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WAVE PROPAGATION AND SCATTERING IN ELASTIC PLATE
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Bragg reflection of plate waves in isotropic elastic plate with a periodically grooved surface is
analyzed. Mode-coupling effect is also taken into account. The analysed problem may be applied
in the construction of piezoelectric resonators and RAC filters.

1. Introduction

SAW propagation and Bragg reflection phenomena on piezoelectric substrate with
periodically corrugated surface were investigated in details [11, [2], [3]- In the substrate
(piezoelectric halfspace) usually propagates one surface mode [1], [4] and the Bragg con-
dition has the form K = 2k,, where k' — wave number of grooves system and k, —
SAW wavenumber.

In the elastic plate case situation is more complicated because of multimodal propa-
gation of plate waves [5], [6], [7], [8]- Different plate modes may be coupled by formula

K=k +k;,

where k; — wave vector of forwards propagating mode, k; — wave vector of backwards
propagating mode.

This is Bragg reflection of the first order. In this paper Bragg reflection of slant
propagating wave (with reference to groove system) is analysed. Mode conversion is also
discussed. We consider isotropic elastic plate to be made of material characterised by
p-mass density and Lamé constants A and p. Upper surface of plate is corrugated, the
lower is flat (Fig. 1).

Surface corrugation is small, so we may apply a perturbation theory:
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h — groove amplitude, A — period of groove system, d — plate thickness.
We consider waves which are propagating in any direction on a (z, z) plane. According
to Floquet theorem, displacements and stresses in the plate may be written in the form
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FiG. 1. Elastic plate with grooved upper surface (cross-section).

of Fourier series:

T;: = Z Tl_(:'-)e—j(a-bnlf}ze-jrzejwt > (1)
n

u; = Z HSN)e—j(s+nK]ze——jra:ejwt ) @)
n

where i, j = z,y, z (1,2,3 analogously), and 7 > 0, s > 0 — components of wave vector
of the incident wave in @ and z axis direction respectively (Fig. 2).
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FiG. 2. Wavevectors for n = 0(k*), n = —1(k~ ) Auxiliary coordinate systems-axes 3'||k are presented.

In this paper, for simplicity, we will take into account only the lowest harmonic com-
ponents, coupled by Bragg condition i.e. components corresponding to n = 0, —1 (Fig. 2)

Ty = (Te i TeleriIn)e-ireeivt . 3)
u; = (u:-e—jsz W u‘l—e—j(a-f{)Z)e—jrxejwt . (4)
This simplification is sufficient in analisys of the first order Bragg reflection of slant

propagating wave with possibility of mode conversion. In the case of propagation along
the grooves (eg. for s = 0), it is necessary to with components account for n = —1,0,1
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(which is discussed in section 3). Factor exp(jwt) is ommited in a further part of this
article.

In section 2 basic plate equations and so-called generalized Tiersten boundary con-
ditions are discussed. Numerical results are presented in section 3. Appendix A shows
the influence of higher harmonic components in series (1) (2) on results. Appendix B
presents a form of solution in the case of plate corrugated on both surfaces (upper and
lower).

2. Formulation of the problem
2.1. Generalised Tiersten boundary conditions

Let us consider free material surface streaching for y > ((z), where
y={(2)= he—iKz 4 p*eiKz (5)

described sinusoidally corrugated surface with period A = 27 /K and amplitude h <
A. 1In [1] were presented so-called generalized Tiersten boundary conditions. These
are relationships between stresses on mean surface y = 0, and known displacements
on the same surface. On other hand, generalized Tiersten boundary conditions replace
homogeneous boundary conditions on corrugated surface by inhomogeneous boundary
conditions on mean surface (in simplification of small corrugation).

Relations presented in [1] are (detonation of complex amplitudes of stresses and dis-
placements are analogous to (3) (4)).

g, Gu 0 Gy g
T;y = 0 Gzz 0 Uy, |, (6)
gl Gn 0 Gsun] [u]

where
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G =pw2—p(4)i+2#s(s—ﬁ)+r2).

