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Using general rotationally invariant nonlinear electroelastic equations (energy balance
equation and Gibbs function expansion) a derivation of constitutive equations for elect-
roelastic media upon a mechanical or electrical bias has been presented. Bilinear constitutive
relations for large quantities have been given and linear, but parametric, constitutive
formulas for small-field variables have been derived in the reference or intermediate frame.
Equations of motion and boundary conditions in the intermediate configuration required to
solve the problem of SAW propagation are also reported. Basing on this theory, the velocity
shifts of surface acoustic waves (SAW) for lithium niobate due to an external static stress or
electric field are presented. Stress sensitivity is defined through six independent components
of a second order symmetric tensor, and the electric field sensitivity is a vector of three
components. Maps for different cuts of LiNbO, and a different direction of SAW
propagation have been computed. These maps can be used to find new cuts of lithium niobate
which has large or zero sensitivity either on the stress or electric field. This could be useful for
special applications of the LiNbO, substrate in the technique of SAW devices.

1. Introduction

The change in surface acoustic wave (SAW) velocity due to applied static biasing
stresses has been the subject of interest of many authors 156,79, 10, 1T, P25, 99,
21]. The purpose of this paper is to present SAW velocity sensitivity on biasing,
external stresses (Whatever their origin: force, pressure, acceleration, thermoelastic
effects) and also on external electric fields put to the crystal. Sensitivity has been
calculated for different planes cuts and directions of SAW propagation.

This information can be useful in designing SAW devices of the kind as:

e transducers (IDT), delay lines (DL), filters, and oscillators [12], where the cut
and direction of the smallest module of sensitivity should be chosen to minimize
instabilities; ;

e sensors of pressure [12], acceleration [18, 19], force [27, 29], tempers .ure [21], gas
existence and so on, where the plane and direction of SAW propagation with the
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highest module of sensitivity should be chosen such as to obtain suitable sensors for
technical appliations;

e SAW control devices where a stress, an electric field or a strain can be utilized to
control the system, for example, selectivity of filters where the accurate plane and
direction should be chosen [32].

Nonlinear electroelastic equations have already been considered since 1961 [1, 3, 4,
5]. Equations for small-field variable superposed on a large biasing state have also
been reported by a few authors, for example [5, 7, 8, 14, 16, 17, 20, 22, 26, 28]. The fact
that the nonlinear theory for small-field variables, obtained by only adding higher
order terms in the linear constitutive equations, is inconsistent and gives wrong results
is well known. So, in this paper we start in general from the internal energy balance to
obtain proper nonlinear constitutive equations.

A theory will be given for any kind of electroelastic crystal, which is of course
anisotropic, but homogeneous and nonconductive and nonsemiconductive. This
means that we will not consider losses of any kind. As usual the electromagnetic part
of the equations will be assumed in electrostatic approximation, so the magnetic field
is not coupled with either the mechanical or electric field and need not be taken into
account. Nonlinearity will be reduced to quadratic terms only, as they play the most
important role in nonlinear phenomena or coupling between predeformation and
small-field vibration (bilinear model).

Numerical results presenting SAW velocity sensitivity on different biases for
lithium niobate have been calculated using the published values of the second and
third order elastic, piezoelectric and dielectric constants [14, 16], and are reported at
the end of the paper.

2. Nonlinear constitutive equations

Two basic configurations will be used. The reference frame connected with the
material Cartesian coordinates, X;, I=1, 2, 3, which will always be denoted by an
uppercase letter and indices as well as every quantity given in this frame. The second is
the actual configuration connected with the spatial Cartesian coordinates, x;, i = 1,2,
3, which will be denoted by small letters and indices as well as every quantity given in
this frame. Full advantage of well-known relations and tensor variables will be taken
in the paper [2, 20]:

e mapping of the material point x;=x; (X, #);

e motion gradient Fig=Xx; x = —aﬁ, J=det F;

’ 0Xg

e displacement gradient tensor H=V U=F—I, where I is the identity tensor and
Ug=0g % — Xx;

e Cauchy strain tensor C=F"F;

e Lagrange strain tensor
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S=%(C—I)=%(H+HT+HTH); 1

e velocity gradient tensor L = (V V)7,
1
e rate of strain tensor D = 3 (L+L").

