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SIMPLE WAVES WITH FINITE AMPLITUDE IN AXIALLY-SYMMETRICAL CHANNELS
WITH ANNULAR CROSS-SECTION

T. ZAMORSKI

Department of Acoustic Institute of Physics Pedagogical University
(35-310 Rzeszéw, ul. Rejtana 16a)

Propagation of a plane progressive sound wave with finite amplitude in a waveguide with
variable annular cross-section was considered. It was assumed that this waveguide was filled with
loss less gaseous medium and the wave with finite amplitude was generated by a annular piston,
which vibrated in harmonic motion at the inlet of the waveguide. The considerations were done
in Lagrangian coordinates.

1. Introduction

According to the terminology used in literature [3], a plane progressive wave that
propagates in lossless medium is called a “simple wave”. The problem of propagation of
simple waves with finite amplitude belongs to classical problems of hydrodynamics to which
the present-day works on nonlinear acoustics are quite frequently referred. Paper [1],
where the propagation of simple waves in semi-infinite cylindrical tube was considered, is
an example. The waves were generated by continuous motion of a piston, which vibrated
at a high amplitude.

This paper presents an attempt of consideration of propagation of the wave with a
finite amplitude in the axially-symmetrical waveguides with variable annular cross-section.
This problem has direct practical implications, at least in two problems:

o analysis of sound waves in the inlet and outlet channels of axial compressors [13],

e optimization of a construction of strong acoustic field axial flow generators, in
which the axially-symmetrical waveguides with ring-shaped cross-section and exponential
or catenoidal expansion of walls are frequently used [2, 6, 7],

In spite of the fact that in both cases the acoustic waves with high intensity can occur,
this problem, up to the present has been considered only in linear approximation [6, 7,
10, 13, 14].
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2. Analysis of the wave propagation equation

The waveguide subject to our consideration is presented in longitudinal section in
Fig. 1. It is assumed that the waveguide is filled with a loss less gaseous medium and
the width of the annular channel is so small in comparison to the wavelength that the
front of the wave can be assumed to be plane. Then the layer of acoustic particles with
the Lagrangian coordinate a is enclosed between plane surfaces S(,) and S(;+dq). As a
result of the wave disturbance, this layer is moved to the position @ + £ and its thickness
is changed to the value d(a + &) = dz = [1 + (9¢/da]da. £ is the displacement of the
acoustic particle and z is the Eulerian coordinate.
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FiG. 1. The displacement of the medium layer in the waveguide.

The result of paper [8] will be a starting point for further considerations. In that
paper it was shown, for the simplifying assumptions mentioned above, that the equation
of propagation of the wave with finite amplitude in a waveguide with any geometry has
the form

n 4 I 7_1 Iny+ 62
x+%m=%;@ﬁhﬁé (2.1)
where
€= L (2.2)

S(a) ’
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~ is the adiabatic exponent, ¢ is the velocity of sound wave with infinitesimal amplitude
and ¢ is time. Commas in Eq. (2.1) denote differentiation with respect to the coordinate a.
It is assumed that the cross-section of the waveguide changes according to the formula

S = So[oosh (i) + T'sinh (310)] 2.3)

where Sy = mdghy is the surface of the inlet, o is the coefficient of the wall expansion.
The above formula defines the geometry of the so-called hyperbolic horns with annular
section [14], which, among others, are applied to the construction of strong acoustic field
flow generators. The waveguides with exponential (1" = 1) and lately also catenoidal
(T = 0) profiles are most frequently used. Thus these considerations are limited to the
interval T' € [0, 1]. Then the formula (2.3) can be presented in a more compact form,
which significantly simples further transformations:

S = 5y cosh (i + 5), (2.4)
Lo

where T = tghe, Sy = Sp/ coshe. Then the value ¢ in wave equation is equal to

e cosh (a;'s + a-:) : 5.5

cosh (i + e)
ZTo

Expanding the ¢ and ¢’ in to series, one can obtain

i Siae P &
C-1+$ntgh($0+a)+2m%+..., (2.6)
e LA Y 4] &'
C—wntgh(m0+€)+mg[l tgh (m0+s>]+$5+... (2.7)

It is assumed that the hypothetical annular piston that vibrates in harmonic motion is a
source of the wave at the inlet (a = 0)
Eo.1) = k1A - coswt, (2.8)

where w is the angular vibration frequency (pulsation), & is the wave number. A = 27 B /A,
where B is the vibration amplitude and A is the wavelength. It is known from experiment
that, even for relatively high intensity of the sound, the value of M = B/A is rarely
higher than 102 for gases’ [17].

