n/2x)"2 exp(—x), (32

the total sound intensity is:

IR,) = I(A)+1,(&) = (P[2nr?) {exp(—r/4)+

+[0.423 —1n (B/4,)] (r/A)¥2 exp[ —0.87 (/2)]}

(33)
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2.3. The Yeow model

Yeow [43] analyzed an urban space as a room, with perfectly absorbing walls, with
dimensions which grow up to infinity. The room contains obstacles, e.g. buildings.
They are box-shaped, (/,x by) X h,, and randomly distributed on the ground. After
estimation of the reverberation time for such an enclosure, acoustical energy
distribution is described by the function

(E/Ey) = (ry/r)*exp[— o (r—ryl (34)

The Eq. (34) gives acoustical energy E at the point P, at distance r from a stationary
point source located on the ground, where there is no direct wave. It is estimated in
relation to energy E, at distance roi

The basic assumptions of the approach are the following: the sound fields are, at
least locally perfectly diffuse, reflections are specular, distribution of absorption is
uniform.

The decay factor in Eq. (34) for a three-dimensional space is

0, =41/A) A=) @+mAy), (35)
where m is the air absorption coefficient and & is the effective absorption coefficient.
@ =[1-f)(A+a)+a, ) fe,+2(1-1)]. - (36)

The free path is defined by the relation
Ay = 4V[S = 4h(1-1)[[ fg,+2(1-1)], (37

where V is the enclosed volume, and S is the total bounding surface area.
The packing function s
[= nQ ) (38)

represents the buildings plan area per unit ground area, where n (Eq. (21)) is the
building density, and the building scattering cross-section

Q,=1p, (39
is the building base surface area. The factor
&, = 2h(l,+by/(1,b,), 40)

is the ratio of a building surface area to its cross-section (Eq. (39)).
The building absorption coefficient is put assumed to be

. _[01 fg;»>(1—f) (high buildings),
e {5 5 J2,<(1—f) (low buildings).

The decay factor (Eq. (35)) is

o, = @4/is) (1—f)(@+0.001 1)), 42)
with the average absorption coefficient

(41)
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& = [(14 o) (1=1)+0 f2,)//2,+2(1=1)); 43)
where the building absorption coefficient («,), according to Eq. (41), is assumed to be
#,=0.1, or «,=05. 44)
The ground absorption coefficient is

a, = 0.1, 45)

and the air absorption coefficient equals
m = 0.001. (46)

The sound intensify, according to Eq. (34), is expressed by the function

I(o,) = (P/2nr?)exp (—oa,1), 47)

where it is assumed that at the distance r,, near the source, the free field conditions are
satisfied.

For the two-dimensional case of propagation in the horizontal plane, energy
distribution is governed by the formula

(EIE)) = (ry/nexp[—a,(r—r,l, (48)
where:
0, = (W/As) 1 =) (@ +miy), 49)
Ara=n(1=1)lfg, (50)
g, =2(I,+by)/(l,by)- (51)
The sound intensity for the two-dimensional case is
I(c,) = (P[2nr*) rexp(—o,1). (52)

3. Example of the urban structure segment

As a segment of an urban structure, a built-up area with independent houses,
modeled by shoe-boxes (10 m x 10 m x 10 m) (Fig. 1a), is assumed. The number of
buildings equals

N=15. (53)

There exist two possibilities of assuming the ground area. The ground surface can
be assumed in the form of a segment of a circle (Fig. 1b),

G, = 15943 m?, (54)
or in a rectangular form,
G, = 14400 m2. (55)
For the chosen segment the three models described above will now be applied.
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3.1. Application of the Kurze model

In the Kurze model the analyzed space is closed in the disc segment of the base
equal to the segment of the circle in Fig. 1b, and its thickness is equal to the building
height. Thus,

a)

10

|

!

|

|

|

n
/)——__'__—

b) | =

Fig. 1. Urban space segment, built-up by independent houses (a), with building density calculated for
rectangular and circuldr shape of segment (b). All dimensions in meters.
V = 159430 m®. (56)

The total area of the scatters includes the ground surface (Eq. (53)) plus the surfaces of
the building walls and roofs

S, = 20443 m?, 57
and according to Eq. (10)
Az1=31.20 m, (58)
where it is assumed that
x=1. 59