Also, we will denote electric strength in the actual frame by e=— V@, electric
polarization by p, and the Maxwell stress tensor by
tij = g.e;€;+p;e;—0.5¢, 6,6, 0y, 2

which is not symmetric, but we can add the second term to the mechanical stress
tensor, f7; (nonsymmetric), and then they will both become symmetric as well as the
total stress tensor

[ijztﬁ-f-tz:t':j“'{"tf;’ (3)
where
1= eoeiej—O.Ssoekekéij, i = + pie;. @)

The constitutive equations will be derived not in the actual frame like in [7], but in
the reference frame like in [5, 14, 16, 20]. To solve equations for small-field variables
superposed on a large biasing state, different authors have used different methods.
The Taylor expansion about the intermediate state was exploited in [5, 14]. The
multiple-scale technique was described in [14] and the perturbation method was used
in [9, 10, 11, 22, 21] and mentioned in [14]. In this paper the straightforward
substitution of the sum of the bias and small-field quantities will be performed to get
small-field variables, parametric consitutive equations with coefficients depending on
large quantities of the bias.

We will begin our considerations from the first law of thermodynamics, which is
reproduced here for completeness. The global balance of energy stands that the change
in time of the kinetic energy " and the internal energy & must be equated by the work
# done upon the body by external forces and heat .2 delivered to the body [8, 14, 20, 24]:

H+E=W+3. (5)

In isothermal conditions the local balance equation, equivalent to the above, for
electroelastic body can be written as [20]

pe=tr("LT)+e p. (6)

For the purpose of this paper it is more convenient to use instead of the internal energy
density ¢ the scalar state function known as the Gibbs function, which can be obtained
from by the Legendre transformation:

w=e—,1,e-p, ™
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so we can use the local energy balance in the form [20]
oY =tr(t"L")—p-é. ®
The internal energy ¥ will be rotationally invariant if it is expressed in terms of
material measures of the strain and electric field. We choose the Lagrange strain
tensor S, Eq. (1) and electric field convected to the reference frame, W=eF=—V &,
as independent variables. To get the Gibbs function in the form =y (S, W), Eq. (8)
must be rearranged to involve new variables. Differentiation of S and W in time gives
S=FTDF, é=(W—eLF)F . o)

Then

oY = tr (" L) —tr (pe™) = tr (™ LT) —tr (pF W7, (10)
LT can be decomposed into LT=D—, where 2 = 0.5 (L—L") is the rate of the

rotation tensor always skewsymmetric, so the product of #™ and ( is always zero. We
then get with the help of the inverse of the first of equations (9)

oY =tr (t™F~1'S)—tr (pF V"W). (11)
The last equation rewritten in components is
pY =17 Fid Fit Sxu+pie,Fil Fi Sxu—pi Fid Wr. (12)

To find the constitutive relations, we decompose |p into parts connected with
nondependent variables

oY dSgr Oy dWy

VRS W, d 19

Multiplying Eq. (13) by — p and adding to Eq. (12) side by side, one can obtain
e  Smsios gy i S, A
BFRFi+piejFig Fil —psq— Sgr—\piFid +p 5 |Wxg=0 (14)
0SkL oWy

Equation (14) must be hold for arbitrary nonzero time rotations of Sgr,and WK, so it
can be written separately as

oy
t:; prKFJLg"g; Die;= t'?jl—pxej
(15)
oy
pi= —PF FT A
K

There are still two quantities £, p, in the constitutive equations (15) given in the actual
frame (spatial coordinates). It is obvious that if we want to apply constitutive relations
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to practical problems, where we study the dynamical behaviour of a nonlinear elastic
body of finite extent, it is much simpler to have these quantities convected to the
reference frame (material coordinates). Then it will be easier to write the boundary
conditions concerning either the mechanical displacement or stress, and either the
electric potential or the electric displacement on the fixed surface in the reference
frame instead of the deforming surface in the actual configuration.

