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Auscultation and analysis of acoustic signals emitted by the human body are widely
used in medical diagnosing. Acoustic signals are also emitted by joints, including the
temporomandibular joint, which is the subject of this paper. A system was developed
to receive, record, process and display the signals emitted by this particular joint. The
article presents an essential fragment of the system, namely a special ultrasonic transducer
designed to receive acoustic signals emitted by the temporomandibular joint. At first, the
particular requirements were established in the area of the parameters and functions of the
transducer. Following that, a technological solution was proposed. Next, a model of the
transducer was analysed using the difference equation method with continuous time. The
solution of these equations is the pulse response of the transducer and in the frequency
domain, it is the shift function. These functions were used for an in-depth analysis of
the effects of the transducer’s construction on its parameters and values. Based on these
findings, a methodology of the design of the transducer was developed. The transducer was
designed and built according to the methodology. It was subsequently studied in detail.
The results of the study have confirmed that the method of the analysis and the design
were correct. Finally, the article presents some examples of real signals of acoustic emission
of the temporomandibular joint as they were received by the ultrasonic transducer built
in the course of the work.

1. Introduction

As we know, the human system is a source of numerous acoustic signals among
which the speech signal is the most important and best-researched one. These signals
are generated by the movements of muscles and joints and by the flow of blood and
air. Since long ago auscultation of the signals made by the human body has been one of
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medicine’s basic methods of diagnosing. Usually a diagnosis is made based on a sub jective
assessment of the acoustic signal with the credibility of the diagnosis largely depending
on the experience and predisposition of the doctor. This method of using acoustic signals
proves successful in the diagnosis of lungs and heart diseases but is of little use in the
diagnosis of muscles and joints. Acoustic signals that are emitted by muscles and joints
usually feature an uncomplicated course and are not intense enough for an auscultation
with a phonendoscope to be efficient. Additionally, the phonendoscope method does not
allow for a signal recording and further analysis, which consequently makes the diagnosis’
objectivity impossible.

One of the joints that deserves special attention is the temporomandibular joint
which when diseased causes severe impairment of man’s important functions such as
speaking, eating and facial expression. The acoustic emission evoked by the movement
of this joint, can be easily observed especially by the person setting the mandible in
motion. Signals generated by the joint can also be heard using a phonendoscope. This
was observed and used in the studies of the occlusion by D. WATT already in the sixties,
[20]. First attempts to record the signals emitted by the temporomandibular joint were
made in the seventies by, among others, YOWELOW [22] and J. and Z. KRASZEWSCY
[9-10]. They would use a microphone to receive acoustic signals and a tape recorder
or an electrocardiograph to record them. In the following years the technique of signal
recording was improved as were the methods of processing these signals, [1-4,6,7, 11,
12, 16, 21]. A general and important result of these and later studies is the estimation of
the width of the spectrum of acoustic emission signals. It matches the band of audiofre-
quencies. When, however, the frequency is more than several kilohertz the spectrum
level quickly drops and reaches the level of noise. The least attention was given to the
electroacoustic transducer even though its parameters largely determine the quality of
the whole diagnostic apparatus. The authors are unaware of any reports in the litera-
ture on the optimisation of the construction of transducers in terms of adjusting their
parameters to the specific requirements of reception of acoustic signals emitted by the
temporomandibular joint. The article presents the results of a theoretical analysis, the
construction and results of studies on a special transducer built to record and process
acoustic emission signals made by the temporomandibular joint.

2. Mathematical model of the transducer receiving acoustic emission signals
made by the temporomandibular joint

Studies on acoustic emission of the temporomandibular joint made so far used various
types of microphones or less often accelerometers as electroacoustic transducers. Since
the structure of all microphones is made to receive acoustic waves in the air, there is a
concern whether the microphone is the appropriate device to measure waves propagated
within the human body, especially those observed in the soft tissues surrounding the joint
itself and the adjacent bone structure. The reason for this concern is that the acoustic
properties of air and tissues are completely different which is expressed, among other
things, by the big difference in acoustic impedance of both media. Acoustic impedance of
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soft tissues is 5000 times greater than the impedance of air. Consequently, microphones
operating in the air are activated by acoustic waves with high deflections and small
pressures whereas when used in soft tissues they are activated by waves of high pressures
and small deflections. Therefore, what we are dealing here with is a situation that is more
typical for ultrasonic medical diagnosis or hydroacoustics rather than for audioacoustics.
In both fields piezoceramic transducers are used commonly both for transmission and
reception of acoustic waves.