Thus the dimensionless amplitude A is significantly less than unity. Therefore the
solution of the wave equation is assumed in the form of power series of the amplitude a:

&a,t = k_l[A * Pl(a,t) o Az * P2(a,t) Hials ']? (29)

where the functions @1(q,¢), P2(a,r) must fulfil the boundary condition (2.8) at the inlet of
the horn:

P10,t) = coswt, $200,t) = P = = 0. (210)

L M is the so-called Mach acoustic number [17]
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Since A < 1, further considerations will be done in the second-order approximation, i.e.
the terms with orders higher than A? will be omited. The method of calculation applied
here is analogical to that used in [16] for the Bessel horns: regarding the formula (2.9)
and expansions (2.6) and (2.7) in Eq. (2.1) one can obtain the wave equation of the horn
in the second-order approximation. This equation can be divided into two equations: the
first one contains only terms with A, the second one — those with A% Each equation
must be fulfilled for A # 0 separately. It is found that the first equation contains only the

function ¢y:
tgh (Ti + e) 1 — tgh? (; + E)
Py —=0 74 =0 - =@ = 2.11
1 s ®1 . 5 R b 4 e (2.11)
where the dots denote differentiation with respect to time. Second equation has the form:
tgh(i+s) 1—-tgh2(—a—+£> 1
" Ty ! Tp o
Py + - Py + = P2 = 5%2 = Yy (2.12)
where
o i ( a ) Lo H¥ 1,4
iy = t —+e | + i — +
() = PPy teh | P1P1y 5t LA
tgh(£+s>-[1—tgh2(i+s)] l—tghz(£+a)
+p} 4 = 0 — P11 Rl R (% )
Introducing to Eq. (2.11)
Pl(a,t) = @1(0) : eiwi, (2.14)

one obtains the propagation of the first harmonic wave:

tgh (-‘—1— + e) tgh? (i + 5)
1 Ty ¢i 4 [1 ___ \N%o  / + k2:| ¢1 = 0. (2.15)

q: =
T Zo
Substituting
23
®1(z) = (cosh z)™2 “1z) (2.16)
where
a
z2=—++g¢g, (2.17)
Zo
the wave equation (2.15) can be transformed to the form
"+ [u? = Viyln =0, (2.18)
where
u = kazy, (2.19)
Vi = g — 1 2.20
= - 2 = :
()= 48 X (2.20

and this time the commas denote differentiation with respect to the variable z.
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The propagation equation of the first harmonic wave written in the form (2.18) is
known in the linear theory of acoustic horns [11] and, therefore, it will not be considered
here in details. It is known that, for the frequency higher than cut-off frequency of the
horn, the solution of this equation can be presented in the form [15]

n = B - eif(z + B, e—ifi’z, (221)

where
1

O f[,u - Vigldz} (2.22)

z; = (I/xo) + €, where [ is the length of the horn. From that, on the basis Egs. (2.19) and
(2.20) one can obtain

Fo{og-te g w(L ) em

Subsequently, taking into account Egs. (2.14), (2.16), (2.17) and considering only the real
part of the solution, the following equation can be obtained for the wave running from
the inlet to the outlet:

C’I [ —( a
Pifa,f) = —r==m 008 W= K (— +8)]
w 1/cosh(x1b +¢€) Zo
RS . [wt - K(Ti iy 5)] (2.24)
]

1/oosh(fn + €)

The constants C'y and C'; can be calculated from the boundary condition (2.10)

C1 = Vcoshe - cos(K¢), (2.25)
Cy = Vcoshe - sin(K¢) (2.26)

and that allows us to write Eq. (2.24) in a more compact form:

coshe £'a
=, /]— t— K— ). 227
Piad) \} cosh(,fn +¢) e (w * :co) e

The function (5, ¢ that occurs in the second term of the solution (2.9) can be found
from Eq. (2.12). This equation has a structure similar to Eq. (2.11) except that on the
right-hand side the term ¥, ;) determined by the solution found in the first approximation
see Eq. (2.13) appears. Applying Eqs. (2.24)—(2.26), this term can be presented in the form

