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THEORY OF SURFACE ACOUSTIC WAVE REVERSING MULTISTRIP COUPLER

E. DANICKI

Institute of Fundamental Technological Research
Polish Academy of Sciences
(00-049 Warszawa, ul. Swigtokrzyska 21)

A reversing, multistrip coupler device is presented that can find numerous applications
in SAW devices. Fundamental theory and first experimental results are presented on an
application of rmsc in SAW resonator.

1. Introduction

Surface acoustic wave (SAW) propagating on a surface of piezoelectric substrates
is accompanied by a wave of electric potential on the surface. SAW can be excited by
metal strips on the surface of a piezoelectric body when they are supplied with electric
potential. Multistrip coupler is the directional coupler of two adjacent SAW channels
where the coupling is provided by periodic metal strips covering both channels.

A new reversing multistrip coupler (rmsc) is proposed and analyzed where the
strips are interlaced between the channels. This results in coupling of forward
propagating potential wave in one channel to the backward propagating wave in the
other channel in certain frequency bands. The device can find many applications in
SAW technology, allowing construction of SAW pass-band and dispersive filters.

An interesting mathematical problem arises in modelling of the above system of
interlaced strips. A ‘“‘continuous” eigenvalue problem with mixed electrics and
mechanical boundary conditions must be solved to characterize SAW propagation in
periodic systems of thin metal strips. Another ‘“‘discrete” eigenvalue problem is
encountered in rmsc, resulting from the equality of certain strip currents and
potentials in both acoustic channels.

Let us consider a surface acoustic wave propagating in a piezoelectric halfspace
y=>0. We observe a wave of particle displacement u exp (jwt—jk,x) on the substrate
surface, and a wave of electric potential ¢ exp (jwt—jkx) accompanying SAW due to
the substrate piezoelectricity; w and k, are angular frequency and wave-number. If the
substrate surface is metallized, the SAW wave number takes another value, &k, where
k,>k,, and instead of the surface electric potential which is zero, there is surface



228 E. DANIECKI

electric charge density 4D | equal to the electric flux discontinuity on both sides of
metallization. The relative velocity change 4v/v=(k,—k,)/k,is an important parame-
ter characterizing piezoelectric substrates (another parameter [1] is the “effective
surface permittivity” &,).

In the case of partial surface metallization in the form of a periodic metal strip
deposited on the substrate surface, the corresponding wave-numbers of SAW
propagating perpendicularly to the strips are r, and r, for free, and short-circuited
strips, k,<r,<r,<k, Let the system of strips spans over two adjacent acoustic
channels, and let the SAW beam propagates only in the upper channel (Fig. 1a). The
electric potential induced on the strips by SAW is distributed over the lower channel as
well. This is the travelling-wave potential which excites SAW in the lower channel.
This is a synchronous excitation because SAWs in both channels have the same
velocity. The system of strips is then a directional coupler of two acoustic channels, the
microstrip coupler [2] (msc).

SAW = = 2 | I l
e P rmsc
msc =SAW & o | l I
a) b) c)

Fig. 1. a) Multistrip coupler (msc); b) Reversing msc in basic configuration and c) practical structure.

Let us consider periodic strips with three strips per wave-length of SAW. Thus,
the following strip potentials are phase-shifted by 0°, —120°, —240°, correspon-

1
ding to exp (jwt—jrnA), A= 3 w/r and n=0, 1, 2. Let the system of strips have

every second and third strip interlaced between the channels (Fig. 2b). In the
lower channel the following strip potentials have phases 0°, —240°, —120°
equivalent to 0°, 120°, 240°, respectively. This is a potential wave in synchronism
with SAW propagating in the opposite directions as compared to SAW in the
upper channel. The system shown in Fig. 1b is the reversing directional coupler
[3—5] “rmsc™.

It is somewhat difficult to make a planar system of strips with strips crossing one
over the other. Among several possible solutions, in this paper we consider the system
where every third strip is grounded (Fig. 1c). Such strip structures can easily be made
with the help of microelectronic technology.