So, we should briefly introduce [5, 14, 16, 20]:

e mechanical Piola—Kirchhoff stress tensor

T = JF 6355 (16)
e Maxwell Piola—Kirchhoff stress tensor
T =JF63; a7
e total Piola—Kirchhoff stress tensor
Ty;=T1 + Tt =JFit ty;; (18)
e material polarization vector
Py =JFjlp;; (19)
e material electric strength vector
E =JFjle, (20)

and of course the material electric displacement is D=¢ E+ P.

It should be noted that Ey is not equal to — @ ¢, because —® x is Wy, and Ej is
only the transformed electric field from the actual to reference frame.

After substituting the second equation of (15) into Eq. (19) and using the
conservation of mass equation in the form

pr=Jp @n

(where p” is the mass density in a free (undeformed) state, when the body is acted upon
neither by force nor by electric field), one can obtain

r
P~ @2
Next, putting e= WF~ 1! into Eq. (20), it can be found that
E,=JC} Wy. (23)

With the help of the first equation of (15) and Eq. (16), we can express the mechanical
Piola —Kirchhoff tensor as

oy
Sy,

and taking into account Eq. (4) in Eq. (17), the Maxwell tensor can be expressed as

T?; 6]] T"Im 2 FFJL (24)
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T =0, Ty = JFul (6 Fxd Wy Fid Wx—0.58,Fuf Wi Fip Wy, 05) =
25
= Jey W, Wy (F3? Fi} F—0.5 F37 Fi} Fid).

Equations (22), (23), (24) and (25) stand constitutive relations in which every quantity
is related to the reference frame.

3. Bilinear expansion of the Gibbs function

To obtain explicit forms (not with partial differentiation) of constitutive relations, we
should expand the Gibbs thermodynamical function in terms of its independent
variables in the reference frame. The expansion will be cut after the third order terms to
get constitutive equations in a bilinear form. The linear and quadratic terms of
constitutive relations play the most important role in describing nonlinear phenomena in
electroelastic crystal [6, 13, 15, 16, 18, 19]. The other, higher order terms can be neglected.

Let us introduce the expansion [14]

1 1 1
Py = 5 crrxe Sty Skr + - Crrrimn S17 SkL SMy — 5 emrsxL Wy St SgL +

6
1 1 1 s
—emrs Wy Sty — EXMN Wy Wy— 6 Xune Wy Wy Wp — EIMNIJWM Wy Stss
where:
CrIRL elastic tensor of the second order
cyximy  clastic tensor of the third order
emry piezoelectric tensor of the second order
ek electroelastic tensor of the third order
AMN electric susceptibility tensor of the second order
AMNP electric susceptibility tensor of the third order

bants electrostriction tensor of the third order.

Of course, in general, symmetry relations must be fulfilled [25]:

CryxL = CyIkL = CIJLK = CKLIJ
CrJRKLMN = CJIKLMN = CIJLKMN = CKLIJMN = CMNKLIJ
emr; = emJI
eMIJKL = €MJIKL = €MIJKL = €MKLIJ 27
XMN = XNM
XMNP = XNMP = XPNM
Iunts = Inmrs = Imnar s

so we have only 21 independent coefficients of cyyxz, 56 of crygsimn, 18 of epy, 63 of
kL, 6 Of Xarns 10 of xanp and 36 of Iyyys, what together gives 210 independent
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material constants of crystals in the bilinear theory (45 in a linear one). But if a crystal

has some symmetry points or axis or planes, what always happens, the number of

material constants to be given is reduced further and is less than 210.
Additionnally, we want to get expressions in the form like the form below:

T=TH,W) D=DHW), (28)
where both W, H are gradients of the electric potential and mechanical displacement,
respectively, W= — V @, H=V U, so we substitute now