When the model without the ground is considered then the total area of the scatters
is equal to
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S,=9000 m?, (60)
and
Az2=72.38 m. (61)
Under the assumption that (Eq. (13))
o'(e,=0.1)=0.1, (62)

the excess attenuation, expressed in dB, measured in relation to the free field
propagation, according to Eq. (15), is
AL(A,)=101log{exp(—r/A,)+3(r/A,) exp[—0.56(r/4,)]} . (63)

The calculated excess attenuation 4L(A,) (Eq. (63)) for two values of 4, (Eq. (58),
Eq. (61)) are presented in Fig. 2. The range of distances is enlarged up to 500 m. This
means that the space between the source and the observation point is filled by
obstacles of the same density as that in the original segment (Fig. 1).

AL(\,) [dB]
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Fig. 2. Excess attenuation AL(1,) (Bq. (63)) calculated according to the Kurze model: (———)
AL(A,,=31.20 m) with ground, and (—s——=) 4L(4,,=72.38 m) without ground.

Figure 2 shows that the larger is the free path, the smaller will be the excess
attenuation.

From the chart (Fig. 3) reprinted after Kurze [14] it can be observed that,in
a certain range of distances, the excess attenuation is positive. It means that the total
sound intensity decrease is smaller than in the free space conditions. This is the general
phenomenon, when for a certain obstacle density, due to multiple reflections, the
sound intensity increase is observed. In the other range, the dominant effect is
screening by obstacles, therefore the sound intensity decays faster than in the free
space conditions.

Since in the free path definition (Eq. (10)) the parameter x is used, and
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Fig. 3. Excess attenuation 4L(4,) in an unbounded space filled with scattering obstacles with absorption
coefficient «, [14].

A;1=0.43 1,,, (64)

the differences between 4L(4,,) and AL(JA,,) may represent the range of confidence of the
Kurze model with different choice of the total scattering area calculation (Egs. (57), (60)).

Since the typical values of free paths [1] in an urban area lie in the range from 40
m to 50 m, and in suburban area — from 60 m to 70 m, the expected values of the
excess attenuation lie in the range presented in Fig. 2.

To the authors’ knowledge, up to now, the Kurze model has no experimental
confirmation in the literature concerning urban areas, since Kurze has prepared it for
industrial halls.

3.2. Application of the Kuttruff model

When the Kuttruff model is applied, the average building density (Eq. (21)) can be
calculated using either the ground surface area of the circular segment (Eq. (54))

n,=0.00098 1/m?, (65)
or the rectangular segment (Eq. (55))
n,=0.00104 1/m2. (66)
According to Eq. (19),
0,=12.73 m, 67)

and according to Eq. (20),
A=80.16 m, (68)
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A,=75.52 m. (69)

The excess attenuation, given in dB, in relation to the free field propagation is
(according to Eq. (33)) equal to

AL(%) = 10log{exp(—r/4)+ A(4,) (r/A)¥* exp[— 0.87(r/A)]}, (70)
where, according to Eq. (32), for
w(h/A,=0.1248)=0.31, A(4)=A(A)=2.50, (71)
and for
u(h/Ay=0.1324)=0.32, A(A)=A(A,)=2.44. (72)

The calculated excess attenuation 4L(4,) (Eq. (70)) is presented in Fig. 4. Since the
two different methods of calculations of the ground surface area (Egs. (54), (55)) do
not produce large differences in the calculated free paths (Eqgs. (68), (60)), the
differences in the excess attenuation (Fig. 4) are marginal. The same effect of positive
excess attenuation as that occurring in the Kurze model is observed. This effect was
analyzed by Kurtrurr [15] in the reverberation chamber.

AL(N,) (dB]
0t

1

I 1 Il
0 1([)0 200 300 400 500 rim]

Fig. 4. Excess attenuation AL(4,) (Eq. (70)) calculated according to the Kuttruff model: (———)
AL(},,=80.16 m) for circular ground segment, and (———) 4L(4,,=75.52 m) for rectangular ground
segment.

In order to verify his model [16], Kuttruff presents the results of the Monte Carlo
experiment (Fig. 5). The plot of the function:

G=L—L,+20log (4,/1m) (73)

is shown, where L— L, is the total sound level decrease with zero source level output.
The agreement is found to be satisfactory.