Relationship for 7; as a function of u} can be obtained from (6) (7) by replacements:

h— h*
84+ g =ik . ®

—_— +

For our purposes it is more useful to write relations (6)—(8) in another form [1]. We now
introduce two additional coordinate systems such that axis 3'||k/, I! L 3! and 2! = y,
l = +,— (Fig. 2).
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In the same way as in [1] and [9], we can transform tensor components from (6)—(8)
to new coordinate systems. After transformations we obtain

= hg“ 3 9
- = h*ghtut, (10)
where
o 050
g= 0 gn 0], (11)
—gi3 0 gxn

gn = k*’k ——{(** + 's(s — K))[pw* - p(r® + s(s — K))] + urtK?
Ry P S B i

g = k+k_[pw 2u(r? + s(s — K))]

gn = pw’

1 A+
s = e { 7% o5 = KON = 5 07+ 85 = K-

i ,,2}
o 2”1‘ K (12)

where vectors T! i u' are (in short matrix notation) T' = [T¢, T4, Ti17, u' = [u{, uj, ui)T
| = +,—, and wave numbers k* i k= are such that

*im [T = Vo2 £ 72

13
k= k7] =/ (s = K) + rt. g

2.2. Impedance relations for elastic plate

yz2
r=(1,%,7,]
g
5 u=lu,, uyuyJ
0 €3

Fic. 3. Elastic plate with heterogenous boundary conditions on upper surface (cross-section).
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Let us consider now the elastic plate bounded by planes y = +d/2 (Fig. 3), with its
bottom surface stress-free and upper surface by harmonic stresses subjected to exp(—Jjk&).

Making use of equations of motion for elastic plate, after some transformations [10]
we obtain so-called impedance relations for plate, ie. relations between stresses and
displacements on upper plate surface

u=xT, (14)
I 0 0

X= 0 Ty T3 | (15)
0 23 3

where: T = [T, T3, T3], u = [uy, uz, u3)T in our (Fig. 3) coordinate system (7, y, &)
Nonzero elements of matrix x are

— cos 3d
Ty = “—SZ[S_— (16)
d d d d
= o' i T B WG LR Y @ a
Ty ZM'ALa(k +ﬂ)(smazsmﬁ2A1 cosazcosﬁzA2> 17
B L e o T
T3y = Z,u-AL'G(k +/3)(sma25mﬁ2.d2 cosazcosﬁzAl (18)
534k d B O) glate,pt m g
1:23_]2#-/_]1, ((Zaﬁ/_'\2+(k -p )A;)smﬂzcosai+
+ (2084, + (k* — f7)A;)sin ag cosﬁg) (19)
Ty =Ty (20)

where

2 2
2+ A
azz(_w_) g o) z=(i)_kz,v=/&,v= fk X oz oy
A B Ve T ik 3 (21

Signs of a and # may be assumed both plus or minus because relations (16)—(20) are
even with respect to this variables.

Ay = (K - ﬁz)sinagoosﬂc—zi + 4k2a,@cosag sin ﬁg (22)
A; = (K - 6% sinﬁg cosag + 4k*af cosﬁg- sin ag (23)
Ap = A+ A (24)
AT = ﬁ $ sinﬁ . (25)

Formula (14) is the Fourier transform of Green’s function for elastic plate (k is Fourier
transform variable). Dispersion relations for plate waves may be obtained, if we put zero
to determinant of the inverse matrix from (15) (T = 0 is boundary condition in this
case). Element z,, describes propagation of SH plate waves, other nonzero elements —
propagation of Lamb modes.
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2.3. Dispersion relations

For isotropic plate, relations (15) are independent of the wave propagation direction.
So if the system of coordinates on Fig. 3 is such that axis £ = 3*(y = 2%) then by
substitution £ = k* we have relations for incident wave.

ut = xO1*, (26)
If we put k = k= (€ = 37,y = 27) we obtain relations for reflected wave.
u e xGUT (27)

Relations (9), (10), (26), (27) are sufficient for the determination of dispersion relations
of waves propagating in corrugated plate. Substituting (10) to (27) and (11) to (26) we

obtain
{ ut = hixOgu~

u” = h*xVglyt (28)
So we have a system of 6 equations with 6 unknowns [u];u; ] ¢ = 1,2,3. Dispersion
relations may be determined by putting to zero determinant of equations set (28). It is

easy to reduce set (28) to equivalent set 3 X 3 equations:

{1- |h|*A}u* =0, (29)
where:
A = xOgx(-gT | (30)
Finally, the dispersion relation is
det{I — |h|*A} = D = 0. (31)

To solve equation (31) generally is quite difficult and only numerically possible, but
equation (31) is much simpler in two special cases:

1. for r = 0, i.e. normal incidence of wave onto grooves

2. for s = 0, i.e. wave propagation along the grooves Those special cases are investi-
gated in the next part of this paper.

