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DETERMINATION OF DYNAMIC PROPERTIES OF SINTERED
COPPER POWDER FROM ULTRASONIC MEASUREMENTS
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The overall (effective) dynamic properties of sintered copper powder with air-saturated
pores at moderate porosities are deduced from suitable ultrasonic measurements carried out
at low porosities in the long-wavelength approximation. The effective dynamic properties
of the two-phase composite at low and moderate porosities are analysed computationally,
the properties of the pure matrix material being in the first step determined by ex-
trapolation from suitable ultrasonic measurements carried out at low porosities, and by
employing the Berryman's sel(-consistent single scattering theory. The presented results
confirm the ultrasonic measurements to be extremely useful in estimating the influence of
the volume concentration and shape of the inclusions on the overall dynamic properties of
porous two-phase composites at porosities [rom a wide range of porosity.
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1. Introduction

One of the main objectives of material science of random composities is the
formulation of stress-deformation relations that govern the mechanical response of
a material under specific environmental conditions (loading). In the approximation
of the linear elasticity theory, these relations can be written when the effective Lamé
constant are known. Therefore, predicting the effective Lamé constants of macros-
copically isotropic composites is of great engineering importance. The subsequent
considerations are confined to this case and concerned with bulk samples of an
isotropic two-phase solid. The inclusions are of the form of ellipsoidal pores with the
same shape, and random size and orientation, the pores being air saturated or
evacuated.

This paper grew out of the analysis, which the author performed to prepare the
paper [1] for publication. In Ref. [1], for the sake of brevity the emphasis in the
presentation of the results of analysis is laid on the propagation properties of
sintered copper powder rather than on the overall dynamic properties. Due to the
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limitation in the desired size of this volume, it was decided that the concluding
sections of the text concerned with the investigations of the dynamic properiies
should be presented as a supplementary article.

Because of the great engineering importance of the problem, there are numerous
works devoted to the ultrasonic technique as a tool for the determination of the
effective dynamic moduli of sintered metal powders. Therefore, it seems to be
reasonable to point out the main reason which, in our opinion, justifies presenting
the subsequent study as another paper concerned with the problem mentioned above.

According to the simple two-phase model, which is commonly used for the
prediction of the elastic behaviour of a sintered metal powder, such a material is
regarded as consisting of a solid matrix with the properties of a pure metal, in which
inclusions are dispersed in the form of voids. Therefore, in such approach the matrix
phase is treated in the linear acustic approximation as a perfectly elastic material
with the real elastic moduli of the pure lossless metal. In this model, the matrix
subdomains are regarded to be filled by a material which is free from both
inelasticity (dissipation properties) and scattering centres. The apparent sensitivity of
the velocity and attenuation of ultrasonic waves propagating through such a me-
dium, to the changes in the inclusion shape is discussed an analysed for non-spherical
inclusions, to some more or less limited extent, in such papers as [1—6].

The assumptions of the simple two-phase model are in contradiction to the really
existing inelasticity in the matrix phases of the sintered metal powders, the
inelasticity being mainly due to the lattice defects, impurities and some distributions
of residual local stresses and imperfect adhesion between adjacent metal grains.
These randomly occuring flaws contribute to highly variable scattering and dis-
sipation properties of the matrix material and causes that the observed components
of the Hooke's tensor are complex.

This paper presents an attempt of applying a more complicated model of
two-phase media proposed by the author in the paper [1] to.the determination of the
effective dynamic moduli of sintered metal powders. In this model, the complex
elastic moduli of the matrix phase of the composite under study are to be determined
from ultrasonic measurement of the propagation velocity and attenuation of
ultrasonic waves in two samples of the composite, the samples being characterized
by different and small volume concentrations of the inclusions. In the present work,
the influence of the pore shape on the effective dynamic moduli of the composite is
examined computationally with the aid of an algorithm supplied by the
self-consistent scattering approach of BERRYMAN [4].

