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Two homogeneous elastic layers are situated between two homogeneous elastic
materials. If the harmonic wave propagates in the direction perpendicular to the layers,
then the reflection coefficient depends on the elastic constants of the layers, their thickness
and frequency. If, instead of the monochromatic wave, the pulse is propagating, then the
reflection coeflicient depends on the frequency spectrum. The pulse in the form of two or
four periods of the sine curve is considered. It is decomposed into a sum, of harmonic,
monochromatic waves. In calculations the pulse was assumed to be a sum of 22 harmonic
waves of different [requencies. The reflection coefficient for this sum was determined. The
reflection coefTicient possesses several minima. Only two of them are technially interesting.
For one of them the thicknesses of the two layers are of the same order.

1. Monochromatic acoustic wave

Consider the case, when two homogeneous elastic layers are situated between
two homogeneous elastic materials. The wave is produced in the first homogeneous
material, propagates across the two layers and enters the second homogeneous
material. One part of the energy of the incident wave is reflected. The reflection
coefficient f is a function of thicknesses, densities and elastic constant of the layers.
If f=0, the system is perfectly transparent, if f=1 the system is perfectly insulating.
For two homogeneous materials given in advance, the elastic layers joining them
may be chosen to minimize or maximize the reflection coefficient. Instead of two
layers, a larger number of them may be used. The equations quoted in this chapter
allow us to perform calculations for an arbitrary number of layers. However, for
most practical acoustic applications, already one or two layers are sufficient.

From the mathematical point of view more interesting is the optimization of the
transition zone between two materials, if the propagation speed and the density are
continuous functions of the distance x, c¢=c(x), p=p(x). It is easy to write the
governing equations, and to calculate the reflection coefficient § for ¢ (x), p (x) given
in advance. In very numerous situations the appropriate analytical formula may be
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obtained, cf, e.g [1]. It is impossible, however, to solve such problem exactly, since
B can not be written as the functional of ¢(x). This is due to the fact that the solutions
of the ordinary differential equation can not be expressed by its coefficients.

Each of the four materials considered (two fixed half-spaces and two layers) is
identified by the subscripts 0.1, 2, 3 (Fig. 1). Thicknesses of the layers are denoted by
h,, h,, respectively. The harmonic waves of frequency w propagate in the direction
perpendicular to the layers. The displacement u in the k-th material consists of two
harmonic waves, the first of amplitude 4, running to the right, and the second one
of amplitude B, running to the left.

Congo C, IQI C?JQZ CJIQJ
QL X, X5 X3 X
h! h?
Fig. 1.
xX—x X —X
u = A.exp iw[t e "] + B, exp iw[t + 5 "J. (1.1)
k k

At the boundaries between the layers both the displacement and the stress are
continuous. It follows that the amplitudes 4,, B, are connected by the matrix

relations (cf. e.g. [1])
A b Ak
I:Bk:l = M, [Bk—l:l- (1.2)

where
2| (1—x,) exp(—ia,) (14x,) exp (ix,)
e Tk g (1.4)
Py € Cr—1

The transfer matrix M, is non-singular, therefore its inverse M ! always exists.
Changing the formulae (1.2) for subsequent k=1, 2, 3, the amplitudes 4,, B, may be
expressed by the amplitude 4, B, and vice versa.

As s An Ao e - | .—1 =3 AS
[4]= w0000, [] [a]= sz aen [£] 0o

Two of four amplitudes may be taken at will. If we take B, =0 and prescribe the
value of A4, then 4, A,, B, represent the amplitudes of the incident wave, the
transmitted wave (both running to the right, Fig. 1) and the reflected wave (running
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to the left). If we take 4 =0, then B,, B,, 4, represent the amplitudes of the
incident and the reflected wave (both running to the left) and the reflected wave
(running to the right).

Take 4,=0 and consider the term proportional to B, as the incident wave: and
the terms proportional to 4, B, as the reflected and transmitted waves, respectively.
The other possible choice (B,=0) leads to the same reflection coefficient, since
a system of layers has no directional properties, [2].