3. Numerical results
3.1. Normal incidence onto grooves

In numerical calculations presented in this section it is assumed that:
— s € (0, K), i.e. s is in the first Brillouin zone;
— angular frequency w is normalised to 2 = w/Vp, 2 € (0, K);
— it is assumed that h = 0.014;
— it was assumed Vi, = 2Vp;
— plate thickness d is normalised Ad = mA, in our case: m = 1.
For r = 0, i.e. in the case of normal incidence of wave onto grooves the non-zero
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elements of A matrix are

0 -1
Ay = a"(ll)wgl ).'-7121
0y (-1 0, (-1
Ap = 55;.2)33‘532 )9:%2 + 23325 V9002
0) (—1 0) (=1
Ay = a:gz)wgs )9229'33 + x§§x§3 )9'323 (8

0 -1 (1] -1
Ap = 9352)55%2 )9222 + 9’%3)935.2 922933

0)_(—1 0)_(—1) 2
Az = mgz)m(zg )922933 + 3%3}35.3 )933 ;

So equation (31) takes the form:

D= DDy %0, (33)

where:
Dr =1- |h|*Ay, (34)
Dp = 1— |h[*(An + Az3) + |h|*(AnAss — Ands). (35)

Relation (34) describes the propagation of SH (transverse) plate modes, and (35) the
propagation of Lamb modes. It is worth to note that in » = 0 case SH and Lamb waves
propagation is independent, so may be independently analysed. Fig. 4a shows dispersion
curves {2 = ((s) for free (uncorrugated h = 0) plate, at m = 1(d = A). In this
case in our structure always (independent of plate thickness) propagate three modes: —
Antisymmetric Ay and symmetric S, Lamb modes, — S H, transverse mode.

In corrugated plate (h # 0), corresponding relations are more complicated — Fig. 4b.
Existence of forbidden frequency bands — marked A, B, C, D, E on figure, is charac-
teristic for this case. In those frequency bands wavenumber has complex values — which
is connected with effect of Bragg reflection: band A is connected with reflection of S H,,
mode backwards to S Hj, band B : Ay — Ay, and band C : S, — S,. For bands A — C
solutions for s may be written in the form s = K /2 + jIm{s}, where Im{s} is small
in relation to K (and dependent on h magnitude). Bands D and E are connected with
Bragg reflection and mode conversion (S5, < Aj). It is interesting that in those cases
inside frequency band Re{s} # const # K'/2, because of the different velocity of coupled
modes. For 5 H, mode, we approximate the form of dispersion relation. Assuming that

sinfd =~ fd; cosfd =~ 1,
we obtain from (34)
(P - )P (s - K- k¥ (2> = s(s— K)): =0, (36)
where £ = |h|/d, so complex solutions for s we obtain if

K [1-k K [1+&
Qe(_Z— 1+n’7V1—n)’ )
(then Re{s} = K'/2). Finally width of frequency band is

K
A = K ——. 38
i (38)
For plates thicker then m = 3, higher plate modes may propagate and corresponding
dispersion relations are much more complicated.
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Fig. 4. Dispersion curves for a) uncorrugated plate with d = A
b) corrugated plate d = A and £k = |hl/d = 1%.
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3.2. Propagation along the grooves

As it was mentioned in Sect. 1, in this case we must regard 3 harmonic components
in series (1) i (2) thatis n = —1,0,1

Tum (Tt 205 4 The 305 K05 pTh e i0vRnyg=irz (39)
u; = (ufe™9%% 4 yye I~z 4 yremiletK)zy iz (40)

In our case (Fig. 5)

X}
=i

- | AR

FiG. 5. Wavevectors taken under consideration in the case of propagation along the grooves

kt=r

k=" =k=vK2+r2, (41)