In the next Section, some general theoretical results necessary for description of
msc and rmsc are presented. We apply a perfect strip model, that is, we neglect strip
elasticity [6] and mass, and also assume perfect strip conductivity. This allows us to
apply directly the developed method [7, 8] for analyzing waves in periodic strips. The
following Sections present the theory of rmsc. In Conclusions, we discuss possible
applications of rmsc in SAW devices like SAW filters, resonators, and dispersive delay
lines for signal processing.
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2. SAW in periodic system of strips

2.1. Simplified description of piezoelectric halfspace

Let us apply a traction T,; exp (jot—jkx) to the surface y=0 of piezoelectric
halfspace. If k> k, where k, is cut-off wave number of bulk waves, the response of the
substrate will be described by a Hermitian Green’s matrix

ie & - Tyj K ADJ_ g K Ty‘ k_ko ADl
U= =2;z; k_kv + z; k_kg \/—s—e s P =2z; k_ku\/_s_e k—ku kse s (l)

where x2=(k,—k,)/k,= dv/v, and z;=z(k), z(—k)=z}(k).

Wave numbers k, and k, are the eigenvalues of boundary problems for free and
metallized piezoelectric halfspace [Ty, 4D 1" = G(w; k) [u;, ¢]” = 0 and [T, ¢]” =
G(w, k) [u;, AD 1" =0, correspondingly. In narrow bounds r ~ k,, k,, both G and G
resulting from the equations of motions of a piezoelectric body can be approximated
by the linear functions of ; this was exploited to obtain Eqgs. (1) otherwise we should
apply a more general approximation [9].

Constraining k to the area close to (k,, k,), which is usually very narrow as
compared to k,—k,, z; can be applied as a constant

v) 0 v) 0)
K. € 5 = k,x \/— (3} S U S Dﬂ_

v
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where capital letters denote normalized wave-field amplitudes of SAW propagating
on free (index v), or metallized (index 0), substrate surface y=0.

As mentioned earlier, we apply approximation of perfect weightless conducting
strips, that is T};=0. Equations (1) can be transformed to

zZ K ke, for Re{k} >0,
e, (k—k,)kp—(k—ky) 4D, =0
3)
apply: k- —k and z; z; for Re{k} <O0.

It should be stressed that the bulk waves, which can be generated in the body by the
surface traction if k<k,, are not included in the above description, thus neglected.

To complete characterization of SAW by its wave number k and wave-field
amplitudes ¢ and 4, let us introduce the SAW amplitude a, by definition involved in

1
the relation for SAW Poynting vector magnitude IT = 3 | a | 2. It can be obtained
from Egs. (1) that

a=Ao2 @
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with accuracy slightly dependent on the electric boundary conditions, as far as the
SAW wave number is close to (k,, k).

2.2. Eigenvalue boundary problem

The considered boundary problem concerns wave-propagation in periodic sys-
tems, thus applying Floquet’s theorem; the solution is sought in the form (term exp jwt

dropped)

@ @
EII (x) = 2 Ene—j(r+nK)x’ ADJ_(x) = Z Dne_j(r+ux)x1 (5)
n=— n=—o
where r is assumed in the first Brillouin zone (0<r<K), and E (x)= —0,¢(x).
Complex amplitudes D, and E, are dependent on each other on the strength of
Egs. (3), where we apply k=r+nkK

: r+nK—k,
Dil i _JseSn+r/Kr+nK_ko n?
(6)
3 1 for v=0
E,=jr+nKeo, S"={—1 for vZO X

It is assumed below, that K> k. In fact, rmsc works at K = 3 k, > k,, allowing for
several  simplifications in  the following considerations,  primarily
(r+nK—k,)/(r+nK—k,) ~ 1 for all n except n=0 or n=—1, and r in the assumed
domain.

Electric field is shielded under perfectly conducting strips and the electric charge
can be different from zero only on strips (Fig. 2), that is

s

x => Al

- 9 — l AD.=0  Ey=0 & Al
y
Fig. 2. Periodic system of strips on piezoelectric halfspace.

E\(x)=0, on strips, N—w<x<IA+w,

M
AD,(x)=0, between strips, (—1DA+w<x<IA—w,

are mixed electric boundary conditions at y=0 plane.
The /-th strip potential and current

V,=WV(r)e ™, L=I(r)e"4, ®)

depend on r. Below, we consider the two most important cases
e short-circuited (grounded) strips, where strip potentials are zero

1
r+nkK

T T

n=-ow n=-—o

E,=0; ©®
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® free open strips, where the electric current flowing to a strip is zero

; w ; k A [+ e} (_l)'l
I(r)=jw __[WADL(x)dx—]Zwsmr 5,,=2_¢, T

D,=0. (10)

2.3. Method of solution

Following the method [7], we apply the representation for the given n#-th harmonic
components E, and D, in the form of finite series including certain new unknowns

N+1 N+1
E,= Y ,Sp-mPa-un(d), D,=—j&, Y a,Pp_m(d), (11)
m=M m=M

where S, is as defined above Eqs. (6) and P,(4) = P, — Legendre function (Appendix),
A=cos Kw=0 in the case considered in this paper, the limits M <0 and N>0 are
certain integers.