In accord with the above relations, the following expressions for 4, B, are obtained

84, = B, exp(—a,)* (1.6)

H(1=x,)(A+x,)(1+x,)exp(+a,+a,) + (1—«,) (1—«,) (1 —«;) exp(+a,—a,)+
+ (14x,) (1-x,) (1 + ;) exp(—a, +a,) + (1 +x,) (1+x,) (1 —«;) exp(—a,—a;)]

8 B, = B, exp(—a,)* (1.7

H(A=x)(1+K,)(1—k;) exp(+ o, +a;) + (1—x,) (1 —xk,) (1+x;) exp(+a,—a)+

+(1+x,)(1-k,)(1—xk,) exp(—a,+ o)+ (1+x,) (1 +k,) (1 +kK;) exp(—a,—a,)].

The right-hand sides of (1.6), (1.7) are complex numbers. Their squared moduli are
given by the following expressions:

64 A,A,=B,B,[D?+ D%+ D2+ D2 +2(D,D,+ D,D,) cos2a,
+ 2(D,D, + D,D,) cos2a, + 2D D, cos(2a, + 2a,) (1.8)
+ 2D,D, cos(2e, —2a,)].

64 B,B, = B,B,[D% + D%+ D%+ D3+2(D,D,+D,D,) cos 2u,
+2(D,Dy+ D,D,)cos 2, + 2D, D, cos(2a, + 2a;) (1.9)
+2D.D,cos(2a, — 2u,)].

where the real parameters Dy depend on the speed radios k, only,

D, =(1=x)(+x)(1+k,), D, =(1—=x)(1—=x,)(1—x,),
D,=(+x)(1—x,)(1+x,), D,=+x)(1+x)(1—x,),
D,=(1-k)(1+x,)(A=k,), Dg=(1—-k)(1—x,)(1+x,),
D,=(l+k)(1-x,)(1—kK,), Dg=(1+r)(1+k;)(1+ky)

Energy flux g, corresponding to the wave of amplitude A, and speed c, is
proportional to the squared frequency

Gy = Py, A A, (1.11)
This flux is a vector quantity possessing the direction of wave propagation.
Analogous relations hold for the remaining waves of amplitudes 4, B, 4,,..., B,. The

reflection coefficient equals the ratio of the energy flux of the reflected wave and the
energy flux of the incident wave. Therefore

A
p=22
B3

(1.10)

< (1.12)
’BJ
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Obviously 0 <f < 1. The first inequality follows from (1.12), since both the numerator
and denominator are positive. The second inequality follows from the energy conser-
vation law (reflected energy cannot be larger than the incident energy).

Since (1.12) is essential for the further calculations, we write explicitly the complete
formula for B resulting from substitution of (1.7)—(1.9) into (1.12). there is

p=[D}{+D3+D3+D;+2(D,D;+D,D,)cos 2a,
+2(D,D, + D,D,) cos2a, + 2D,D, cos(2u, + 20,)
+2D,D, cos(2x, — 2a,) ]* (1.13)
*[D% + D§+ D3 + D§ + 2(D;D, + D D,) cos 2,
+ 2(D;Ds + D,D;) cos2a; + 2 D Dy cos (2a, + 2a,)
+2D.D, cos(2x, —24a,)] "}

where Dy are defined by (1.10). Note that all parameters in the above equations are
dimensionless.

The reflection coefficient f is a function of the frequency w propagation speeds ¢,
and c, (speeds ¢, and c, are fixed) and thicknesses 4,, h,, f=p (w,¢c,,c,, h, h,).

In order to find for a fixed frequency w the minimum value of f, the partial derivatives
of the function (1.13) with respect to ¢, ¢,, h, and A, must be calculated and put equal to
zero. Then the speeds c,, ¢, thicknesses A, and A, and value of the minimum reflection
coefficient f may be calculated. The corresponding system of trigonometric equations is
very complex and no satisfactory analytic treatment of the equations may be expected.

In the much easier special case of one layer only there exists the following solution.
Take the propagating speed in the matching layer equal to the geometric mean of the
two other speeds. Take the layer thickness equal to a quarter of the wave length
2ne, /o in this layer,

¢, = \Jec,e5 hy=c¢, %, h, =0, ¢, = arbitrary (1.14)
From the relations (1.12), (1.13) it follows that for the above data
fi, =0 (1.15)

Note that this result was obtained only for a monochromatic wave. In the
applications the situation is more involved, since the real pulse is never mono-
chromatic. In [5] and [6] attempts were made to match the impedances for wide-band
pulse using two different layers. In the next chapter such optimization will be provided
for wide-band spectrum corresponding to two different short acoustic pulses.