In the Kuttruff model the attenuation coefficient (Eq. (31)) has to contain
attenuation at the building surfaces, the air absorption, and the effect of leaving the
propagation plane. BuLLEN made a comparison [3] of the Kuttruff model with his own
three-dimensional model [1]. He assumed the random walk of phonons and specular
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Fig. 5. Comparison of the Kuttruff model results with the Monte Carlo experiment: h/A,=0.1, L— L,istotal
sound level decrease with zero source level output [16].

reflection from the building surfaces, placed in an urban structure, providing the
phonon free path of a given value. Fhis gives the attenuation factor as a function of the
number of reflections, similarly to the geometrical acoustics.

In Fig. 6 is presented the same function (Eq. (73)) as that in Fig. 5; first it was
calculated according to the Kuttruff model, and then — according to the Bullen

5 T T T T T T T T T

L-L,+20log (A/1m) (dB]
S

©
201
25+
B ISR N {408 o 11 B V) e T

Fig. 6. Comparison of the Kuttruff model results (— — —) with the Bullen model results ( ) [3].
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model. The largest differences can be noticed in case of large distances. The Kuttruff
model exhibits slower decrease of the sound intensity than the Bullen model.

Taking into account the range of free paths typical for urban areas [1], the
distances (r) presented in Fig. 6 range from 250 m to 500 m.

3.3. Application of the Yeow model
In the Yeow model, according to Eq. (39),

Q,=1,b,=100 m?, (74)
and according to Egs. (21), (66)
n=n,=0.00104 1/m? (75)
what gives the packing function (Eq. (38)) value
f=0.104. (76)
According to Eq. (40)
g,=4 W)
so that the path (Eq. (37)) is equal to
Ap=1623 m. (78)
According to Eqs. (41), (43), the average absorption coefficient for high buildings
& (2,=0.1) = 0.467, (79)
or for low buildings
@ (x,=0.5) = 0.541. (80)
As a result we obtain the decay factor (Eq. (42)) for high buildings,
o, (2,=0.1) = 0.1067, (81)
and for low buildings
o, (x,=0.5) = 0.1228. (82)

According to Eq. (47), the excess attenuation, expressed in dB, in relation to the fee
field propagation for high buildings is equal to

AL[o,(x=0.1)] = —0.463r, (83)
and for low buildings
AL[o,(x,=0.5) = —0.533r. (84)

It can be seen that assumption of a,=0.5 instead of a,=0.1 causes faster decay of the
sound level for low buildings than for high ones.
For the two-dimensional case (Egs. (48)—(52))

g,=04, (85)
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Ay, =67.67, (86)

o,(a,=0.1)=0.007, @7
AL[o,(x,=0.1)=10logr—0.03r. (88)

In Fig. 7 the calculated excess attenuation 4L(c,) (Eq. 83) and 4L(0,) (Eq. (88))
for «,=0.1 are plotted. The obtained values of attenuation are drastically different
than those derived in the case of the two former models.

The curve AL(c,) shows a very steep decrease with distance: about 50 dB at r= 100
m, and about 230 dB at r=500 m.

AL(6) [dB]
50
or
N
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-50 | ™
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0 100 200 300 400 500 riml
Fig. 7. Excess attenuation AL(s) calculated according to the Yeow model: (——-)

AL[o, (%, =0.1)=0.1067] (Eq. (83)) for three-dimensional case, and (—=—=—=)4L[0,(x,=0.1)=0.007] (Eq.
(88)) for two-dimensional case.

The curve 4L(a,) is positive in the whole investigated range of distances. The
excess attenuation decreases from about 20 dB at r=100 m to about 10 dB at = 500.
When the absorption coefficient characteristic for suburban areas is taken, then

0,(2,=0.5)=0.024, (89)

AL[o (x,=0.5)] = 10logr—0.1056 r, (90)

what gives :
AL[o (,=0.1),r=100m]=9.5 dB, 1)

AL[o (2,=0.1),r=500m]= —25.5 dB. 92)
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The above results show that the two-dimensional case is more sensitive to the value of
the obstacle absorption coefficient than the three-dimensional case.

In case of the Yeow model, a substantial difference appears between the
three-dimensional and two-dimensional cases.