Generalized Tiersten boundary conditions have now form

T = hgu™ + h*gTu™, (42)
T ="h*g'u*, (43)
T~ = hgu', (44)
where
T '
gu = F(p’ — u(r* - KY), (45)
K
g13 = “E*(sz - 2ur?), : (46)
gn = pw?, (47)
B 2_ g, AtH o 2) ,—2)
ot E((pw Wt - b K (48)

at T = [T¢, T4, THY, o = [ul, ul, ul]T, where | = +, —, ~.
Impedance relations for n = +1 may be find analogously as in section 2.3
u™ = 7T (49)

it is easy to find from (41) that for n = —1 in our case x(~1) = x(1). Finally we obtain an
analogous to (28) system 9 equations with 9 unknowns.
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ut = hx@® = gu= + A*xOglu~
B = hoxt Vghaet, (50)
u™ = hx("Vgut .
This set may be easily reduced to an equivalent system 3 x 3 analogous (29) with
A = xOgx("DgT" 4 x(”)ng('Qg. (51)

It is important that dispersion equation has analogous form to (33), but solutions
have a quite different character — this is waveguiding by groove system (Fig. 6). There
is no Bragg reflection of incident wave in this case. But in parts marked A and B on
Fig. 6 we have coupling between waves propagating along grooves (.S, S Hy) with modes

propagating with wavenumber £ = v/ K2 + r2 (marked X on figure). Those modes are

a)

art =02

08 kK

0 a2, 04 06 08
K . ¢ d)
10 0-06 \ o6 F° 0=05
08 + A
¢ 05
06 L
A
04
o}
3
02t g
H.
|SG 1 SD] 1 Ir az 1 i 1 A1 r
0 02 040, Q8. 08 K TR0 m i aPohe

FI1G. 7. Slowness curves for d = A.
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connected with harmonic components n = +1(k~ = k™). Numerical calculations show
that in the case of small distorsion (about 10°) influence of components n = +1 i.e. k™
may be ommited.

Results presented in this paper are essentially good agree with results published in [2].

3.3. General case (slant incidence onto grooves)

In this case D = D(r, s, 2) depends, in a complicated way, on the frequency and wave
propagation direction. The most natural is to analyse D on (r,s) plane, for {2 = const
— in that way we obtain so-called slowness curves (Fig. 7). In our problem those curves
have the form of concentric circles disfigured in regions where we have Bragg reflection,
i.e. in area of complex values of wavenumber.

In Figs. 7a, 7b, 7c slowness curves for {2 increased with step 0.2 are presented. Very
interesting are bands C' i D — their existence is connected with Bragg reflection of mode
SH, to Ay Lamb mode. This effect is possible only in the case of slant propagation (for
r # 0). In this case all three components of displacement vector u are coupled by g;3 # 0
in the generalised Tiersten boundary conditions (11). Finally A matrix is full matrix and
solutions for Lamb and S H modes may not be independent (like in 7 = 0 case).

Fig. 7d presents, slowness curve for .S H mode at {2 = 0.5 (in this case we have Bragg
reflection of S H, mode at r = 0). For comparison, the slowness curve of unperturbed
mode (for h = 0) is plot dashed line. Distorsion of slowness curve around Bragg reflection
area is a result of beam stearing i.e. difference between wave propagation direction an
direction of Poynting vector [11].

4, Conclusions

— In elastic plate corrugated on one side we have Bragg reflection phenomena con-
nected with mode conversion — in this case Re{s} # const inside forbidden band of
frequency. This effect is caused by different velocities of coupled modes.

— Reflection with conversion of S H to Lamb mode is possible only for case of slant
incidence of wave onto grooves ie. for s # 0 and r # 0. This effect is impossible for
r = 0 (normal incidence onto grooves). It is connected with the fact that for r = 0
longitunal and tranverse parts of displacements are not coupled by corrugation — in
presented theory of the first order.

In this case s = 0 taking into account only lowest harmonic components, Lamb and
transverse modes propagates independently. This propagation has form of guiding of
wave by groove system. If direction of wave propagation is distorted from z axis direction
(for s # 0) those guided modes discouple onto n = —1(k~) and n = 1(k™) branches.