1
=S(E+H"+H'Hy  F=H+1, (29)

and [14]
1
Fl=]-H+H"H+o(H) J=1+trH+ %(trH)z — Etr(HTH)+o(H3), (30)
where o(H") denotes the remaining terms of order higher than or equal to n. After
substitution of Eqs. (29) and (26) into Eq. (24) and dropping out higher terms, one can
obtain
1
TT7 = crymn Hyn + <CIRMN51P 5 CLIRN Opm+ CIJMNPR) Hyy Hpg+
@31
1

—(epin Osm+€prsmn) WpWyn—eprs Wp — 2 lpris Wp Wk-

After substitution of Eq. (30) into Eq. (25), one can find
1
1= 3 & Wi Wg (011 655 —01x 051, — 015 Og1). (32)
Taking into account Egs. (29) and (26), Eq. (22) can be rearranged as follows:

1
P; = eygy Hxy + x1s Wi+ 5 (erxrymn+ erne Oxnm) Hyr Hyn+

: (33)
+ 5 XK Wy Wg+Ilige Wy Hgy .

Next, substituting Eq. (30) into Eq. (23), one can obtain
EI = ‘SIJ WJ+ (6KL JIJ e 6IL 6JK 3 6IK 5JL) WJ HKL' (34)

Finally, we can join together T=T""+ T*, D=¢,E+ P, so the constitutive equations
are obtained in the form
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1
Try=cugLHg+ crrremnHr Hun —emiikL WyHgL—em1s Wyu— 5 IxLyWx Wi,
" : @35)
Di=eW; + 5 erxWiWx+H el WiHgr + 3 erxeunHyrHyun+ erxtHxe -
where the new tensors involved are
Iz = bk — €, (011055 + 0105 — Ox101s)
1
CLIRLMN = cinkLdom + 3 crnLOmx + 5 CIJRLMN
ek = emiLOIk + eMIIKL
€k = X1JIK
ery = &, (s +9012)- (36)

In the above equations, ¢ is the permittivity tensor of the crystal of the second order
and ¢ is the permittivity tensor of the third order and 1, ¢, e may be called third order
effective tensors of electrostriction, elasticity and electroelasticity respectively. For
these tensors the above symmetry relations are valid: :

Iyxe =g = Ik
CryrLMN = CJIKLMN = CIJMNKL
eMIJKL = eMJIKL = ©MKLIJ (37
€k = &1y = &K1

ey =¢&r.

4. Parametric constitutive equations

The constitutive equations (35) are written in the reference frame. First, let us
suppose, that the initial nonzero strain field as a result of external force or electric field
exists in the body at first. Next, a small field is superposed to consider on this state.
This means we now have a third, intermediate configuration of the body, in addition
to the undisturbed reference configuration and actual one. The material point
identified by the material coordinate X first moves to the intermediate coordinate
X (X, by a large initial deformation and next to x; (X;) by a small alternating
vibration. So every field quantity in the reference frame can be decomposed into two
parts. The first is connected with the bias and the second, small, with SAW
propagating in the body, for example. Let every time tilde denote quantities connected
with the initial large state of deformation, whereas quantities without any indices
denote SAW components. We have then, in the reference frame

Z'=2+2Z where Z=T H W,D,EU,@9. (38)
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These total quantities must fulfil the constitutive equations (35), so
Tiy+ Ty = {C rrxi ks + CrrgirenH s By —emnixe WHyL—ents W+
1 e i
3 ks W WL} +
+ ki i+ CrxanHxo Ban + Covng Hr By — evrs Wyt

s = = 1 o
—eyr WyHgr —empsxrHyr Wy~ ) kLW Wy — 3 kL Wi Wi+

1
+ [CIJKLMNH kN —emrix WaHgr — 2 koW WL] (39)
and

o o 1 i ok 1 e
Di+D; = {Eu W, + 5 81K WiWe+ g W Hg, + 5 erximunHyg Hyy+

L 1 o 1 S
+ e H, KL} +ep W+ 5 exW Wy + 5 ersx W Wi+ xiHer W+ (40)