¥ = 0g) - oosZ(wt . Fi> + 6(a - sin 2wt — K’-f’i-> + 9,  (2.28)
) Lo

where
72
—15tgh’(E + ) + [(2 — 7)4k%§ + 12K + 14]tgh(% + ¢)
16k} cosh(l + €)

O(a) = coshe, (229)

18tgh2( o 4 ) — 8K — 8k%ady — 12
ba) = K cosh ‘X
(@) 16km0 cosh(- +¢) B &
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~15tgh* (2 + ) + [(2 — 7)4k%} - 4K” +14] tgh( 2 +¢)
L 16kz} cosh(Z- +¢)

coshe. (2.31)

The fact that the term ¥ is determined by the. function (. ) reflects the fact that
the second harmonic wave is generated as the result of a disturbance of a medium in the
waveguide caused by waves with the fundamental frequency.

The function ¢y(4,1), as an integral of Eq. (2.12), is a sum of two components [4]; the
first one is the general solution of a homogeneous equation coupled with Eq. (2.12). This
solution has a form similar to Eq. (2.24)

Cs

P =
\ /cosh(xin + &)

bl - L. sin[ 2wt — Kl(% + 5)], (2.32)
T

X /oosh(a%n + ¢€)

cos[2wt — I?l(f— + 5)] +
0

where
1

I?1={4k2 AP . tghe tgh(—+£)]}2. (2.33)

The second component is the singular of Eq. (2.12) and has the form which results from
that of the free term of i.e.

P22 = ((a) COS 2T + f(g_) - 8in 2wt + U(g)- (2.34)

Introducing ¢y in to Eq. (2.12), it is possible to find g(a), f(a) and u(a), subsequently, for
instance by the method of constant variations [4]. Finally, knowing ¢(4,¢) and P3(a, 1), ONE
can determine the particle displacement £ in the waveguide in the second approximation
on the basic of Eq. (2.9).

Determination of the particle velocity and acoustic pressure for the wave with finite
amplitude will be the next step. So, the particle velocity of the medium in Lagrangian
coordinates is obtained after differentiating Eq. (2.9) with respect to time

V(a,t) = k_I[A . Sbl(a,t) + A2 . (,bz(a|g) + .. ] (235)
Using the relation between the Lagrangian and Eulerian coordinates [17], the vibration
velocity at the point & can be determined

dv
Uzt) = Yat) ~ 3 St +Y (2.36)

The acoustic pressure is a surplus of the pressure P in a vinicity of the particle a, over
the so-called static pressure P which occurs in the absence of a wave disturbance:
D= P(Q+E) = P[]. (237)

To find a relation between the acoustic pressure p and the particle displacement £ it is
possible to use the equation of continuity:

Sty 00 = S@a+e) - 1+ &) - a+ey (2.38)
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and the thermodynamic equation:

0 G
Pavey = Py [%] ; (2:39)

where p denotes the medium density and, in particular, p(,) = py is the static density.
From Eq. (2.38) and (2.39) one obtains

Plasey = PlC(1+EN]77. (2.40)
From that, after using Eq. (2.37),
p=PR{lCA+&HN™" -1}, (2.41)

A transformation into Eulerian coordinates is analogical to that in Eq. (2.36).
Now it is possible to analyze the first and second harmonic waves in a selected waveg-
uide with the determined profile of walls.

3. The exponential waveguide with ring-shaped cross-section

Amond the considered wave guides with the ring-shaped cross-section those with expo-
nential expansion of walls have been used most frequently. In this case ¢ — oo (1" = 1),
thus Eq. (2.4) take the form

S=28,-em, (2.42)

where e is the base of natural logarithms.
The function ¢y, 1), after taking into account ¢ — oo in Eq. (2.27) assumes the form

Pi(a,t) = ¢ %0 - cos (wt - ITS), (2.43)
0
while K given by Eq. (2.23) is simplified to the form:

K =|p?- %. (2.44)

Equation (2.12) for the function ¢y, ) is also simplified,

1 1
y+ —h— == 2.45
2 mO‘Pz 272 Pa,t) (2.45)

where Eq. (2.28) for ¥ the limits of Eq. (2.29)—(2.31) for ¢ — oo being accounted for,
can be expressed as

a - 2—
P = e_ﬁ{%msZ(wt— Fi) +

Zo

1 1—(y+1u? . ( _a> (l—y)k}
N ¢ e = R o8 B s T
+4/p 3 2] sin2| w o + /it (2.46)