To obtain better results than those produced by microphones one should turn to
broadband ultrasonic transducers. Transducers like these are made as piezoceramic
transducers with matching layers [15], as composite transducers [14] and accelerome-
ters [17]. The first two types of transducers have a broad transmitted frequency band,
however, it is located around a certain relatively high mid-band frequency. Therefore,
it does not include very low audio-frequencies, which are included in the spectrum of
acoustic emission signals of the temporomandibular joint. Accelerometers are used com-
monly in measurements of mechanical vibrations and their band covers the desired range
of frequencies. However, the medium that the accelerometer is in contact with is usu-
ally a solid body whose characteristic acoustic impedance is greater than the soft tissue
impedance, however, the disproportion in this case is not as big as between the tissues
and air. Despite that, direct attempts to use standard accelerometers to receive acoustic
emission signals coming from a patient’s body are not without a doubt. The vibrations
of the accelerometer are usually enforced by the vibrations of a big mass (e.g. the steel
body of a machine or vehicle). Because of the significantly smaller mass and geometric
dimensions of the accelerometer, it does not affect the distribution of vibrations of the
measured object and the whole object-accelerometer system does not have to be seen in
wave terms. This simplification is not justified when the accelerometer is in contact with
a soft tissue where the acoustic wave propagates similarly to its propagation in liquids.
Nonetheless, the very idea of using a piezoelectric transducer that constitutes an active
element of the accelerometer and the use of a big mass to weight it on the back side
seems to deserve a thorough analysis.

Following the above notions, a system was selected to act as a simplified theoret-
ical model of an electroacoustic transducer. The system consisted of a piezoceramic
transducer in the shape of an extended rectangular prism with a metal cylinder as its
weighting placed on the back surface. It was assumed that the activation would origi-
nate from a plane acoustic wave, which propagates in a liquid inorganic medium and is
perpendicular to the front surface of the piezoceramic transducer. The electrical signal
is observed on electrodes attached to the front and back surface of the piezoceramic
transducer. The piezoceramic transducer is polarised perpendicularly to the electrodes.
Figure 1 shows a simplified form of the transducer.

At the output of the transducer the electrical signal in question can be determined
using numerical methods (e.g. the finite elements methods) or analytical methods. Since
the objective is not to analyse a singular case but to define some general relations,
which could describe the operations of the transducer, in this case we decided to use the
analytical method. The principles of this method were developed for designing broadband
transducers with matching layers 15, 17-19].
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Fig. 1. A simplified form of the transducer receiving acoustic emission signals.

Let us assume that in a piezoceramic transducer and in the metal cylinder only the
plane acoustic wave propagates perpendicularly to the electrodes. Let us also assume
that mechanical and electrical loss in both elements is negligibly small and that the
back surface of the metal cylinder is weighted with an unlimited medium — the air.
Given such assumptions the vibrations of the whole system can be described using the
velocities shown in Fig. 2.
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Fig. 2. Physical model of the transducer.

The symbols seen in the figure have the following physical interpretation:

e acoustic velocities v, (t), vy(t), vy (t), v(t), v'(t) and v (t) are courses of component
velocities of waves that are incident to the boundaries of the media,

e delays 7 = d/c and 7, = dp/cp are the duration of propagation of the longitudinal
acoustic wave respectively between the electrodes of the piezoceramic plate and base
of the metal cylinder (d — length of the piezorceramic transducer, ¢ — velocity of the
longitudinal wave in the piezoceramic transducer, d, — length of the metal cylinder, c;
— velocity of the longitudinal wave in the metal cylinder),

o reflection coefficients 3y, (., and 3, are mechanical coefficients of reflection on the
boundaries of the respective media, defined for the forces (8o = (Zp — Zo)/(Zy + Zo),
By iz (Z - Zb)/(Z + Zy), Be = (Z, — Z)/(ZC + Z), where Z, = Apppcp is the mecha-
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nical impedance of the base of the metal cylinder with surface Ay, density volume py
and velocity of the longitudinal acoustic wave ¢y, Zp = Appoco which is the mechanical
impedance of the medium on the left side of the cylinder’s base, Z = Apc is the me-
chanical impedance of the transducer and Z, = A.p.c. is the mechanical impedance of
tissues).

Our task is to determine the voltage U(t) on open electrodes of the piezoceramic
transducer as a function of acoustic velocity v/ (t) of a wave which is incident perpendic-
ularly to the surface of the transducer from the direction of the tissues. If we assume that
the shape of the transducer is close to that of a thin rod, voltage U(t) can be described
using the following relation, [5, 8]:

t
U(t) = YLgss / Va(t) - Va(t)] dt, (1)
0

where Y, is the Young’s modulus elasticity given a constant induction D, and g3z —
a piezoelectric constant, and V,(t) and V,(t) the velocities of vibrations of the back and
front surface of the piezoelectric transducer respectively.

The velocities of vibrations of the surfaces V.(t) and Vj(t) are the sums of acoustic
waves that are incident to, reflected from and going across the boundaries of the medium
on the left or right side of the boundary. They can be easily determined using Fig. 2 and
the functional diagram of the wave system in question as shown in Fig. 3.

volt)=0 v(t) & vit)
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Fig. 3. Functional diagram of the transducer.