The representation (11), satisfying the electric boundary conditions (7) (see
Appendix), will satisfy also Egs. (6) if

5 r+nK—k,
§UM<1—Sn—mSn+r/K mﬂ) P,_n=0. (12)
In the considered case K > k,, the number of unknowns is not large. Indeed, let us
note that the solution (11) satisfies Eq. (12) for every n<M and n> N automatically.
Assuming M= —1and N=0, we get Eqs. (6) satisfied by the solution in the above two
domains of 7, independently of a,,, me[—1, 1] provided that K>k and 0<r<K.
Solving Eqs. (12) and applying Egs. (3) (A(x)=Z4,e”/*"®%) we obtain

s  x/e,

S Mol A2 AeTTRe T
o af (% Kap Pt x\/;:— 4%
170 5 TR el T

where k=(k,+ky)/2=w/k, a, is arbitrary constant.

2.3. Propagation of SAW in a periodic system of strips
The last condition to be satisfied is either Eq. (9) or (10) which can be rewritten in
the form (evaluation of the series over n, see Appendix)

V(r)=ao I(r)=o,we Al

3
° jKsin nr/K Ves
o (14)
V Z ( l)mP—m r/K > I Z mP—m —r/K -

0 0
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The corresponding dispersion relation are

V,=0, r=r, for short-circuited strips,
I.=0, r=r,, for open strips

which explicitly are (apply ‘—’ for r, and ‘+’ for r,)

(r—k) (K—r— k) Fx2Kp(K/2—K) =0, singr/K oI (

P 7 x) 9

Well outside the Bragg stop-band (K2 # k; in case of rmsc K ~ 3k), we have

1 Av k 1 Av k

Finally, the symmetry in Eqgs. (14) allows us to write

() = j2we, V(r)( 3?; : 0;sin /K, a7
and
N K-r-k ¢
A )nP_,/K (r—ro)(K—r—ry SRR (18)

N r—k

5 V(r)nP_,./K (r—ry)(K=r—ry

Ksinnr/K,

where, following Eqgs. (3)
A fye ™ gl W e R 19)
are forward and backward propagating SAWs, depicted in Fig. 2.

3. Theory of rmsc

3.1. Modelling of electric field in the system

It is seen in Fig. 1c that the considered system is periodic with period 34. Hence,
the Floquet theorem requires the following representation for strip potentials and
currents

2 2
Y, V(s+nK)e etek, Y, Ks+nK)e 76+ x=IA (20)

n=0 n=0
where, in order to adopt the results of the previous Section, we must apply

K
O<r=s+nk'<K, K'==. @1)
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In what follows, we consider rmsc working in a narrow frequency band where
coupling between forward wave in the upper acoustic channel and backward wave in
the lower channel is the strongest. This takes place at

s=K'+6, |d|<«K, r@K=nrixk=o0fv (22)

so that in Eqgs. (21) we must apply either n=0, 1, 2 for <0, or n=—1,0, 1 when 6> 0,
and similarly in Eqgs. (20).
On the strength of the previous section and the above assumption

I(s+nK")=y, V", V"=V(s+nK’),
d,+6 d =6
Yo=Yr—,  y,=Y-"—,
0" d+6 e PR

0

(23)

Y=jwae\/§, d=K—-r,, d,=K'-r,,

and y,~0 (or y_,~0 in case 6>0), see Eq. (17).

3.2. Discrete eigen-problem

It is seen from Eqs. (20) that we can consider only three strips numbered /=0, 1, 2,
Fig. 3a, and having potentials V;, U, and currents flowing to them I, and J,, in the
upper and lower channels, respectively. Kirchhoff’s laws yield

i
I c)

at Yy 2 .—n
=>IGVJO IQ“” ’_,JLI_Jl]OlIL: &) H )
5 |4 mJ’

# PP

Fig. 3. a) One section of (rmsc); b) SAW resonator and c) dispersive delay line with rmsc.