1 = 1 ¥
+ 1y x W Hyr, + 3 erxemnHy Hyy + 5 erunkL gL Hyn+ ergr Hyr +

= l:% erx WiWx+ g WiHg, + %eIKLMNH KLHMN:l .
The terms in the last two formulas are regrouped in such a manner that the expressions
in the first brackets can be said to be equal to the biasing quantities T and D,
respectively, while the terms in the square brackets can be neglected because they are
second order terms of small-field quantities. After separation, one can obtain
nonlinear constitutive equations for the large initial state in the form

Ty = CIJKLI7 &L+ CrakmnH g Hyn —eyrixr Wuﬁ kL—emrs Wy — 3 kLo WeW,,

@1
Dy =& W, + % ek W W+l Wil + % erxemnH e v+ erxe Hxe
and linear ones for a SAW small-field superposed on this biasing state
Ty = CIc.{éLHKL —extty Wy
“2)

Dy = &ff W+ ikl Hyy,

where the effective tensors are, of course, dependent on the biasing electric field and
displacement gradient:
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eff. s Iy 57,
crike = Crrxr+ 2¢xrmnHun —emiixe Wy

estly = emus+ sk ks +lrms Wx 43)

el = ey +exWy+ e -

5. SAW propagation description
The velocity of SAW, having the harmonic form below

X
e~ gia(t=F) T (b} <0 44)

on the surface of the piezoelectric half-space, is searched now where  is the angular
frequency, V is the wave velocity, and b is the decay constant of SAW. The wave is
assumed to propagate in the X, direction and decay in the X, direction and also SAW
is regarded as small amplitude wave, so it doesn’t appreciably modify the bias.

To calculate SAW velocity, the constitutive equations (42) must be joined with the
equation of motion written in the frame after the bias [5, 9, 16, 23, 28]

Tir= pU;
45)
D .17 0’
where p=pF/(det F) is the mass density after the biasing deformation. The boundary

conditions on the surface of SAW propagation must be added to the above to close
mathematically the problem. They are as follows [5, 28]:

T, =0
and for free surface
D=0
or metalized surface
E; xn; =0, O)

where 7 is the normal versor to the surface and two often exploited cases are described.

6. SAW sensitivity mapping

Using Egs. (42), (45) and (46), the numerical program was developed to compute
the SAW velocity on a piezoelectric substrate acted upon by either a stress or an
electric field. The results are presented for one piezoelectric crystal, which is lithium
niobate, as it is a well-known piezoelectric material, used as a substrate for many
different surface acoustic wave (SAW) devices, linear ones and nonlinear as well.

The SAW velocity ¥ [km/s] depending on the biasing stress 7'[GPa] in the case of
the free surface V,, and metalized surface V, for three directions of putting initial
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stress: along wave propagation X, perpendicularly to the cut surface X, and
perpendicularly to the wave propagation direction in the cut plane X, are presented in
Fig. 1 for LiINbO, Y-cut Z-propagation (X, =Z).

LiNbO3 YZ

v
lkm/s ]

361 X

ast Yoo

o<

34r

32r

Ikt

-

1 1 A
30, 0 1 2 3 Z 5 6

T{GPal

Fig. 1. SAW velocity as a function of the prestress.

It can be seen that SAW velocity is a linear function of a biasing stress, and
generally it was found that the dependence of the relative change of SAW velocity due
to the external stress is a linear tensor function of the form below:

4v  v-VF
iz
where V¥ is the SAW velocity on a free substrate (without any bias), ¥ is the velocity
after bias, and # is the second order sensitivity tensor which has the same symmetry
as T, so it has six independent components. This formula agrees well with the one

obtained using the perturbation method [9, 11, 15, 28]. A similar equation can be
written for the electric field sensitivity:

=#1y T, @7

e - gIEI, (48)

where ¢ is the first order sensitivity tensor (three components), so nine coefficients are
necessary to describe completely the SAW velocity sensitivity on the external bias. It
should be noted that the electromechanical coupling factor is much less sensitive on
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both biases, so the same sensitivity can be used in the case of a metalized surface of
lithium niobate as well as in the case of a free surface.