They are described with the following relations:
Ve(t) = (1= Be)u(t) + (1 + Be)ve(t),
Va(t) = (1= Bo)us(t) + (1 + Bo)v'(2).
As you can see, to calculate the velocity of vibrations of the transducer’s surface
it is necessary to know the velocity components v(t), vy(t), v'(t). These velocities can

be determined using the below system of equations put together on the basis of the
functional diagram from Fig. 3.

vp(t) = (1= Bo)vo(t — ) + Bovy(t — 1),
vp(t) = (1+Bo)'(t = ) = Bov(t — ),
v(t) = (1— Be)us(t —7) + Bov'(t — 7),

V'(t) = (14 Be)ve(t = 7) = Bev(t — 7).

Il

Il

3)
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To solve this system of equations, first we need to notice that the characteristic
acoustic impedance of the base of the metal cylinder is much bigger than the acoustic
impedance of air. This makes the reflection coefficient By practically equal to one. The
equations (3) are then simplified to obtain the form of:

w(t) = vyt - ),
v(t) = (14 Bp)v'(t — 1) — Bovs(t — 1),
v(t) = (1= Bp)vp(t —7) + B/ (t — 7),
v'(t) (14 Be)vl(t — 1) — Bev(t — 7).

The above equations contain four unknown functions; they are vy (t), vy (t), v(t), v'(t).
Function v/ (t) is the activation that we know from the assumption. This means that this
system of equations can be solved and each of the velocities that we are looking for can be

determined as a function of activation. The solution to this untypical system of equations
is given in the Appendix. Below we are presenting the result of the solution only:

vp(t) x7r(t) = (14 B)(1 + Be)ve(t — 7 —27m),
v'(t) x7(t) (14 Be) [ve(t = 7) + Bove(t — T — 21)], (5)
v(E)*r(t) = (1+ Be) [vL(t — 21 = 2m) + Bpvl(t — 27)].

(4)

v
v

Il

where
r(t) = 6(t) + Bod(t — 27p) + BoBco(t — 27) + Beo(t — 27 — 273), (6)

and the symbol * means the operation of the convolution.
On Eqgs. (2) we can perform a two-sided operation of convolution with the r(t) func-
tion, the result of which is:

Ve(t) xr(t) = (1= B)u(t) xr(t) + (1 + Be)vi(t) xr(t),
Va(t) #7(t) = (1= Bous(t) *r(t) + (1 + Bp)v' () * 7 (2).
On the right-hand side of Eqgs. (7) there are convolutions of the velocities with the

r(t) function which we can see on the left-hand side of the equations, too (5). Therefore,
we can make the appropriate substitutions as a result of which we get:

(7)

Ve(t) x r(t)
Va(t) *r(t)

(14 Be) [ve(t — 27 — 2m) + Byvl(t — 27)] + vl(t) + Bevi(t — 2m),
(14 Bp)(A + Be) [ve(t — 7 — 2m) + v (t — 7)] .
The equation we have been looking for which contains only activation v.(t) and

response in the form of voltage U(t) is obtained by performing on Eq. (1) the operation
of convolution with the r(t) function and by substituting Eqgs. (8). As a result, we get:

(8)

t
U(t) xr(t) = —=Y;Lgss(1 + Be)vl(t) * f [6(t’) — (L4 Bp)8(t' — 1) + Bpé(t' — 27)

0
+ Bpd(t' — 27) — (14 Bp)d(t' — 7 — 271) + 0(t' — 27 — 27‘;,)]dt'. (9)
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In this way the voltage in question U(t) has been described using a non-homogenous
difference equation with a continuous duration in which on the left-hand side is a con-
volution of voltage U(t) with function r(t), and on the right-hand side a convolution
of activation vl,(t) with a function written down in the above equation as an integral.
Equation (9) can be treated as a mathematical model of the transducer. It can be used
to analyse it in the time domain and also — after the necessary transformations — to
analyse it in the frequency domain.

3. Analysis in the time domain

Analysis in the time domain is usually used to determine the response of a linear
system to specific activation we are investigating. This method is less frequently used to
research the general properties of a system. To that end the analysis in the frequency
domain gives more insight and is therefore more frequently used. Nonetheless from the
theoretical standpoint both methods are equivalent and will be presented below.

To simplify the notation of the equations let us mark the integral expression in
Eq. (9) as:

t

w(t) = ] [5 (t") = (1 + Bo)d(t' — 7) + By (t' — 27) + Bpd(t' — 2m)

0
— (14 B)d(t' — 7 — 2m) + 6(t' — 27 — 27,,)] at'.  (10)

Then the difference equation (9) will assume the form:
U(t) *r(t) = =YL gs3 (1 + B)vl(t) * w(?). (11)

To determine voltage U(t) for a specific activation in the form of acoustic velocity
vl (t) it is necessary to solve Eq. (11) numerically or analytically. If we solve the equation
directly, then for each activation we have to repeat all calculations, which are not always
simple. This inconvenience can be eliminated by using pulse responses. To that end, let
us introduce the term of a homogenous difference equation of the considered system. It
can be noted as:

k(t) *r(t) = d(t), (12)
or in the full form as:

k(t) + Bok(t — 27) + BoBck(t — 27) + Bck(t — 21 — 27) = 6(t), (13)

where 4(t) is Dirac’s function, and k(t) — pulse response of a homogenous equation.
Now let us write the difference equation (11) as a convolution with pulse response k(t):