General solution of the homogeneous equation coupled with Eq. (2.45) for the pulsation
2w has form

gl = 2o {C; cos (zm & 1?1) — Cysin (Zwt " R’i)], (2.47)

To Lo
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where (see Eq. (2.33))

14 1
I(l = 4‘[12 i Z (248)
The singular solution of Eq. (2.45) results from the formula for the agree term in Eq. (2.46)
ﬂP22=e—:_ﬂ[Qa+Lcosz<wt—fxi) +Nsm2(wt—f(£->]. (2.49)
0 0
The coefficient (), L, N can be found by introducing (,, into Eq. (2.45)
7-—1
= —~R, 2.50
: (2:50)
i P |
L= —p——, 2.51
1L (2.51)
2 o,
jy Lid kg (2.52)
4

Next, from the boundary condition (2.10), the constants ('3 and C4 can be found. Thus,
for a = 0 one gets.

©200,6) = P1200,t) + P2200,8) = 0. (2.53)
This condition is fulfilled when

Cy=-L, Cs=N. (2.54)

Finally, Eq. (2.9) of the acoustic particle displacement takes the following form written in
the second approximation:

E= k_l{A-e;ﬁ_ﬂ -cos(ut - Ei) +
To
5., gl aE . us: 8
+A°-e 20| - Lecos|2wt— K{— ) — Nsin| 2wt — K;— )|+
Zo o
+A%. R [Qa + LcosZ(wt - K’xi) + Nsinz(wt - Kxi)] } (2.55)
0 0
It can be noticed that in above equation the nonperiodic component equal to
k= A?exp —a/zy Qa occurs besides the periodic components, which corresponds to the
first and second harmonic waves.
By differentiating Eq. (2.55) with respect to time, the expression for the vibration
velocity of the particles in the Lagrangian coordinates can be obtained

v = —Ace_ﬁﬁ-sin(wt—fi)+

To
+ ZCAZ{E_";_U I:LS]I] (Zw‘t ™ El.ri) + N sin (Z(A)t b El’ni):l +
0 L0

+ e_%o[—LsinZ(wt—Ei) +NcosZ(wt—ITi)]}- (2.56)
Ty Lo
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It is noticeable that in the second approximation, the term with frequency w (first har-
monic)
ALY e il
vy = —Ace 0 sin (wt - K T—) (2.57)
o :
is supplemented with the component of frequency 2w (second harmonic). After transfor-
mations this component can be presented in the form

vy = 2¢A%- e =0 D - sin(wt + a), (2.58)
where ‘
s — S —_a
D=.,/(L?+ N?[1+e * —2e *ocos(l{; —2K )3;—-, (2.59)
0
tga =
e T (Lsin2K 2 + N cos2K2) — (Lsin K% + N cos Ky =
- 0 Zo %o 207 (2.60)
Lcosfﬂ;% - Nsin]i’lfo - e_ﬁE(LcOSZK}% - NsinZR’fO-)
The ratio of the velocity amplitudes of both harmonics is equal to
2 = 24D. (2.61)

1
This acoustic pressure in the waveguide can be found from Eq. (2.41) and, on the basis
of Eq. (2.2) and (2.42), for an exponential horn

"8
{ =e%, (2.62)
From that it follows that
=
p=FRl1+&)7-eF0 —1]. (2.63)

In the second approximation, when Eq. (2.9) is taken into account, the following relation-
ship can be obtained:

g A - A2 ¥ ¢ 2.2 ¥ A 1] Y £ 12 !
P 0 [ k:t:o ¥1 k-’to Y2 2]{723’:% 1 I P1 k P2

2 42
v°A (¥ +1) 5 5
i prp1+ = Aler’ | (264)

From that, finally, on the basis of Eqs. (2.43) and (2.45), one can get:

- ot A% _ X,
% = —yAe T sin (wt-ﬁ’mi +ﬁ) X 1-2—.2 % +y A% T G sin(wt + A), (2.65)
0 0
where

1
tgf = Y (2.66)