2. Formulation of the problem
As it was mentioned, the subsequent considerations are concerned with bulk

samples of an isotropic two-phase (porous) solid of the form of sintered metal
powder. The matrix material is composed of a large number of metal (copper) grains
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of random size, shape and orientation, the adjacent grains being joined toghether
more or less closely (perfectly) by adhesion due to the sintering process under high
hydrostatic press. The imperfection of the adhesion between adjacent grains and the
other matrix material flaws as well as the size and orientation of the pores with the
same ellipsoidal shape are also assumed to be random, the pores being air-saturated
or evacuated. Under these assumptions, the matrix material may also be regarded as
an isotropic solid material, although its elastic moduli differ from those of the
polycrystalline metal, and are to be determined experimentally from ultrasonic
measurets in a manner mentioned above.

In the remainder of this paper, the standard abbreviations are used for the
quantities involved in the description of the propagation of ultrasonic waves and the
material parameters of the constituents of the heterogeneous material under study.
Thus w and ¢ denote the angular frequency and time, respectively, p stands for the
density, Cj i, j, k, /=1, 2, 3 denote the components of a Hooke's tensor K and y are
the bulk and shear modulus, respectively, of an elastic isotropic solid. 4 denotes the
Lamé constant which is related to the moduli K and yu by the following formula:

A=K-— %,u. 2.1)
The effective material parameters of the isotropic two-phase solid as a whole and all
the other quantities referred to this material are labelled by asterisks, i.e. p* denotes
the effective density, K*, u* and k* denote the effective elastic moduli of the
heterogeneous solid. Similarly, throughout the paper all the abbreviations with the
sub- or superscripts m and i denote quantities referred to the isotropic material of
the matrix and inclusion, respectively. Similarly as in [1], the ultrasonic waves
propagating through the two-phase medium are assumed to be plane linearly
polarized waves, which can be described by the following formulae:

u(r, )* = e By exp(—iKye,r) exp (iwt), (2.2)
where
K}, = (ofvy) —iag, p.g=1273, (2.3)

B%, stands for the amplitude of the wave, e, and e, are the unit vectors in the
directions of the Ox, and Ox, reference axes of a Cartesian coordinate system fixed
in the sample, respectively. Formulae (2.2), (2.3) describe an attenuated plane wave
being polarized in the direction e, and propagating in the direction e, with the
velocity vy, and amplitude atenuation coefficient a3, henceforth referred to as
attenuation coefficient.

Let us suppose that the velocity and attenuation coefficient are measured on
ultrasonic pulses propagating through a single bulk sample of the two-phase
composite under study, the pulses being generated by a transducer oscillating with
the frequency @ normally or transversly to the coupling surface. On the strength of
the definition of the bulk volume, the vlume of the sample is large enough to include
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a large number of inhomogeneities of each type occuring in the heterogeneous solid.
Then it seems to be reasonable to suppose that the measured wvelocity and
attenuation coefficient of the ultrasonic pulses are equal to the propagation velocity
vy, and attenuation coefficient a}, of the respective ultrasonic wave appearing in
formulae (2.3)

If

p¥ = 1/Z*@, g = —@Z*®,  Z* = [p*/C(@)%e" 24)

pPa

then the expression given by formulae (2.2), (2.3) is a solution to the following
equation of motion for the effective homogeneous (equivalent) medium:

C(@)fu w* (r, Dijo + w?p*u*(r, 1), = 0. (2.5)

Throughout the paper, the real and imaginary parts of complex quantities are
denoted by the superscripts (a) and (b), respectively. If the effective response of the
bulk sample of the composite is a plane attenuated wave given by formulae
(2.2)—(2.4), then the equivalent homogeneous solid is characterized by the density
p* and components of the complex Hooke’s tensor,

C@)him = C@)}n® + iC (@)™, (2.6)

which can be calculated from the macroscopic propagation parameters vj, and
ajy, of the wave, by making use of the following formulae:

C(0)}p™ = B(1-2%), C(w):qrq(b) = 2Bz,
where 2.7
B 10V po(] +z2).-2, £ =CPy e

Formulae (2.7) are obtained by solving Egs. (2.4) with respect to C(w)¥,,,® and
C(0)%,”, p. g=1, 2, 3. Formulae (2.7) enable the effective complex moduli
C ()%, and C(w)3,,? to be determined from the measurements of the macros-
copic parameters of the ultrasonic wave propagation, v}, and a},, in the composite
bulk sample under examination. Thus Eqs. (2.2)—(2.7) suggest an experimental
method of performing the task of establishing the structure and frequency dependen-
ces of the propagation and effective material parameters of two-phase media with
non-spherical inclusions. More straictly speaking, in accordance with (2.4), the
dependence of the effective material parameters on the volume concentrations of the
matrix and inclusion phases ¢, and ¢, respectively, and on size, shape and
orientations of the inclusions as well as on the frequency can be determined
empirically from ultrasonic measurements, after preparing the respective bulk
samples. This task is regarded as the main problem of this paper.