2. Wide-band pulse

Consider the case, when the ultrasound wave passes from a material of high
impedance into a material of low impedance. In the typical biological applications
the impedances are 30 and 1.5, respectively, [4]. The incident wave reflects partially
on the biological inhomogeneities. The reflected wave carriers the information
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concerning the structure of the examined object. The reflected wave may be properly
detected if no other wave arrives simultaneously at the experimentator. Therefore, at
the instant when the reflected wave arrives to the measuring device, the incident
wave must be already terminated. This fact forces the experimentator to produce in
medium 0 very short pulses, e.g. four perioes of the sine curve only. Typical pulse
used in ultrasonics is

0 for t <0,
u(t) = < sinwgtfor 0 >t < N2njw 2.1)
0 for t > N2njw,,

where @, is a certain fixed frequency, and N natural number, N=1, 2, 3, 4,..., In
order to save space, consider here only even values of N, N=2n.
Time shift transforms the function (2.1) into the odd function of time

0 for t < —n 2n/w,,
u(f) =< sinw,t for —n 2njw, <t <n2znjw,, (2.2)
0 for t > n 2njw,,.

Since the medium is nondispersive, the pulse propagates with speed c, in the medium
0 without change of the profile and duration (but in media 1, 2 and 3 it has another
profile). The time-dependent displacement in medium 0 is therefore

0 for t < x/c, —2nnjw,,
u(x, 1) = ¢ sin w,(t—x/c,) for x/c, —2nnjw, < t < x[/c+2nnjw, (2.3)
0 for t > x/c+2nnjw,.

This motion is not the monochromatic harmonic wave.
Apply the Fourier sine transform to the odd function f(#)

f()= J.I(w) sin w! dw, I(w) = % S(t) sinwtdt. (2.4)

If N is odd, then u(f) after time shift is an even function of time, and the cosine
Fourier transform must be applied. If N is not an integer, then the exponential
Fourier transform must be applied. However, this case is not interesting, since such
displacement is not a continuous function of time. The formula (2.4) allows us to
represent the founction f(¢) in form of a sum of harmonic waves.

For the function (2.2) the spectral intensity I (w) may be calculated from the formula

2nnfw,
2 : ]
I(w) =- J sinw,t sin wt dt. (2.5)
T
0

The integration is elementary. Figure 2 a gives the intensity /(w) for N=4 the pulse
consisting of four periods of the sine function.
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Consider first the case N=4, n=2, represented in Fig. 2. With the accuracy
sufficient for our purposes, the function f(#) may now be represented as a sum of 18
sinusoidal terms

J() =—.60sin (.1w,t) —.38 sin (2w,f) + 41sin (3w, ) +
+.71sin (4w f) — .94 sin (.6w,t) —.73 sin (Tw,f) + 1.03 sin (8w 1) +
+3.18sin (9w, 1) + 4.00sin (w,f) + 2.89sin (1.1w,f) +.86sin (1.2w,1) + (2.6)
—.55sin (1.3w,f) — .64 sin (1.4w ) + 40sin (1.6w,f) +.20sin (1.7w,1) +
—.17sin (1.8w ) — .24 sin (1.9wt) +.16sin (2.1w,1),



TWO MATCHING LAYERS FOR THE WIDE-BAND TRANSDUCER 501

fit)

a5+

0 PP e, L T . ——
2x T e W31 13 t
.os -

=10

Fig. 3.