U(t) *7(t) * k(t) = —Y;Pgaz (1 + Be)vl(t) * w(t) * k(t). (14)
Using Eq. (12), we get:
U(t) = =Y gss(1 + Be)vl(t) * w(t) * k(t). (15)
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As you can see, voltage U(t) can be calculated as a convolution of activation v.(t)
with pulse response k(t) and function w(t). The saving in the computation is that both
pulse response k(t) and function w(t) are dependent solely on the parameters of the
analysed system. Therefore, they can be computed once and then used multiple times
to determine response U (t) to random activation v, (t).

Pulse response ky(t) of the analysed system according to the theory of linear systems
is equal to the system’s response to activation in the form of Dirac’s pulse. That’s why
by adding v.(t) = 6(t) to Eq. (15) we get:

ku(t) = =Y37ga3(1 + Bo)w(t) * k(t) (16)

and
U(t) = ku(t) * ve(t). (17)

The result of the transformations we have applied is the following procedure of de-
termining the voltage on open electrodes of the sensor’s piezoceramic plate:

e by solving the homogenous difference equation (12) we determine the k(t) pulse
response,

e we determine the w(t) function from relation (10),

o from Eq. (16) we calculate pulse response k,(t),

e we calculate voltage U(t) as a convolution of activation v (t) with pulse response
ku(t) (Eq. (17)).

The only, slightly less frequent mathematical problem that is present in this com-
putational method is the solution of the difference equation with a continuous time
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—0.88): a) function w(t), b) auxiliary function k(t), c) pulse response of the transducer.

Fig. 4. The forming of the transducer’s pulse response without the metal cylinder (8
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given in Eq. (13). Such equations are solved using a simple recurrent procedure in which
— as usual — the results obtained in earlier computations are used to determine new
ones [17-19]. In numerical computations we match a time interval At so that t = nAt,
T = NAt and 7, = MAt, where n = 0,1,2,..., and N and M are certain integers. The
difference equation with continuous time is converted into a difference equation with
discrete time in the form of:

k(n) = 8(n) — BoBck(n — 2N) — Byk(n — 2M) — Bck(n — 2N — 2M). (18)

Figure 4 shows the method of determining pulse responses k,(t) of the transducer
without the metal cylinder.

The impact of the metal cylinder on the shape of the pulse response is shown in
Fig. 5.

Given a small ratio 7,/7 the envelope of the pulse response is close to the envelope
of the pulse response of the transducer itself. Given high quotients 7,/7 the shape of
the envelope depends on the length of the metal cylinder. Figure 6, on the other hand,
shows the impact of the thickness (diameter) of the metal cylinder on the shape of the
transducer’s pulse response.

Increasing the diameter of the metal cylinder increases the mechanical impedance of
the transducer’s weighting, at the same time the reflection coefficient 3, is nearing —1.
As the picture shows, this causes an increase in the oscillation amplitude of the pulse
response, which — as we will prove later — increases the sensitivity of the transducer
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Fig. 7. Pulse responses of the designed transducer after computation: a) pulse response, b) activating
signals, ¢) voltage responses: b) 1) fsr = 0.0083, 2) f,7 = 0.025, 3) fs7 = 0.13.

in the low frequencies range. The shape of the pulse response, on the other hand, only
slightly depends on the value of the reflection coefficient 3.

The properties of the pulse response that we have discussed briefly do not exhibit
an easily detectable effect on those properties of the transducer that could be of critical
importance to its application in the reception of acoustic emission signals. Nonetheless,
the method itself can be useful in researching transient states. This is illustrated in
Fig. 7 which shows a pulse response whose parameters match those of the constructed
transducer, three acoustic signals which activate the transducer and matching courses
of the voltage on open electrodes.

As you can see, acoustic signals of low frequencies are processed into electrical signals
without significant distortion. When the transducer is activated by an acoustic signal of
a frequency that is close to the resonant frequency of the transducer, long lasting voltage
oscillations appear.

4. Analysis in the frequency domain

Let us define the transfer function of the transducer as:
U(jw)
v (jw)

Ku(jw) = , (19)
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where U(jw) and v,(jw) are Fourier transforms respectively of voltage U(t) and veloc-
ity vi(t).

The theory of linear systems shows that the transfer function can be determined
directly from the pulse response as its Fourier transform: F{k,(t)}. This, however, re-
quires one to know the pulse response and consequently the difference equation must be
solved. There is a simpler method, though. In it, the solving of the difference equation
is skipped. What happens is that Fourier transformation is applied to both sides of the
difference equation (14), as a result of which we get:

U(jw) -r(jw) = —Y32g33(1 + Be)vl(jw) - w(jw), (20)

where 7(jw) and w(jw) are Fourier transforms to the functions r(t) and w(t), respec-
tively.