Equations (2.5) together with formulae (2.4) show how the overall macroscopic
response of the composite material to dynamic loading of a transducer oscillating
with the frequency w, normally or transversely to the coupling surface, is determined
by the effective material parameters. In view of that the dynamic effective material
parameters are the essential parameters determining the utility of heterogeneous
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materials in engineering applications. For this reason, every method which enables
us to establish the structure and frequency dependence of these parameters is of
great importance.

In contrast to the simplicity of the above macroscopic relationships, which
suggest the experimental assessment of the structure and frequency dependences of
the propagation and material parameters of two-phase media, in theoretical at-
tempts of finding these dependences, problems of great complexity are always
involved. The dynamics of the multi-phase media with non-spherical inclusions is so
complicated that, for a wide range of the volume concentrations c; of the inclusions,
we would be content with performing a computational analysis of the problem of the
propagation of ultrasonic waves in such media. The computational investigations,
some results of which are presented in Ref. [1] and in the next section of this paper,
enable us to establish the desired dependences. Similarly as in paper [1], in
performing such numerical analysis we make use of the self-consistent approach
proposed by BERrRYMAN [4] for analysing N-phase media, N being a natural number.
According to the Berryman's approach, the self-consistent effective (equivalent)
medium is determined by requiring the net scattered, long-wavelength displacement
field to vanish on the average.

On employing the results of MaL and Knororr [8] as well as of Wu [9] in the way
that was presented in Ref. [1], BERRymaN [4] arrived at an algorithm for com-
putational investigation of mechanical properties of N-phase media with ellipsoidal
inclusions. Considering the two-phase media with ellipsoidal inclusions, the Ber-
ryman'’s concept yields the algorithm (2.8) given below which is employed in our
computational analysis

K* = (CeKiP*m)/(C:P*‘ + e, P*™),
, (2.8)
p* = (O + i Q) (¢, Q% + ¢, @*™).
The quantities P* and Q* can be expressed in terms of Wu's [9] tensor T in the
following general form [4]:

1 1 1
P o= "3' T:pqq’ g* = 'S'(T;qpq Ty T:pqq)' 2.9)

where the formulae P, Q and T derived by Wu [9] are also listed in the Appendix of
[4]. These formulae will not be rewritten here. P*, O* and T* denote expressions
obtained from the formulae for P, Q and T, after replacing the matrix material
parameters by the respective parameters of the effective equivalent homogenous
medium (material of type — *)

Among those data which are required by computational methods are the
material parameters of the matrix phase. The material parameters of the matrix
phase (sintered metal grains) are to be determined from ultrasonic measurements.
To point out this concept let us notice that equation (2.5), together with formulae
(2.2)—(2.4), define the overall effective response of a bulk sample made of the
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- matrix material to the dynamic loading of the transducer, after replacing each of the
asterisk by superscripts m. If the hypothesis of the possibility of finding the
homogeneous equivalent medium is reasonable and the effective response of the
bulk sample of the matrix material is a plane attenuated wave given by formulae
(2.2)—(2.4), after replacing the superscripts * by m, the equivalent matrix material,
henceforth called shortly matrix phase, is characterized by the density p™ and the
components of the complex Hooke's tensor.