The above function corresponds to the intensity /(w) shown in Fig. 2b. It is the
approximation of the smooth intensity shown in in Fig. 2a. Obviously f(—¢)=f(),
as demands by (2.2). Figure 3 shows the function f(¢) calculated from (2.4). Each of
the harmonic motions of (2.6) results in the medium 0 in a harmonic monochromatic
wave. The time-dependent displacement in medium 0 equals therefore the sum of 18
monochromatic waves

u(x, t) = —.60sin{.2w, (t—x/c,) } —.38sin{.2w, (t—x/cy)} 2.7
+ 41sin{.3w,(t—x/c,)} +.71sin{ 4w, (t—x[c,)} +...
—.17sin{1.8w, (t—x/cy)} —.24sin{1.9w, (t—x/c,) +.16sin{2.1w,(t—x/c) },

Instead of the non-harmonic pulse (2.1). we face now the superposition of 18
harmonic waves of different frequencies .lo, .20, .3w,,... 2.1w, being the fractions
of the center frequency w,. The waves of frequency much larger than the center
frequency w, have very small amplitudes. For each such wave we may apply the
formulae derived in the first chapter.

Since each of the separate waves of (2.7) propagates and reflects independently
from the others, the energy flux is the sum of individual energy fluxes. Take first into
account the first wave of (2.7), namely the wave —.60sin{.lw,(t—x/c,)} of
frequency .lw,. It carries the energy flux p c, (.1w,)* —(.60)?. The energy flux is
a function of time and space. The above formula should be understood as giving the
average value for one period. In electrical engineering it corresponds to resistive load
and the real power. The part corresponding to reactive load has zero mean value and
is not taken into account. In acoustics it corresponds to the sound intensity. The
second wave carries the energy flux p,c, (.2w,)* (—.38)%. Analogous energies are
carried by the other waves. It follows that the total energy flux of all incident waves
is given by the formula

8, = pocy[(1w,)? (—.60)2 + (20,)? (—.38) 2.8)
+(3w,) (41)% + ... + (1.90,)? (—.24)%].
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In accord with (1.2), the reflected energy flux corresponding to the first wave equals
B (1wy)* pc(—.60)%. Note that B is a function of the frequency, here .2w,. Analo-
gous formulae hold for other harmonic waves of (2.7). The total energy flux of the
reflected waves is therefore

S, = poco[(lwg)? (—.60)2 B(lwy) + (2w,)? (—.38)2 B(2w,)+  (29)
(30,)? (41)2 B(30y) + .. + (1.90,)? (—.24)% B (1.90,)].

Denote by Byaqa the ratio of S, and S,

S,
ﬂbnnd - 3._

(2.10)

This is the effective reflection coefficient for the pulse (2.1)

In the next chapter we shall perform the calculations for the short pulse N=2,
Fig. 4. The function I'(w) is wider and has a lower maximum than that shown in
Fig. 2a. The relation analogous to (2.5) corresponding to this pulse consists of 22
following terms:

f(6) = —.07sin (1w,1) —.63sin (.2w,) — .66 sin (:3w,1) + .11)
—.445in (4w, 1) + .58 sin (6w f) + 1.19sin (7w 1) + 1.68 sin (.Bw, 1) +
+ 1.97 sin (9w, #) + 2.00sin (w,f) + 1.78sin (1.1w,¢) + 1.38 sin (1.2w,1) +
+.88sin (1.3w,f) +.39sin (1.4w#) — .24 sin (1.6, ¢) —.32sin (1.7w1) +
—.27sin (1.8wf) —.14sin (1.9 ¢) 4 .11sin (2.1, 1) +.165sin (22w, +
—.14sin (2.3wt) + .08 sin (2.4w,,1).

Hew)

Fig. 4.

Numerical summation similar to that presented in Fig. 3 for (2.5) proves that the
above formula provides sufficiently good approximation for the calculation of
optimal matching layers.
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3. Numerical results

The calculations will be performed for the data typical for the medical ap-
plications

PoCo = 30 10° kg/m2s, p.c, = 1.5 10° kg/m?s (3.1)

Since this paper is aimed only at the recognition of the medical applications, we
prefer not to introduce dimensionless variables. The results are less general, but
easier to follow. The only exception is made for the thicknesses h,, &,, which are
replaced by the products

H =wh, H,=wh, (3.2)

Let us start with the pulse consisting of four periods of the sine curve. The matching
layer (1.14) is

(c,)s = 6.7082 105 m/s,  (H,)s=10.532 m/s. (3.3)