The results are presented for a lithium niobate crystal, and six independent stress
sensitivity coefficients 3 ; are plotted as a contour-line mapping function of the cut
angles of the plate and the propagation direction of the SAW. The homogeneous
distribution of static biasing stresses is assumed, i.e. SAW is considered to propagate
in a very small volume (with respect to the dimensions of the plate) — a local
formulation.

The notation describing the lithium niobate crystal is defined according to the
IEEE standard on piezoelectricity [31], i.e., the Euler triplet of angles is used: 4, u, 0,
where the first two describe the cut of the plate and 0 is the propagation direction on
this plane. The propagation direction is X, and the axis perpendicular to the cut plane
is X,. The tensors are related to the same coordinate system.

In the pictures below the angles are chosen as A=0° and . €[0,90°], 0 €[0, 90°]. This
means that left lower corner of each picture is the ZX cut, left upper is the ZY cut, right
lower is the YX cut, and right upper is the YZ cut of lithium niobate.

Figures 2—7 show contour-line characteristics of six components of the stress
sensitivity for A=0°. Figure 2 is for the normal stress acting along the propagation
direction of SAW, Fig. 3 is for the normal stress acting on the propagation plane, Fig.
4 is for the normal stress acting along the direction perpendicular to SAW propagation
direction and Figs 5, 6, 7 are for shear stresses respectively. The component of 5, has
20 -0 o050 0. 40 )

900
80 180
70 170
60 4160
50t 150
40 40

30

20 - \—- 20
" ~0006 i
0t : \ 110

ke L L 1 1 1 1 1 i 1 0

0 TR R R [ R

Fig. 2. Contour-line charts of the stress sensitivity A, in the u—0 plane. A=0°. The unit of contour labels is
107° [m?#N].
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Fig. 3. Contour-line charts of the stress sensitivity H,,inthe p—0 plane. 1=0°. The unit of contour labels is
107° [m?/N].

k

1 10
DY 20 380 A0E 5000 M, % %0

Fig. 4. Contour-line charts of the stress sensitivity H_, inthe u—0 plane. 1=0°. The unit of contour labels is
1072 [m?#N].

[251]
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Fig. 5. Contour-line charts of the stress sensitivity £, , in the u—6 plane. 1=0°". The unit of contour labels is

107° [m?/N].
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Fig. 6. Contour-line charts of the stress sensitivity /, , in the p— 6 plane. 1=0°". The unit of contour labels is
107° [m?/N].
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L Q, 3
'_\0%\,~ O% -0 20
/ 10
L I L 1 L 0

0 10 20 30

Fig. 7. Contour-line charts of the stress sensiﬁvnty H23 inthe u—0 p]ane. A=0°. The unit of contour labels is
107° [m?/N].

its maximum near the YZ cut, s#,, has two curves in the — plane which are
compensate regions for this kind of stress (#,,=0), while # ,, has the maximum for
about u=33°, 6=0°. For shear stress sensitivities, one can also easy find minima,
maxima and compensate regions in the u— 0 plane. The unit of contour-lines is 102
[m?/N].

Three components, #,,, #,,, # 5, are drawn together as a vector bar in Fig. 8.
The longitude of the bar shows the magnitude of # =[#,,, #,,, #,,] and the
direction of the bar shows the most sensitive direction of putting the stress (X, is
parallel to y, X, to 0, and X, is perpendicular to the picture plane). Some contours of
H#,, are also drawn