G = {R2 +W?+ 6—3'%()(2 + 7% +2¢ [(RZ + WX)cos(K; — 21'()5_ it
0

+(RX — WZ)sin(K, - 21?)5’-] }%, (2.67)
: .
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Rcosfi'li - Wsinﬁ'li + e_'“ﬂﬁ(Zcoszf’fi - Xsinsz'ﬁ)
Tp Ty Ty Tp

tgA = e = + P - (2.68)
Weos Ki— + RsinK;— + e 1%(Xcoszfx’—-i~Zsi112K’—)
Ty T Iy Iy
and
4y-)KK, -7 v+1
= + :
R 162 g (2.69)
ool _i) o 2=
W = (—4 82 K+ 82 K (2.70)
_ (=1 +1) o
X = ( PR B K, (2.71)
2y—-1 3
= ——(1 =) 5
o L) 272)

From Eq. (2.65) it results that the ratio of the pressure amplitudes of the second harmonic
to the first one is given by

22« AC. (2.73)

n
Furthermore, in Eq. (2.65) for the acoustic pressure, the component independent of time
oceurs

1 =i
P= E-yAzPO e T, (2.74)

In the nonlinear theory of a plane wave in a lossless infinite medium, the component
independent of time also occurs in the equation of the pressure, but in that case it is
also independent of the position in the sounds wave. That is the so-called radiation stress
[5]. It is seen that in the case of the waveguide considered this component decreases
exponentially, like exp(—a/z¢), while the amplitude of the first harmonic decreases slower,
like exp(—a/2z).

At the end, the exponential waveguide with typical dimensions for a construction of
axial flow generators is taken into account in the numerical example:

¢ width of the channel at the inlet ho =1.5-107% m,
¢ mean diameter of the annular channel dy = 107! m,

¢ width of the channel at the outlet hy =10"! m,

e length of the waveguide I=15-10"" in

The waveguide with these dimensions has the cut-off frequency f,, = 760 Hz.

On the basis of Eq. (2.57)-(2.59), the relations between the amplitude of the vibration
velocities for the first (n = 1) and second (n = 2) harmonic and the particle displace-
ment of the medium, in the waveguide, when the frequency of a piston that initiates the
harmonic wave at the inlet is equal to f = 3 kHz, are presented in Fig. 2. The amplitudes
of the vibration velocities are related to that of the piston vyy = Ac. Appearance of the
second harmonic for @ > 0 (it would be higher harmonics in subsequent approximations)
is caused by nonlinear properties of the medium in the waveguide and explains the de-
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FiG. 2. The amplitudes of the particle velocities of the medium in the waveguide for the first (n = 1)
and second (n = 2) harmonics. The generation frequency of the sinusoidal wave at the inlet is f = 3 kHz.

formation of the wave front when the wave moves along the horn. It can be seen that the
second harmonic increases in the part near the inlet, and subsequently decreased as the
walls of the waveguide expand. It means that deformation of the wave-front develops in
the inlet part, and then it stops. So the course of the nonlinear phenomena is different
than that in the case of propagation of a plane wave in a lossless infinite medium, or in
a cylindrical tube when the wave deformation constantly increases and the amplitude of
the second harmonic is proportional to the distance from a source [5].

It can be seen from the Fig. 3 that the plot of the acoustic pressure amplitudes for both
harmonics (solid lines) is similar to that of the velocity amplitudes, as shown in Fig. 2.
Furthermore, in Fig. 3, dashed line marks the course of the time-independent component
P of the acoustic pressure. It appears that this component decreases significantly faster
that the amplitude of the second harmonic pressure. it should be mentioned that the
amplitude of both harmonics and the value of the component p are related here to
pressure amplitude of the first harmonic at the inlet: P10 = YAP,.

It is shown in Fig. 4 that, for a given layer of medium particles in the waveguide, the
vibration velocity amplitude of the second harmonic increases compared with that of the
first one when the frequency increases. This increase is faster when the amplitude of the
piston which initiates the wave is greater. A similar conclusion can be formulated with
respect to the harmonic components of the pressure; plot of p, /D1 as a function of the
frequency has a similar course, as that of the vibration velocity, and therefore it is not
presented here.

The medium in the acoustic horn is dispersive [11] and that can cause a charac-
teristic pulsation of amplitudes of the higher harmonics [9]. Equation (2.58), (2.59) and
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F1G. 3. The amplitudes of the acoustic pressure for the first (n = 1) and second (n = 2) harmonics
(solid lines); the nonperiodic component of the acoustic pressure (dashed lines).