)

Vo=V°+V1+V2i=U,=U+U'+U?,
Vi=zV°+azV+a?zV?=U,=z2U°+ a?22U"'+ a*z2U?,
V,=2?V°+azV'+ a2V ?=0),

U,=2U%0zU'+0a?2U%=0, [ +J,=y V°+y,Vi+y U+y U'=0,
I+ J,=zy V°+azy V1422 U+ a?z2y, U =0,
a=exp(—jK'A)=exp(—2n/3), ] —a= —-—j\/g, l4+a=—a? a3=1,
z=exp(—jsA)=oaz', z'=exp(—joA)~1,

resulting in the following homogeneous set of linear equations:
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@, +0) —a(d,—8) a(dy+8) —(dy—0)| [V, +9)
d,+0) —(d,—8) Z'(dy+8) —z(d,—d)| | V*/(d,~d)
d,+0) d=8) @+  @-9 ||vid+9|=% @
d,+06) o(d,—9) az'(d,+9d) z’(do—é) U 1/(d0—6)

The determinant of the above system of equations should be equal to zero

{ﬁ [(dy+ ) (d,— 8)— (d,+ ) (d,— 8)] cos b £

2
(26)
o x A2
—[(d,+9) (d,— 6)+(d,+ ) (d,— d)]sin 3} + 12(d3— 6% (d2—69)=0
the most important solutions of which (4 is small as assumed previously) are
03=dgd,, and 6§zdod,,<l —%A(d,,—d&). 27

There are stopbands in both SAW modes, having wave numbers s,=K"+9, and
s,=K'+46,. This happens if J, is complex, that is dd,=(K'—r,) (K'—r,)<0. From

2
Egs. (16) we obtain the relative stopband width equal to 3 Av/v, thus the maximum

imaginary value of 9, is % kAdv[v when k~K'=K]3.

The corresponding eigenvalue-eigenvector pairs of the system (25) are

{6,[V°, VL, U, Uy ={0,,[1,1, 1,117}, {6,,[B. 8", 8", BI"}, ﬁ=l+j%- (28)

3.3. SAW wave-field in the system

The potential waves discussed above V" exp (—j(s+nK")x) in the upper channel
and U" exp (—j(s+nK'x) in the lower one are accompanied by the corresponding
particle-displacement waves at the substrate surface. They are

AS(r+nK)e oK)= 4¢ (r4nK')e”fetoE R, (29)

where amplitudes 4%, n=0, — 1 can be evaluated from Egs. (18), cdenotes the channel.

Most important wave components are those the wave numbers of which fall in the
vicinity of SAW numbers, r, or —r,, because they are closely related to SAW
amplitudes, Eq. (3). Following the applied assumptions K~ k= r, one concludes that
the important wave-component are 4, related to V°, U® and 4, related to V', U
For convenience, their corresponding amplitudes are expressed below by means of
SAW amplitudes a and b in the upper and the lower channels,
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K/ 3we,[2 4 K/ 3we,[2 ja

B TP e Bty |, M SRPEES Ky =3

(30)

b = K/ 3we, /2 U° _ KyJ3we,[2 i

0. 7CP_1/3 K'—ro+(5, vb_l_ nP—l/S K'—ro—é’

where §, or 4, should be substituted for ; thus, amplitudes a and b should be provided
another index n=1, 2.

Note that V°, V1, U®, U* are eigenvectors dependent on J, as given by Egs. (28).
Let the amplitude of SAW mode corresponding to eigenvalue 0, be a, and that
corresponding to 6,—b. Hence, the SAW wave-fields in the system in upper and lower
channels are, respectively,

a(l +,Y1ejzk'x e—j(x'+61)x+b(ﬂ+ﬁo‘yzejzk’x)e—j(x'-f- 85)x .

a(l+y,e™*%)e K +00x 1 (B B'y eI*)g~iK +bdx (1)
K'—r,+9, - -
ynzﬁz_%, n=1,2, 6,86, =—J(K'-r)K -r,).

Let us finally note that we can apply either +6, or —J, in the above relations
(fortunately, B does not depend on a sign of §,), or both of them, in case of the finite
structure. The corresponding waves are modes propagating to the right (if Im {5,} <0)
and left (if I, {d,} >0), each modes composed of the forward, and back-
ward-propagating components, the relation between their amplitudes involving 4,

4. Property of semi-infinite rmsc

In case of semi-infinite system of strips, we must choose only these solutions for 0,
which fulfill radiation condition at infinity (x— c0). For example, in stopband the
corresponding J, must have a negative imaginary value. Assuming that the proper
values are chosen for J,. Equations (31) completely describes SAW wave-field in the
system.