By dividing both sides of the above equation by v.(jw), in line with definition (19)
we get:

Kulji) = ~YPgna(1+ )22 ()

To determine the transfer function all we need to do is calculate Fourier transforms

of functions r(t) and w(t) given in Egs. (6) and (10), respectively. After completing these
simple operations we get:

, YPga3(1 + fe
Ku(_’,'w)=3 3 9335) ﬁ)

1-(1 +,85)e'-?"-'” + Bpe—I2wT 4 [ng = 6b)e—jut +e—j2wr] e—i2wmy
1+ Bre929m 4 By Be—i27 4 B e—i20(T+7y) .

(22)

Using the above formula, we can study the effects of the particular parameters of the
transducer on the course of its transfer function. We will begin this study by determining
the transfer function of the piezoceramic transducer weighted with air from the backside.
It will be a good model for defining the effects of the parameters of the metal cylinder
on the performance of the whole transducer. To that end we add to Eq. (22) 8, = 1 and
get:

YPgss(1+ B.) 1—2e79wT 4 g32wr
J w ; 1+ Bee—d2wT

Figure 8 shows a module of the transfer function described with formula (23). On
the X-axis the scale f7 was assumed, where f = w/2w. The same scale was maintained
for the other pictures which makes interpretation easier. To obtain the real scale of
frequencies, the numbers found on the adopted scale should be divided by the time
of propagation of the longitudinal, plane acoustic wave 7 along the thickness of the
piezoceramic element. The adopted value of the reflection coefficient 3, = —0.9 matches
approximately the real conditions that are present on the boundary between the soft
tissue and an average ceramics PZT.

The above transfer function shows resonance of thickness vibrations of the transducer
that appear at fr = 0.5 and fr = 1.5. The resonance also appears periodically in
higher frequencies with period fr = 1, while the values of the transfer function’s module

Ku(iw) =

(23)
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decrease as f7 increases at pace 1/f7. The use of the piezoceramic plate as a sensor of
acoustic waves emitted by the temporomandibular joint should be tied to the frequency
range which is below the first basic resonance. In this range, the transfer function’s
module is almost plane. The useful transmission band of the piezoceramic transducer
is contained between the lower cut-off frequency f,, and upper cut-off frequency far.
Figure 8 shows that half of the resonant frequency of the transducer can be adopted as
the upper cut-off frequency.

10 201081 6(K () Kgr)

acsbhocecbleaccsken =i

05 1 15 2

fo

-90
0

Fig. 8. Module of the shift function of the transducer without the metal cylinder: 8y =1, 7y /7 =0,
Kupm = |K4(0.5)], Bc = —0.88.

That’s why, it is equal to approximately:

1 c

fmMm=

The lower cut-off frequency can be determined from the transfer function (23) by

using the approximation exp(—jwr) = 1 — jwr, authorised for low frequencies. In this
frequency range, the transfer function’s module adopts the following form:

Ku ] = YD » —w'_'_ 3 25
| (Jw)l 3 9331' W ( )
where

25 (26)

T 148
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The lower cut-off frequency is determined from the condition w,, 74 = 27 f,, 74 =1,

and so:
foo L 1tfe_ c 146

e Barrs B dwd 1.8,
Equations (24) and (27) show that the relation between upper and lower cut-off
frequency is approximately equal to:

fm _ 7B
fm 148

As you can see, this ratio is exclusively dependent on the value of the reflection
coefficient on the piezoceramic transducer — soft tissue boundary. In practice, we cannot
influence significantly the selection of the relative width of the transmission band of the
piezoceramic transducer. For 8, = —0.9 this ratio amounts to about 30 and is too low to
meet the needs of acoustic emission signal reception. For the lower cut-off frequency of
30Hz, the upper frequency of the transmission band would be only about 900 Hz, which
is too low. At the same time, the length of the transducer would have to be close to 1m,
which makes technically no sense.

Analogies with the accelerometer make one suppose that the weighting from the
backside would not only improve the parameters of the transducer but could also be
used as a casing and a practical handle. Additionally, one should presume that given a
large mass of the weighting the effects of the hand holding the whole transducer will not
have much impact. For this reason, we will now move to a detailed study of the effects
of the metal cylinder on the shape and parameters of the transducer’s transfer function.

10 2019810(R () Kog)

(27)

(28)
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Fig. 9. The effects of the thickness of the cylinder on the module of the transducer’s shift function
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In the considered model of vibrations of the transducer the metal cylinder is described
with two values only, that is the time of propagation of the longitudinal wave 7;, which
is proportionate to its length and the reflection coefficient (3, which is a function of
mechanical impedance of the cylinder and piezoceramic transducer. Let us assume first
that 8, = const and determine the transfer function’s module for various time relations 7,
to the time of propagation of the longitudinal wave through the piezoceramic transducer.
As you can see in Fig.9, even when the piezoceramic transducer is weighted with a
cylinder of a very small length (7,/7 = 0.05) the weighting causes its resonance to be
shifted towards smaller frequencies.