If the wave is monochromatic of frequlency w,, then the reflection coefficient
B, for this wave equals zero. However. for the pulse represented in Fig. 3,
the reflection coefficient for the layer (3.3) calculated from (2.7)—(2.9) is not
Zero, :

Bs = .10931. (3.4)

This is not a minimum even for one layer. A slightly better result may be obtained
for other thicknesses and propagation speed,

(¢;)n = 6.7091 10° m/s, (H,), = 10.34 m/s, g, = .10695. (3.5)

This is the wide-band minimum for one layer.
In order to find two layers leading to lower f, the numerical analysis of (2.9) was
performed. There exist many minima, but only some of them are interesting. For

¢, = 12.7 10° m/s, H, =.172 m/s,
¢, = 3.30 10° m/s, H, =.043 m/s, (3.6)

there exists a minimum
B = .03023 3.7)

It is more than three times lower than f,, as given by (3.4), or than f,,
as given by (3.5) et

Essential for the possibility of manufacturing the .two layers (3.5) is the
knowledge of the neighbourhood of the minimum. If the values of § near the point
(3.5) are high, then it would be rather difficult to achieve value of f close to (3.6).
Figure 5 shows the map of points ¢,, ¢, for which .035<f<.040 provided H,, H,
are fixed. The ovals are centered at (3.5). The length of the horizontal line represents
propagation speed of 105 m/s.
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10° m/s

Fig. 5.

It is interesting to note there exists another minimum, situated far from the
minimum (3.6)

¢, =779105m/s, H,=.120 m/s,
c,=204105m/s, H,=.159 m/s. (3.8)
B = .07195. | (3.9)

This minimum is not so low as that given by (3.7). Note that the thicknesses of the
layers are of the same order. In some situations this fact may simplify the
manufacturing process. The reflection coefficient f, .0775< 8 <.0875 occupies the
area between the two ovals, Fig. 6. Inside the inner oval the reflection coefficient

10° m/s

Fig. 6.

satisfies the inequality f <0.7775. Both ovals are centered at (3.8), the horizontal line
represents 10° m/s. Note that the minimum is wide, therefore no extra accuracy is
needed for manufacturing the layers.

Two examples of technically uninteresting minima are

¢, =11.24 10°m/s, H, = 50.86 m/s,
¢, = 3.25 10° m/s, H, =15.19 m/s.

= .12676.

This minimum is local minimum of the reflection coefficient. Note that its value is
larger than f,, as given by (3.4). A very narrow minimum exists at

¢, =670 10°m/s, H, =10.20m/s,
¢, =17.50 10° ,/s, H,=.114 m/s.

B = .10726.



TWO MATCHING LAYERS FOR THE WIDE-BAND TRANSDUCER 505

Pass now to the very short pulse consisting of two periods only, N=2, n=1. In
accord with the spectral decomposition Fig. 4, we base on the formula (2.11). The
matching layer (1.14) coincides with that given by (3.3), since it is determined by the
central frequency w,, and is independent of the distribution of frequencies in the
band. The wide-band pulse (2.11) reflecting on the layer (1.14) has the reflection
coefficient

B, = 21918. : (3.10)
The value of f is slightly smaller for the following single layer, némely
(€)m=6710105m/s, (H,),=9914m/s, f, =.20546. (3.11)

This is the wide-band minimum for one layer. Note that both (3.3) and (3.11) give
layers slightly thicker than (H)s, and propagation speeds slightly lower than (c,)s
The formula (2.10) leads to the conclusion that at
¢, =132510°m/s, H, =.198 m/s,
c, =3.37 10° m/s, H, = .0506 m/s, (3.12)

2

there exists a minimum

B = .05961. (3.13)

10° m/s

Fig. 7.

10° m/s

Fig. 8.
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Figure 7 shows the map of values c,, ¢, corresponding to. 065 < #<0.7 It is seen that
the valley is rather wide. At the point

¢, = 8.36 10° m/s, H, =.125 m/s,
c, = 2.31 10° m/s, H, = .217 m/s, (3.14)

there exist another minimum

B = .1770. (3.15)

The valey corresponding to this minimum is rather narrow. The values
180 < #<.185 are situated between the two ovals, Fig. 8. Note that the gain due to
the second layer is larger for the short pulse.
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