The results for three independent components of the sensitivity vector % are
plotted as a contour-line mapping function of the same angles as in the above section.
The electric field is also assumed to be homogeneous and static like the stress above.
Figures 9—11 show the sensitivity of SAW velocity on the electric field put (Fig. 9)
along the direction of propagation, Fig. 10 perpendicularly to the cut plane, and Fig.
11 perpendicularly to the propagation direction in the cut plane. The unit of
contour-line is 102 [m/V]. The whole sensitivity vector is drawn as a bar in Fig. 12.
The rules are the same as for Figs. 2—4 and 8.
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Fig. 9. Contour-line charts of the electric field sensitivity G, in the u— 0 plane, A=0°. The unit of contour

labels is 10712 [m/V].
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Fig. 10. Contour-line charts of the electric field sensitivity G,in the u—0 plane, 1=0°. The unit of contour
labels is 10722 [m/V].
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Fig. 11. Contour-line charts of the electric field sensitivity G, in the u—0 plane, 1=0°". The unit of contour
labels is 10712 [m/V].
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Fig. 12. Vector [G,, G,, G,] bar graph for the electric field sensitivity in the p—@ plane, 1=0°.

7. Conclusions

We have started, in general, from nonlinear equations to solve the nonlinear
dynamical problem for small-field variables of SAW superposed on a large biasing
state in an electrostatic body. Since we can see the final results, instead of solving
nonlinear equations, we may solve linear ones, but with tensor coefficients being
parametrically dependent on the bias.

Basing on the theory, amodel describing the SAW velocity shift due to an external
static electric field or a stress has been presented. The computed results for lithium
niobate have been obtained and reported. It is easy to find the Euler angle triplet of
minima and maxima or compensate regions (zero sensitivity), what is necessary for
applications. The presented maps can be useful for the choice of locus and directions
of propagation for LiNbO, to obtain suitable ones. A balance between other SAW
characteristics: the electromechanical coupling factor, the power flow angle should
also be taken into account in designing SAW devices.



SUFRACE ACOUSTIS WAVE SENSITIVITY 257

Acknowledgements

The author would like express his gratitude to Prof. K. YAmAoucH1, and Prof. J.
Tant, Tohoku University, for making available correct third order material tensors of
lithium niobate [16] and for a useful discussion. Special thanks go to Prof. E. Danicki,
Institute of Fundamental Technological Research of the Polish Academy of Sciences
for a valuable discussion and for giving the basic source code of the numerical
program for SAW velocity calculations [30], which after some changes was used to
produce computed results.

References

[1]1 R.A. TouriN and B. BERNSTEIN, Perfectly elastic materials. Acoustoelastic effect, J. Acoust. Soc. Am.,
33, 216—226 (1961).

[2] W. PRAGER, Introduction to mechanics of continua, McGraw Hill, New York 1961.

[3] A.C. ERINGEN, Nonlinear theory of continuous media, McGraw Hill, New York 1962.

[4] H.F. TiERSTEN, On the nonlinear equations of thermoelectroelasticity, Int. J. Engng. Sci., 9, 587 — 603 (1971).

[5] J.C. BAuMHAUER and H.F. TIERSTEN, Nonlinear electrostatic equation for small fields superposed on
a bias, J. Acoust. Soc. Am., 54, 1017—1034 (1973).

[6] D.E. CuLLEN and T.M. REEDER, Measurement of SAW velocity versus strain for YX and ST quartz,
Ultrasonic Symposium Proceedings, IEEE Press New York 1975, 519—521.

[7]1 D.F. NELSoN, Theory of nonlinear electroacoustic of dielectric piezoelectric and pyroelectric crystals, J.
Acoust. Soc. Am., 63, 1738 —1748 (1978).

[8] D.F. NELsoN, Electric, optic and acoustic interaction in dielectrics, Wiley, New York 1979.

[9] H.F. TiERSTEN, Perturbation theory for linear electroelastic equations for small fields superposed on
a bias, J. Acoust. Soc. Am., 64, 832—837 (1978).

[10] H.F. TiersteN and B.K. SINHA, A4 perturbation analysis of the attenuation and dispersion of surface
waves, J. Appl. Phys., 49, 87—95 (1978).

[11] B.K. SiNnA and H.F. TIERSTEN, On the influence of flexural biasing state on the velocity of piezoelectric
surface waves, Wave Motion, 1, 37—51 (1979).