The resonance of the cylinder only appears in higher frequencies, which do not fit
into the picture. Further increase in the cylinder’s length causes the resonant frequency
of the piezoceramic transducer to successively near the value f = 0.25/7 = ¢/(A/4),
where X is the length of the longitudinal wave in the piezoceramic transducer. At the
same time in the transfer function appears the resonance of the metal cylinder whose
frequency is shifting towards smaller frequencies. Therefore, one can generally say that
the application of the metal cylinder reduces from the top the width of the transducer’s
transmission band in relation to the width of the transmission band of the piezoceramic
transducer only.

This unfavourable effect is compensated, however, by an improved shape of the trans-
fer function in the range of lower frequencies. This is illustrated by Fig. 10, which shows
the same transfer functions for low frequencies. We can see that as the length of the
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Fig. 10. Module of the transducer’s shift function in the range of low frequencies (Bp = —0.823,
Be = —0.88, Kupm = max|Ky|): a) 7p/7 = 0.05, b) 75/7 = 0.6, c) 77 = 2.6.
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metal cylinder grows, the lower frequency of the transducer’s transfer band drops and
the transducer’s sensitivity increases.

In the application in question the spectrum of received acoustic emission signals is
in the low frequencies range that’s why from this point of view the extension of the
cylinder is a positive thing. At the same time with 7,/7 > 1, the length of the metal
cylinder determines the upper frequency of the transfer band fy;. By analogy to Eq. (24)
we have: i 3

b
fm = TRk Rl (29)

The lower cut-off frequency f,, is computed using the method applied in the case of
the piezoceramic transducer. The module of the transfer function in the range of low
frequencies now has the following form:

. 1- 06 2wy
Ky =YL gssT- ; 30
|Ku(jw)| = Yy~ gssT T4 8 Vi Gon (B LN (30)
where B, + 5 5

B e UERE gis Gt 31

A+ +B) > S (81)

In this situation B > C, and so by analogy to the case of Eq. (25) we have:

0 zokie@E8)0 + Bl o (Lt @)1+ ) (32)

4mTy Be + Be 4mdy Be + Be

We should note that the lower cut-off frequency in this case does not depend on the
resonant frequency of the piezoceramic transducer anymore. From this point of view
the piezoceramic transducer can be of any short length, on the other hand however,
it should not be too short as the transducer’s sensitivity decreases (compare Eq. (30)).
This conclusion is confirmed by results of numerical computations presented in Fig. 11.

The effect of the value of the reflection coefficient 3, on the transfer function in the
range of low frequencies is shown in Fig. 12.

One can observe the positive effects that increasing the absolute value of this coeffi-
cient has both on the width of the band and the inclination of the transfer function.

The upper to lower cut-off frequency ratio is now:

f_M = ﬂ-{ﬁc 5 ﬁb)
fm  (A+B)1+8)

Given the realistic assumptions that 3, = —0.8, a 3. = —0.9 the ratio of the upper
frequency to the lower frequency of the transfer band of such a transducer is about 250
which is about eight times better than in the case of the piezoceramic transducer only.
Given f,,, = 30Hz we now get far = 7500 Hz, which is quite a satisfactory result.

To summarise one can say that the reduction of the lower frequency of the transfer
band of the transducer can be accomplished by a simultaneous increasing of the length
of the metal cylinder and increasing of the absolute value of the reflection coefficient /3.
If the metal cylinder is made of a material of a specific acoustic impedance pycy, the
value of the reflection coefficient increases parallel to the increase in the surface of the
cylinder’s base. As a result, the combined increase in the cylinder’s length and reflection
coefficient is in this case equivalent to the increase in its mass.

(33)
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5. Design, construction and measurements of the transducer

The transducer was designed and later built on the basis of the following operating
assumptions:

o effective transfer band of the transducer should be between app.10Hz to about
10kHz, which ensures a transfer without distortion of acoustic emission signals,

e considering the convenience of using the transducer its total length should not
exceed 15cm, with total mass less than 1kg and diameter of the metal cylinder not to
exceed 4 cm,

e the ratio of the surface of the metal cylinder to the surface of the piezoceramic
transducer should not be greater than 10 which reduces the effects of transverse vibra-
tions of the metal cylinder on the transducer’s transfer function, [5].

Since the mass of the metal cylinder should be big, it was decided to make it of
brass of density of p, = 8100kg/m®. Elementary computations show that given the
admissible mass and diameter of the cylinder, its length should not exceed 10cm. By
adding to Eq. (29) dy = 0.1 m and the velocity of the longitudinal wave in brass equal to
approximately ¢, = 4000m/s we get fys = 10kHz. This frequency is equal to the upper
frequency of the required transfer band of the transducer.