Let us assume there is an incident SAW in the upper channel only (Fig. 3a)

ate i, (32)

We need the boundary conditions at the border between rmsc and the free area (x=0).
The only simple possibility to get this condition is to compare SAW wave-fields on
both sides of the border which have similar wave numbers. This concerns equality of
both particle displacements, and stress on both sides of x=0 (note that stress is
expressed by spatial derivatives of the particle-displacement field), and this is, in fact,
the reason that we must put equality for wave components with similar wave numbers,
including sign, separately. Hence, we obtain at x=0
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a~=ay,+by,p
-y
a+ﬂ‘l;:a }’ b_=a'y1+b'y2ﬁ (33)
a+ﬁ =0 b+=a'}’1+b')’2ﬂ.
where @~ and b~ are the SAW amplitudes sought for, Fig. 3a.

We obtain the following solution, describing the property of semi-infinite rmsc
working in the stopband, or close to the stopband (4, small assumed)

1
a = ﬂ' Y177, ~ 0, a)o=vK'<l -—% A‘U/U>, wu=1)K'<l s o § Av/"))’

B—B
(34)
b _ﬂ'}’1 ﬁ')’2 +~ya b+z yzl_\ﬂw_wu)/(w_wo)
B'—B - . 1+ (w—w,,)/(w—wo)’
where y=y,~7,, |7 | =1 in the stopband, and y—0 for frequencies outside the
stopband.

Let us summarize the features of the discussed rmsc:

e its scattering property is perfect in narrow stopband,

e there is no back reflection in the same channel (a~ =0),

e there is no transmission in forward direction in the other channel (b* ~0), as far
as we consider rmsc in the frame of the above developed simple theory.

5. Conclusions

The structure of rmsc can be applied in several SAW devices. First of all it can
serve like a “mirror” and the simultaneous track-changer of SAW in SAW resonators
Fig. 3b, making their performance better for at least three reasons:

e reduction of bulk-wave spurious signals (bulk waves excited by IDT in one
channel is not detected by IDT in the other channel)

e the “mirror” good reflection performance is limited to narrow frequency band
what reduces the spurious passband of the resonator,

e the reflection of SAW by rmsc is of ‘“regeneration” nature so that SAW
diffraction effects are seriously limited.

First experimental result is shown in Fig. 4 concerning a one-port SAW resonator.
Matrix coefficient S, is presented as a function of frequency. The device has been
made on LiNbO, which is a rather strong piezoelectric. This makes the Q-factor low,
about 1000. The perfect frequency response is obtained without special measures,
what is frequently necessary in conventional resonators.

Figure 3c shows a dispersive delay line, similar to the so-called RAC SAW device,
but with technologically difficult surface grooved reflective array replaced by rmsc. In
this rmsc the strip period changes along the structure so that different frequencies are
“track-changed” in different places. This makes the SAW path between IDTs
dependent on the frequency — that is, dispersive delay line.
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Fig. 4. Frequency response of one-port SAW resonator exploiting rmsc’s.
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Appendix

The identity can be found [10] for a periodic function with period 27 (it is assumed
that 0<O<x and Re {u} 1/2)
(n/2)V2sin* 0

> s 0<wv<b
F<% T l‘) P‘: (COS 9) cos (n = %)'U = (COS‘U—COS 0)/4+ 1/2 :
R % O<v<m

where P is the Legendre function (Py=P,)
Pt,_i(x)=Py(x), P(—x)=(—-1)"P,(x), n=0, P(0)=1—v, 0<v<].

The first equation can be rewritten for —n<0<mn, 0<A<n as follows:

@ : FASSIPgmb) Ly, g
Z o, P, nf(cos A)e ™ = \/coso—cosA
o B 03 4< I Bl <7
@ 0’ | 0 | <4
Bl = —jmb) .
s nen A D T2, G ERCD) n 4 | )i

Jcos 4—cos 0
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where S,=1 for v>0 and —1 otherwise, f,, and are arbitrary constants.

It can be noticed, that above pair of functions allows to model any periodic
function, vanishing in one domain of the period, and having square-root singularities
at the edges of the other domain, provided that the function is smooth enough in order
to be represented by finite Fourier series X exp (—jmb).

Useful identities resulting from Dougall’s expansion [7, 10] are

sinmv & S,P,(cos4)

Z

e vE

sinty & (—1)"P,(cos 4)
P_;(cosd) = = b 4 ( )v+§1 .

P_,(—cosd) =

3

PP A A PIEA) P_(d) = 3 o
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