To determine the matrix phase elastic moduli K™ and u™, we employ a sequence
of values of K* and p* (deduced from measurement of the values of vy, and a}) for
two distinct porosities, say c;, and c;,, both the porosities belonging to the range of
low porosity. In this porosity range, it is to be expected that the effective elastic
moduli of the sintered metal powder become linear functions of porosity as the latter
approaches sufficiently small values ¢;; and ¢;;, and, consequently a linear ex-
trapolation of these quantities beyond the limits ¢;, <c, <c;, is possible. Carrying
out such an extrapolation for the limiting case ¢;=0, we obtain an estimation of the
values of the matrix elastic moduli, K™ and p™. It can be done by using the following
formulae given by author in Ref. [1]:

K" =Kt — ¢;, (Kt — K3) [ (ciy — €i3)
(2.10)
U= u¥ — ey (¥ — ud)/(cy — i),

-where the symbol F*, ¢=1, 2, denotes the value of the effective quantity F* (F*
stands for K* and p*) at the porosity ¢,

3. Numerical results

Numerical calculations were performed for frequency f=w/(2n)=4Mc/sec.
The following values were taken as the material parameters of the composite
(sintered copper powder) under analysis [1]: p™=8.92 g/em3, p'=0.001347 g/cm?,
K@ =141268*101! Pa, K¥=1.2159*10° Pa, u?=4.878*101° Pa, u®)=4.78857*10 Pa,
K?®=1.595*10% Pa, K =0, u{?=0, uf’ =wn/p’, where n denotes the dynamic viscosity
of air (17,=1.8*10"* Poise). The values of K, K%, % and p( were calculated from
the linear extrapolation of formulae (2.10) and (2.7), by using the following results
of our own experiments: ¢;; =0.0068, ¢;, =0.0176, ¢;, =4758 m/sec, ¢y, =2325 m/sec,
ap;=19.52m™, ar, =797 m™?, ¢r, =4677 m/sec, cr,=2304 m/sec, 0, =24.78 m™?,
or,=12.25 m™ !, Some results of the numerical calculations are presented in Figs.
1 — 8. These results visualize how, at the loading frequency f=4 Mc/sec, the dynamic
elastic moduli (Lamé constants) K* and u* of the sintered copper powder depend on
the volume concentration of the ellipsoidal inclusions, their shape and size. The
calculations were carried out for both prolate (a>b=c) and oblate (a=b>c),
air-saturated spheroids under the assumption that the shape of each pore in the bulk
sample under examination is to be characterized by the same value of the shape
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factor Z=a/c, independently of the pore size and orientation. The shape factor is
a measure of the elongation or oblateness of a prolate or oblate pore, respectively.
From the computational analysis (Figs. 5— 8) it follows that, under the condition of
fixed values of Z and porosity, the changes from prolate to oblate pore shapes (or
vice versa) cause only very small changes in the value of the effective dynamic
moduli. The air can be thought of as supplying a correction to the respective results
for evacuated pores. From the computational analysis it also follows that it is
justified to replace in the analysis the evacuated pores by air-saturated ones, since
the discrepancies between the results obtained for both the cases are very small
(<1.5%).

4. Conclusions and remarks

Contrary to the simple model of a two-phase material composed of two
lossless constituents, the presented analysis of the wave propagation based
on the Berryman concept [4] leads to the situation where the scattering is
not the only mechanism of the overall attenuation of the composite, but
in lasticity of the materials of the phases themselves contribute also to this
effect. It occurs since the elastic moduli of the both phases are assumed
to be complex.

In Figs. 1—4, the dynamic bulk and shear moduli Lamé constants K* and p*
of the sintered copper powder are plotted as functions of the shape factor Z=a/c
for various values of ¢; (porosity). The general tendency of the real and imaginary
parts of the dynamic moduli is to decrease as porosity increases. The results also
indicate that in the case considered, the contribution of scattering to the
imaginary parts of the complex components of the overall Hooke's tensor
increases with increasing porosity more slowly than the contribution of the matrix
phase inelasticity decreases. In Figs. 5—8, the increases of the real and imaginary
parts of the dynamic moduli of the sintered copper powder are plotted as
functions of the shape factor Z=a/c for various values of porosity, the increases
accompanying the changes in the pore shapes from prolate to oblate ones under
constant value of Z.

Although all the results presented above have been obtained under the assump-
tion that the long-wavelength condition (4> D) enables the single-scattering
approximation to be used, and that the non-spherical inclusions are randomly
oriented in a bulk sample of the composite, it can be stated that the presented results
confirm the conclusion of paper [1] that the ultrasound is extremely useful
in estimating the elastic and inelastic properties of the heterogeneous matrix phase
as well as in determining the influence of the volume concentration and shape
of the inclusions on the overall dynamic properties of the multi-phase composite
under study.
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