It could be said that the two former models have stronger theoretical grounds than
the Yeow model, but the last one is confirmed [43] by field measurements (Fig. 8).1In
spite of the fact that the buildings arrangement is regular, and that in the most cases
buildings are relatively long, the range of fairly good agreement can be found between
the theoretical and experimental curves at large distances and under high packing
function value approaching 0.5 (near the half of a space occupied by obstacles).

The method of deriving the energy transport equation proposed by Yeow contains
arbitrary steps. This is mainly connected with the choice of the shape of the cell inside
which the field is assumed to be diffuse. The shape is defined by the shape of the strip
containing the buildings of height 4 and by the two fronts of the propagating spherical
wave which are distant by or.

Keeping up with the general idea, another form of the equation can be obtained:

1+ (h/2r) 2_&}= ~sor. 'O

1/d
[1+(r/h)— (h/27)] {; (’a‘i 5') X -2 r
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Fig. 8. Comparison of sound level decrease SL(ro)— SL(r) calculated according to the Yeow model (Eq.
(34), Eq. (47)) with field measurement [43], r,=9. 14 m:
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Eq. (93) can be rewritten in the form

((E o) 2o oa o9

g\or r r

The solution of Eq. (95) is
(EIE)=(ryn)?(r,/r)"™ . (96)
Thus, the corrected expression for the excess attenuation in the analyzed example is
AL[o,(2y=0.1) h] = —10.67 logr, 97
what gives

AL[o(x,=0.1)h, r=100m]= —21.34dB, (98)
AL[o,(x,=0.1)h, r=500m]= —28.80dB. (99)

The use of the absorption coefficient characteristic for suburban area gives a little
faster decay,

AL, (2,=0.5) K= —12.28 log r, (100)
what yields
AL[o (#,=0.5)h, r=100m]= —24.56 dB, (101)
AL[o (#,=0.5)h, r=500m]= —33.18 dB. (102)
AL(6) (dB]
0}
iof
0+
20t
.30 L
405 100 200 300 200 500 rim]

Fig. 9. Excess attenuation 4L(o) calculated according to the Yeow model: (— — —) AL[o, (2, =0.5)4] (Eq.
(100)) for three-dimensional case, and () AL[d,(2,=0.5)=0.024] (Eq. (90)) for
two-dimensional case.
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The excess attenuation, with o ,=0.5, for the corrected three-dimensional case (Eq.
(100)) and for the two-dimensional case (Eq. (90)) is presented in Fig. 9. Now, the
results obtained are not so different from the Kurze and the Kuttruff models as before.

4. Comparison of the three models

It seems to be useful to make a general comparison of the three models, the
dimensionless parameter (r/1) being used.

The excess attenuation in the Kurze model (Eq. (63)) is derived from the diffusion
equation in the three-dimensional space (Eq. (18)). The absorbed energy is described by
the coefficient o(a;) (Egs. (13), (62)). Without other restrictions, the excess attenuation

AL(r/A,) = 10 log {exp (—r/A,)+3(r/4,) exp[—0.56(r/A,)]} (103)

can be presented as a function of dimensionless parameter (r/4,), what makes it free of
ambiguity in calculation of the free path length.

The excess attenuation in the Kuttruff model (Eq. (70)) is derived from the
Maxwell — Boltzman equation for the phonon distribution function (Eq. (17)).
Two-dimensional propagation is assumed with the specific attenuation factor « (Eq.
(31)). The excess attenuation,

(d8/i
20}
0 -
20 o< o AL(r/A,)
2 AL(r/)\,,)
= AL(e)
40}t
-60 L
e AL(r/A”)
1 A 1 1 1 1 1 A 1 | A 1 1 '
-100 P 10 B (/N

Fig. 10. Excess attenuation: 4L(r/A,) (Eq. (103)) — in the Kurze model, 4L(r/1,) (Eq. (104)) — in the
Kuttruff model, and the Yeow model with o =0.5: for three-dimensional propagation 4L(r/A,,) (Eq.
(105)), and two-dimensional propagation AL(r/A,,) (Eq. (106)).
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AL(r/4,) = 10 log {exp (—r/A,)+2.44 (r/A.)¥?exp[—0.87(r/2)]}, (104)

as the function of dimensionless parameter (r/4,) is slightly influenced by the choice of
the ground surface shape (Fig. 4). Here, the value for the rectangular one is adopted
(Eq. (72)).