By making the preliminary assumption that the lower cut-off frequency of the trans-
ducer f,, = 10Hz and that the reflection coefficient on the transducer-body boundary
is equal to B, = —0.88, from Eq.(33) we denote 8, = —0.95. Given this value of the
reflection coefficient the ratio of the mechanical impedance of the brass cylinder Z, to
the mechanical impedance of the piezoceramic transducer would have to be 39. Given
the similar values of acoustic impedance of both materials this would require a signifi-
cant differentiation between the surface of the cylinder and the piezoceramic transducer.
Because it is contrary to the above criterion, we are forced to abandon the assumption
that f,, = 10Hz. And so we are increasing the lower cut-off frequency to f, = 40Hz
and from Eq.(33) we denote the value of the reflection coefficient 3, = —0.823. As a
result, the ratio Z,/Z is now 10.3 and is acceptable.

If we assume that the radius of the surface of the metal cylinder is r = 2 cm we com-
pute the mechanical impedance Z, = nr?py, ¢, = 40694kg/s and mechanical impedance
of the piezoceramic transducer Z = Z,/10.3 = 3951kg/s. The applied transducer is
made of PZT ceramics of density p = 7030kg/m?, and velocity ¢ = 3480m/s. From the
equation A = Z/pc we compute the field of the surface of the piezoceramic transducer
A=1.6lcm’.

The last value we are looking for is the length of the piezoceramic transducer d. It
should be long enough for the transducer’s resonant frequency to be higher than the
resonant frequency of the metal cylinder which in this case is in excess of 20kHz. The
selected transducer’s resonant frequency is 60 kHz with no acoustic weighting which is
a frequency of f, = 30kHz when weighted with a brass cylinder. The length of the
transducer is d = ¢/4f4 = 2.9cm.

The theoretical transfer function in this design of the transducer denoted from
Eq. (22) is shown in Fig.13.
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As you can see, the location of the resonance meets the expectations. What is more
important the transfer band in the low frequency range is almost plane up to frequency
40Hz. Attenuation in this frequency is as little as 3dB in relation to attenuation in
the transfer band. At frequency of 10 Hz, the sensitivity of the transducer is smaller by
9dB. Therefore, it is safe to say that the designed transducer transfers acoustic emission
signals without significant distortion in the band from 40Hz to 10kHz. Attenuation
of signals in the band from 10Hz to 40Hz is sufficiently small and does not exclude
observation of the signals in this band.

The transducer was built based on the above design. Its construction is shown in
Fig. 14.

100 77

5
31 6
7

8 8

Fig. 14. The structure of the transducer — axial alignment: 1 — opening for the signal socket, 2 — duct
for electrical wire, 3 — technological opening, 4 — brazen body (cylinder), 5 - niche, 6 — shielding of the
ceramics, 7 — piezoelectric transducer, 8 — shielding and the active electrode.

To verify the theoretical and design computations its electrical impedance was mea-
sured Z.(f). The module of the impedance multiplied by the frequency should, according
to the theory, describe the transducer’s transfer function, [5, 13]. As is shown in Fig. 15
the transfer function of the transducer built is similar to the theoretical transfer function
shown in Fig. 13.

The only variances apply to the placement of the resonance of the metal cylinder
and the appearance of an additional resonance at the frequency of about 17kHz. The
increase in the resonant frequency of the brass cylinder is the result of the opening (1)
lying opposite the piezoceramic transducer. The path between the bottom of the opening
and the surface of the transducer is dj, = 77mm which at velocity of ¢, = 4000m/s
gives the resonance frequency of 26 kHz. Lack of resonance at frequency of 20kHz can
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Fig. 15. Electric impedance of the transducer: a) module of electric impedance, b) product of the
module of electric impedance and the frequency.
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be explained by the rounding of the upper surface of the cylinder. The resonance at
frequency 17kHz is matched by the length of the cylinder equal to dj = 118 mm. This
frequency can be tied to the increase in the cylinder’s length caused by the use of the
brass collar (6), which protects the piezoceramic transducer.

The second method of verification of the results of theoretical computations measured
the transducer’s pulse response. We tried to obtain such a response by lowering a steel
ball onto the surface of the piezoceramic transducer and recording the voltage on a digital
oscilloscope. The course of the voltage and its Fourier transform is shown in Fig. 16.

As you can see, the spectrum presented in Fig. 16 is similar to the course of impedance
from Fig. 15 and to the theoretical transfer function of the transducer shown in Fig. 13.

The discrepancy appears mainly in the range of low frequencies. Presumably, the
cause of this discrepancy is the finite time of enforcing vibrations in the transducer
by the falling ball. The course of voltage on the transducer can be identified with the
pulse response only when the activation is theoretically infinitely short. To verify this
hypothesis it was assumed that the activation with the falling ball has the shape of a half
of the sinusoid period. By changing the duration of such an activation, we compute its
convolution with the theoretical pulse response of the transducer presented in Fig. 7a.
The result of the convolution was compared to the course of voltage of Fig.16a. The
highest convergence was achieved when the activation period amounted to 41.7 ps. Then
the course of the voltage had the shape shown in Fig. 17a.
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We can assume therefore, that a pulse of this duration is most similar to the actual
activation of the transducer with a falling ball (Fig. 16a and Fig. 17b). To determine the
transfer function of the transducer we need to divide the module of the spectrum of
the recorded voltage (Fig.16b) by the module of the spectrum of the actual activation,
meaning the module of the spectrum of a half of the sinusoid period of the above stated
duration. The result of this operation is presented in Fig. 17c.