KRS

0 I L 1 L 1 1 1 1 1 1 L
10 14 18 22 26 30 36 flkHz]

FiG. 4. The ratio of the vibration velocity amplitudes of the second harmonic to the first one for the layer
of medium particles @ = 1.5- 10~ ! m,

[416]



SIMPLE WAVES WITH FINITE AMPLITUDE 417

(2.65)—(2.67) indicate that this kind of effect is possible. Since the terms cos(K 1 —2K )a/zg
and sin(K; — 2K )a/z( occur in the expressions for D and G, respectively. However, as
the Figs. 2—4 show, this effect can be neglected in waveguides in the considered range of
frequencies.

4, Conclusions

In the acoustic waveguide with variable cross-section the nonlinear phenomena such as
generation of the radiation stress and higher harmonics in a primary sinusoidal wave can
take place in a different manner than in an infinite medium. In particular, the expansion
of the waveguide walls has a restraining effect on the deformation of the wave-front and
decreases the radiation stress. The considerations presented in this paper enable us to
describe these processes in the second approximation for the hyperbolic horns with the
annular cross-section. Calculation of the subsequent approximation can be done in a sim-
ilar way by taking into. Account next terms of the power series (2.9) and expansions (2.6),
(2.7). However, higher harmonics are of a smaller importance, since practically |A| < 1.

The course of the phenomena in the acoustic horn presented in this paper is still
simplified, because most of the assumptions applied in the linear theory for infinitely long
horns have been kept. However, the proposed model of the wave phenomena is more
advanced than the linear one.

References

[1] D.T. BLACKSTOCK, Propagation of plane sound waves of finite amplitude in nondissipative fluids, JASA, 34,
1, 9-30 (1962).
[2] C.A.Lesunaug, B.M. LIETIHH, Cupena daa axycmunecxoll xoaryaayun aeposoreil, AKycTud.
K., 7,1, 78-86 (1961).
[31 R.Courant , K.O. FREDRISCHS, Supersonic flow and shock waves, Interscience Publishers, Inc. New York
1948.
[4] E. KAMKE, Cnpasounux no obuxnosenniim dupep enysarnsm ypasnendm, nepeaod ¢ nemeyx-
oeo, Usn. Munoctp. JInt. Mocksa 1951.
[5] M. Kwiek, Laboratory acoustics, vol. 1, PWN, Poznan-Warszawa 1968,
[6] E.I. MEAIHMKOB, Jlee xonempyryuu excnepumMenmandrnns zeyxoswnr cupen, Axycruu. 7K., 4
1, 5-63 (1958).
[71 A. PucH, Generalized model of axial dynamic generator, Achives of Acoustics, 13, 1, 17-34 (1978).
[8] Y. RocARD, General dynamics of vibrations, Unger, New York 1960 s. 467-479.
[9] ©O.B. Pyvaoesko, C. CanvdAH, Teopemuuecxue ocnoedt neauwnedinodf axyemuxu, Msn. Hayxka,
Mocksa 1975.
[10] R. WYRZYKOWSKI, Acoustic evaluation of a siren (in Polish), Materialy I Konferencji UltradZwickowej
PAN, PWN, Warszawa 1965.
[11] R. WYRzYKOWSKI, Linear theory of acoustic fields in gaseous media, (in Polish), RTPN WSP Rzeszéw
1972.
[12] R. Wyrzykowskl and R. HNATKOW, Sirene mit hoher akustischer Leistung, Acustica, 59, 225-229 (1986).
[13] K.W. YEeow, Webster wave equation in two dimensions, JASA, 56, 1, 19-21 (1974).
[14] T. Zamorskt and R. WyRzykowskl, Hyperbolic horns of annular cross-section, (in Polish) Prace XXV
OSA, 367-370, Poznan-Blazejewko 1978.
[15] T.ZAmorsk1 and R. WYRZYKOWSKL, Approximate methods for the solution of the equation of acoustic wave
propagation in horns, Achieves of Acoustics, 6, 3, 237-285 (1981).
[16] T. ZAMORSK1, Waves with finite amplitude in Bessel horns, Achives of Acoustics, 15, 3-4, 531—542 (1990).
[17] JI.K. 3APEMBO ann B.A. KPACUIILHUKOB, Baedenue 8 neauneiinywo axyemuxy, Man. Hayka,
Mocksa 1966.