The excess attenuation curves (Egs. (103), (104)), presented in Fig. 10, are founded
on the diffusion process patterns. The fact that AL(r/A,) corresponds to the
three-dimensional propagation, and 4L(r/A,) — to the two-dimensional propagation
is reflected by different method of calculation of the free paths. This fact, and different
descriptions of the attenuation process influence the functional form of the expres-
sions (Egs. (103), (104)). Being the functions of the dimensionless parameter (r/4), they
still keep on being different. The difference increases with increasing value of (r/A).

The excess attenuation in the Yeow model for three-dimensional propagation
(Egs. (97), (100)) and two-dimensional propagation (Eqs. (88), (90)) contains the
average attenuation coefficients (Eq. (43)) which have different values for high and
low buildings (Eq. (41)). The excess attenuation cannot be presented in a universal
form as a function of dimensionless parameter (r/A), but it can be presented for the
urban system under consideration. This mean a direct introduction of the free paths
calculated for the system A, (Eq. (78)), A, (Eq. (86)) into Egs. (97), (100) and Egs.
(88), (90), respectively.

The excess attenuation for low buildings (Egs. (100), (90)) is:

AL(r[As;) = AL[(r[As;) ; Ary=16.23, 0, =0.5] =

(105)
=—14.86—12.28 log (r/A;y),
AL(r/As) = AL[(r/As;) ; Ar,=67.67, 0,=0.5]=
(106)
= —18.30+10 log (r/A,)—7.15 (r/As,),
and for high buildings (Egs. (97), (88)):
AL(r/Ag) = AL[(r/As)) ; Ar1=16.23, a;=0.1]=
(107)
=—12.91-10.67 log (r/A;,),
AL(r/As;) = AL[(r/As)) ; A, =67.67, 0y =0.1]=
(108)

=18.30+ 10 log (r/As,)—2.03 (r/A,y),

The excess attenuation for low buildings (Eqgs. (105), (106)) and for high buildings
(Egs. (107), (108)), together with the results of the Kurze and Kuttruff models (Eqgs.
(103), (104)), are presented in Fig. 10 and Fig. 11, respectively.

The Yeow model is founded on the concept of energy distribution by formation of
subregions where the field is assumed to be diffuse. The concept substantially differs



222 E. WALERIAN AND R. JaNczZUR

(dBJ
20}
:—;:.\.\
A B AL(r/Ay)

L]
TS AL(/\,)

~
a AL(/\,,)
e N
~
S AL(/\,)
-‘0 L
1 1 1 1 1 1 1 L L 1 1 1 1 1 L -

-60g 3 10 T

Fig. 11. Excess attenuation: 4L(r/1,) (Eq. (103)) — in the Kurze model, AL(r/2,) (Eq. (104)) — in the
Kuttruff model, and the Yeow model with oy=0.1: for three-dimensional propagation AL(r/2,) (Eq.
(107)), and two-dimensional propagation AL(r/4,,) (Eq. 108)).

from the diffusion process applied in the Kurze and the Kuttruff models. In spite of i,
some regions (Fig. 10, 11) exist where the different models give approximately the
same value of the excess attenuation.

When the diffuse models are assumed to give the functional dependence of the
excess attenuation on the distance (r): AL(r;A,,2"), AL(r;A.x), AL(rAsy,ap),
AL(r;Az,.,), where the model parameters (4,,2"), (Ap), (Aryay), (Ar2,) can be
determined in a partly arbitrary way, then certain classes of urban systems can be
found in which the models to the same results.

5. Discussion

The aim of the paper was to present the three different methods of construction of
the diffuse models for sound propagation.

The diffuse models disregard all the effect connected with the wave nature of
sound propagation and shadow effect appearing in geometrical acoustics. They
neglect the shapes of buildings and their exact locations. Application of diffuse model
requires formation of a homogeneous field, what is possible after a sufficiently large
number of collisions with randomly placed buildings which can be treated as almost
isotropic scatters.

This is the reason why the diffuse model cannot give a precise description of the
acoustical field in a built-up area.

The numerical examples given show how large quantitative differences result from
the application of the different models.

The authors of the models are aware of the approximate character of their models.
They consider their models as tools for a general investigation of spatial and temporal
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behavior of acoustical field between buildings resulting from the statistical nature of
the traffic noise [16].

The advantage of the models consists in a simple form of the governing equation. They
demonstrate the general principles of noise penetration into the area under investigation.