[12] D. HAUDEN, M. PLANT and J.J. GAGNEPAIN, Nonlinear properties of SAW: applications to oscillators
and sensors, IEEE Trans. Sonics Ultrason., 28, 342 —348 (1981).

[13] M.A. BREAZEALE and P.J. ATMIER, Nonlinear behaviour of quartz and LiNbO,, in: The mechanical
behaviour of electromagnetic solid continua, G.A. Maugin [Ed.], Elsevier, North Holland 1984, pp.
67—172.

[14] G.A. MAUGIN, Nonlinear electromechanical effects and applications, World Scientific, Singapor 1985.

[15] E. BIGLER, R. CoQuUEREL and D. HAUDEN, Temperature and stress sensitivities of SAW quartz cuts,
Ultrasonic Symposium Proceedings, IEEE Press, New York 1987, 285—288.

[16] Y. Cro and K. YAMANoOUCHI, Nonlinear, elastic, piezoelectric, electrostrictive and dielectric constants of
lithium niobate, J. Appl. Phys., 61, 3, 875— 887 (1987).

[17] H.F. TIERSTEN, On the interaction of the electromagnetic field with deformable solid continua, in:
Electromagnetomechanical interactions in deformable solids and structures, Y. Yamamoto and K.
Miya [Eds], Elsevier, North Holland 1987, pp. 277—284.

[18] R.L. FILLER, The acceleration sensitivity of quartz crystal oscillators: a review, IEEE Trans. UFFC, 35,
297 —305 (1988).

[19] H.F. TiersteN and D.V. SHICK, An analysis of the normal acceleration sensitivity of contoured quartz
resonators rigidly supported along the edges, in: Ultrasonic Symposium Proceedings, IEEE PRESS,
New York 1988, pp. 357—363.



258 D. GAFkA

[20] G.A. MAUGIN, Continuum mechanics of electromagnetic solids, Elsevier, North Holland 1988.

[21] E. BiGLER, G. THEOBALD and D. HAUDEN, Stress-sensitivity mapping for SAW on quartz, IEEE Trans.
UFFC, 36, 57—62 (1989).

[22] N.DAHER and G.A. MAUGIN, Nonlinear waves of small amplitude in anisotropic elastic solids, in: Elastic
wave propagation, M.F. McCarthy, M.A. Hayes Eds, Elsevier, North Holland, 1989, pp. 147 —153.

[23] D. GAFKA, Influence of a biasing stress on the SAW velocity on piezoelectric substrate, Archives of
Acoustics, 16, 79—88, (1991).

[24] H.F. TierstEN, A development of the equations of electromagnetism in material continua, Springer
Verlag, New York 1990.

[25] E. KiraL and A.C. ERINGEN, Constitutive equations of nonlinear, electromagneto-elastic crystals,
Springer Verlag, New York 1990.

[26] D. GAFKA, Linearized equations for surface acoustic waves in stressed media. Force sensor, in:
Proceedings of Sendai ISEM Symposium, Elsevier 1992, pp. 469 —472.

[27] D. GAFkA and J. TAN1, Surface acoustic wave propagation in stressed media — force sensor, Int. J. Appl.
Electrom., 2, 325—332 (1992).

[28] D. GAFKA and J. TANI, Parametric constitutive equations for electroelastic crystals upon electrical or
mechanical bias, J. Appl. Physics, 70, 6679 — 6686 (1991).

[29] R. MotEGA, H. OxumM, H. Onuchr and N. GUAN, SAW inclinometer, Ultrasonic Symp. Proc., 1991,
pp. 331—334.

[30] E. DaNickr and T. CZERWINSKA, SAW parameters in piezoelectric crystals (in Polish), IFTR PAS
Reports 18 1988.

[31] IEEE Standard on Piezoelectricity, 176 —1949, Proc. IRE 37, 1378 (1949).

[32] D. GAFkA and E. DANIcK1, Convenient orientations for SPUDT applications forced on piezoelectric
crystal by external biasing stress, ISEM Symp. Sapporo 1992.

Received October 28, 1992