We can observe a significant reduction of the divergence between the transfer func-
tion determined in this way and the theoretical function. The slight difference between
the lower cut-off frequencies of the transfer band can be eliminated by a more careful
selection of the activation shape.

The above transducer was used to measure acoustic emission signals made by tem-
poromandibular joints in almost 200 patients of the Clinic of Maxillofacial Surgery in
Gdansk. A typical signal of acoustic emission and its spectrum recorded in a person with
a diseased joint is presented in Fig. 18.

As you can see, the spectrum of the acoustic emission signal fits in its entirety into
the transfer band of the developed transducer.

6. Conclusion

The presented method of analysis and the design of the transducer dedicated to
the reception of acoustic emission signals of the temporomandibular joint exhibits con-
vergence with experimental results. The transducer built on this basis has the desired
parameters and has proved useful in clinical examinations of the temporomandibular
joint which are systematically done at the Clinic of Maxillofacial Surgery at the Med-
ical Academy of Gdarisk. One can suppose (this is confirmed by initial testing) that a
transducer of a similar structure can be used for the examination of acoustic emission of
other joints, as well. Designs of such specialised transducers can be made following the
above method.

Appendix

After the shift of functions that are present in Eq.(4)2 on the time axis o — 7, and
inserting the first equation we obtain a system of equations that contains only three
unknown functions.

vp(t) = (14 Bp)v'(t — 27) — Bov(t — 27),
v(t) = (1= Bp)vs(t —7) + B0’ (t — 7), (A.1)
v'(t) = (14 Be)vi(t —7) — Bev(t — 7).

To further reduce the number of unknown functions we can eliminate velocity v'(t).
To that end we multiply the first equation by 3, and shift o — 7, and multiply the second
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equation by (1 + ;) and shift o — 27,. We then get:
Bovp(t — 1) = Bo(14 Bp)v'(t — 21— 7) — ,Gg'vb(t - 27, — 7),
(L4 Bp)v(t —2m) = (1= BD)vp(t — 7 — 2m) + Bo(1 + Bp)v' (t — 7 — 2m,).

After subtracting the above equations by the sides and arranging the expressions
we get:

(A.2)

Bovp(t — 7) +vp(t — 7 — 2m) = (1 + Bp)v(t — 2m), (A.3)
By applying the same operations to the first and third equation from the system of
equations (A.1) we have:
vp(t) + Bovn(t — 27) = (1 + o) [—ﬁcv(t —7=21)+ (1 + Bt —7— 2‘rb)]. (A.4)
Equations (A.3) and (A.4) contain two unknown functions, that is vs(t) and v(t).
Let us now multiply the equation (A.3) by g, and shift o — 7. This gives us:
BeBpus(t — 27) + Bevp(t — 27 — 271) = (1 + B)Bev(t — T — 27). (A5)
After adding by the sides the equations (A.4) and (A.5) we get:
vp(t) + Bovs(t — 27) + BoBevn(t — 27) + Bevp(t — 27 — 27)
= (14 Bo)(1 + Be)vl(t — T — 2m). (A.6)
Equation (A.6) is a non-homogenous difference equation with continuous time of the
function v (t). On the right side of the equation is as usual the activation — in our case

it is velocity v.(t). To simplify the notation of further equations let us introduce the
following notation:

r(t) = 8(t) + Bpd(t — 27) + BoBcO(t — 27) + B.O(t — 21 — 27), (A7)

where §(t) is Dirac’s distribution.
Using the above notation, the difference equation (A.6) can be written as:

vp(t) * () = (1 + Bo)(1 + Be)va(t — 7 — 27), (A.8)
where symbol (*) means the convolution operation.
Let us now denote equations which describe the other wanted functions, that is

velocities v(t) and v'(t). To that end, let us note the first of the equations (A.1) in the
form of a convolution with the function 7(t):

vp(t) * 7(t) + Byup(t — 2m) ¥ 7(t) = (1 + Bo)v' (8 — 2m) * 7 (). (A.9)
Next using the equation (A.8), we have:
1+ 8)1+ ﬁc}[v:.(t —7=21) + Bt — 7 — 41},)] = (1+ Bp)v'(t — 27) *r(t). (A.10)

After simplifications, the above equation assumes the following form:

o/(t) #r(t) = (1+ o) [0h(t = 7) + Byt — 7 = 2m)]. (A11)
Similarly, the difference equation is obtained in relation to velocity v(t):
v(t) x7(t) = (1 - B)uo(t — 7) #7(t) + B0/ (t = 7) * 7 (2). (A.12)

Equations (A.8), (A.11) and (A.12) are used in the main text of the article.
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