The free path (), as the basic parameter of the models, is differently estimated in
various models. The absorption process is also differently described in the models.
When the dimensionless parameter (r/4) is introduced, the different models still result
in different expression for the excess attenaution, but some common regions may be
observed (Fig. 10, Fig. 11).

The diffuse field model of noise propagation seems to be useful for certain classes
of urban systems in the case when an empirical model of noise propagation is
developed. Then, using the functional form of the excess attenuation, the two
parameters: the free path and the factor describing attenuation must be established
experimentally for the class of urban systems considered.

The present paper represents a preliminary step in comparing the model [9], [40],
describing noise propagation in an urban area system at a microscopic level, with
other models (such as the diffuse ones). A more detailed analysis of the problem will be
published in the future.

Aknowledgments

The authors wish to thank Prof. R. Makarewicz, A. Mickiewicz University,
Poznan, Poland, for valuable discussions and helpful comments.

References

[1] R. BULLEN, Statistical evaluation of the accuracy of external sound level predictions arising from models,
Journal of Sound and Vibration, 65, (1), 11—28, (1979).

[2] R. BuLLEN, F. FRICKE, Sound propagation through vegetation, Journal of Sound and Vibration, 80 (1),
1123, (1982).

[3] R. BULLEN, Comments on “4A mathematical model for noise propagation between buildings”’, Journal of
Sound and Vibration, 89 (2), 287—289, (1983).

[4] AD. CLAYDEN, R.W.D. CULLEY, P.S. MARSH, Modeling traffic noise, Applied Acoustics, 8, (1), 1 —12,
(1975).

[5] H.G. Davies, Multiple-reflection diffuse-scattering model Jor noise propagation in streets, Journal of
Acoustical Society of America, 64, (2), 517—521, (1978).

[6] M.E. DeLANY, A.J. RENNIE, K.M. CoLLINS, A scale model technique for investigating traffic noise
propagation, Journal of Sound and Vibration, 56 (3), 325— 340, (1978).

[7] F. Fricke, Sound propagation between buildings, Proceedings of 2nd Western Pacific Regional
Acoustic Conference, 43 —47, Hong-Kong 1985.

[8] R.JANCZUR, Theoretical and scale-model investigation of a point source acoustical field in the presence of
reflecting surfaces and screen, (PhD thesis, in Polish), Institute of Fundamental Technological
Research Report 8, (1990). :

[9] R. JANCzZUR, E. WALERIAN, J. OGLAZA, Acoustical field in space with obstacles. Part I: Description of
geometrical field, Acoustica, 78, 154 —162, (1993)).



224 E. WALERIAN AND R. JANCZUR

[10] C.W. KosTEN, The mean free path in room acoustics, Acoustica, 10, 245 — 250, (1960).

[11] E. Kruzins, F. FRICKE, The prediction of sound field in non-diffuse spaces by ‘random walk’ approach,
Journal of Sound and Vibration, 81 (4), 549 — 564, (1982).

[12] E. Kruzns, The prediction of sound field inside non-diffuse space: transmission loss consideration,
Journal of Sound and Vibration, 91 (3), 439 —445, (1983).

[13] R. KucHARSKI, Prediction of acoustical climate parameters in dwelling depending on terrain and noise
source characteristic, (PhD thesis, in Polish), Institute of Environment Protection, Warsaw 1990.

[14] H. KURZE, Scattering of sound in industrial spaces, J ournal of Sound and Vibration, 98 (3), 349 — 364,
(1985).

[15] H. KUTTRUFF, Sound decay in reverberation chamber with diffusing elements, Journal of Acoustical
Society of America, 69 (6), 1716 —1723, (1981).

[16] H. KUTTRUFF, A mathematical model for noise propagation between buildings, Journal of Sound and
Vibration, 85 (1), 115—128, (1982).

[17]1 K.P. Leg, H.G. DAvies, Nomogram for estimating noise propagation in urban areas, Journal of
Acoustical Society of America, 57 (6), 1477 —1480, (1975).

[18] E.A. Linqvist, Sound attenuation in large factory, Acoustica, 50 (5), 313 —328, (1982).

[19] E.A. Linqvist, Noise attenuation in factory, Applied Acoustics, 16 183 —214, (1983).

[20] R.H. LyoN, Role of multiple reflections and reverberation in urban noise propagation, Journal of
Acoustical Society of America, 55 (3), 493 —503, (174).

[21] R.M. Morsg, K.U. INGARD, Theoretical acoustics, New York: MacGraw —Hill 1968 (Chapter 8).

[22] PM. Morse, H. FisuBAcH, Methods of theoretical physics, New York: MacGraw—Hill 1953
(Chapter II).

[23] R. MAKAREWICZ, The time-average intensity of sound, field generated by a moving source in some bounded
space, Acoustical letter, 1, 188—194, (1978).

[24] R. MAKAREwICZ, Theoretical foundation of urban noise control, Journal of Acoustical Society of
America, 74 (2), 543 —558, (1983).

[25] R. MAKAREwICZ, Fundamentals of urban acoustics, (in Polish), Polish Scientific Publishers,
Warsaw 1984.

[26] R. MAKAREWICZ, Traffic noise in a built-up area, Applied Acoustics, 34, 37— 50, (1991).

[271 R. MAKAREWICZ, 1. KRASNOWSKA, Traffic noise attenuation in an urban area in terms of A-weighted
sound exposure level, Applied Acoustics, 37, 65—74, (1991).

[28] R. MAKAREWICZ, Shielding of noise in a built-up area, Journal of Sound and Vibration, 148 (3),
409—422, (1991).

[29]1 AM. ONDET, J.L. BARRY, Modeling of sound propagation in fitted workshops using ray tracing, Journal
of Acoustical Society of America, 85 (2), 787—796, (1989).

[30] B. RubNo-RUDZINSKA, Simulation model estimating sound level of freely flowing traffic, (PhD thesis, in
Polish), Wroclaw Technical University Reports, 1-28, Pre-034, (1981).

[31] B. RupNo-RUDZINSKA, Stationary environment model of traffic noise, Proceedings of 38th Open
Seminar on Acoustics, 215—218, Poznan 1991.

[32] B. RubNo-RuDzINSKA, The prediction method of noise due to multi-level crossing, Proceedings of 38th
Open Seminar on Acoustics, 219—222, Poznan 1991.

[33] Y. Sakural, E. WALERIAN, H. MormMoTo, Noise barrier for building facade. Journal of Acoustical
Society of Japan, 11 (5), 257 —265, (1990).

[34] D. SouLAGE, C. SERVE, Les logiciels cartbruit et microbruit, Proceedings of 17th AICB Congress,
(20—24), Prague 1992.

[35] M. STAWICKA-WALKOWSKA, Acoustical factor in town-planning, Scientific Paper of the Building
Research Institute, XLIII, (1988).

[36] E. WALERIAN, R. JANCZUR, Theories of diffraction applied for description of acoustical field screen
efficiency, (in Polish) Institute of Fundamental Technological Research Report 25, (1985).

[37] E. WALERIAN, Half-plane edge and right angle wedge as elements causing diffraction in urban area,
Archives of Acoustics, 12 (1/2), 157— 189, (1988).




STATISTICAL DESCRIPTION OF NOISE 225

[38] E. WALERIAN, R. JANCZUR, Model of highway as noise source, Institute of fundamental Technological
Research Report 32, (1991).

[39] E. WALERIAN, Multiple diffraction at edges and right angle wedges, Acoustica, 78, 201 — 209, (1993).

[40] E. WALERIAN, R. JANCZUR, Acoustical field in space with obstacles, Part II: Propagation between
buildings, Acoustica, 78, 210—219, (1993).

[41] K.W. Yeow, N. PoppLEWELL, J.F.W. MACKAY, Method of predicting L,, created by urban traffic,
Journal of Sound and Vibration, 53 (1), 103—109, (1977).

[42] K.W. Yeow, N. PoppLEWELL, J.F.W. MACKAY, Shielding of noise from statistically stationary traffic
flow by simple obstacle, Journal of Sound and Vibration, 57 (2), 203 —224, (1978).

[43] K.W. YEow, Room acoustical model of external reverberation, Journal of Sound and Vibration, 67 2),
219-—229 (1979).

[44] K.W. YEow, Decay of sound level with distance from a steady source observedin a built-up area, Journal
of Sound and Vibration, 52 (1), 151 —154, (1977).

Received December 17, 1992 revised version August 31, 1993



	aa_19_2_06
	t0001