Appendix A

Let us consider effects connected with including of higher harmonic components in
series (1) (2) i.e. components n = 1,0, -1, —2 (Fig. 8),

Ti! - (Tige—jsz + Ti;e—j(s—f\’}z o9 T;}de—j(si-l()z o Tge—j(s—zf\’)z)e-jra: (Al)

u; = (u;i-e—jsz 4 u;-e—j(s—K)z + u;ve—j(s+1\')z + Tl_?e—j(s—zf\’)z)ewjr:c (AZ)
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FiG. 8. Wavevectors taken under consideration in analysis of influence of second order components.

Other assumptions are the same as in previous section. Generalised Tiersten boundary
conditions then have the form (higher powers of h are ommited)

= hgu™ + h*fTu™ (A3)
T- = h*glu* + hw™ (A4)
T~ = hfu* (AS)

T= = h*vlu~ (A6)

where T! = [T}, T}, THE uf = [ul,ul,ul)T and I = +,—, , =
Matrices f i v we obtain from g by substitutions:
f:e+ K —3s—K
vis—2K — s

kK™ =yr2+(s+ K)2 — k™
k= =\/r2+ (s —2K)? — k*

Impedance relations for higher components may be obtained analogously to Sect. 2.3 By
substitution k = k™~ (for n = +1) : x(t),
By substitution k = k= (for n = —2) : x(=2).

After transformations we obtain system 6 X 6 analogous to (28)
#ix) RO xWput = hxOgu

A7

(I — |h|AxE vy yu~ = A*x("DgTu* i

Now for the simplest case (SH wave propagation), the dispersion relation is
0),.(1 -1
L mef < lh|23’g;)9“11 ])Jﬂ |h|2{m(11)x(11)f11 * f”u "311 )"’121}"'
+h) 2Pl V2 T? fo = 0 (A8)
In Figs. 9 and 10 there are results for S [ mode for plate with d = A. Figure 9
shows the difference 62 = 2, — 2, where (2, is calculated from formula (A8), while (2,
from formula (34). It is noted that the second order components give a small additional

dispersion of wave (an effect which is not connected with Bragg reflection of first order),
and little change in the width of frequency band (A — Fig. 9).
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FiG. 9. Frequency correction caused by second order components.
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FiG. 10. £2(k) calculated with accounting of second order components.

The theory in the previous section predicts a linear dependence 2;(h) (38) (for small
h). Calculations of components of second order show square type of this dependence
— this is so called energy storage effect [12]. In Fig. 10 there is the difference 612 =

2,(h) — £2,(h), where §2,(h) is calculated from (A8) formula.



WAVES IN ELASTIC PLATE WITH GROOVED SURFACE 127

Appendix B

Let us consider elastic plate corrugated on both sides (Fig. 11):

period of corrugation on both sides is the same (A), corrugation is small,

grooves on both sides are parallel to x axis,

amplitude of corrugation on bottom surface is h,

stresses and displacements on bottom surface may be written in the form: T =
[T(n T27 T4]1 u= [ﬂla Uy, ﬂ3]-

y
A
(71
tul o y=5(z)
0 z
ral
(71

Fic. 11. Elastic plate corrugated on both sides (cross-section).

Generalized Tiersten boundary condition in the case of double corrugation have the
form

T = hgu™ T™ = h*glu* y = +§ (B1)
R ®
and impedance relations (B3)
u = xT + XT (B4)
= —xT —xT (BS)
Non-zero elements of matrix X may be determined analogously to [10]
Iy = : (B6)
115 i Ar
=i 1 3 nadiad 5 aal T A d d
Ty = ;e ALa(k + 1 )(sm o:2 smﬁzA; + cosa cosﬂzdz) (B7)
d
Ty = 27 'IAL[)‘(kZ + ﬁz)(sin ag sin ﬂgﬂg + cosag cosﬁEA;) (B8)
r c-naafl d
Ty = _72” Y ((—2&[942 + (k* - ﬁz)A;)smﬂE cosa§+
+ (20841 — (k* - fH4A,) sinag cos aﬁg-) (B9)
T3 = Tp (B10)
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Our problem may be reduced to system of 6 X 6 equations
{1-Z}u=0 (B11)

where u = [u}; @}]7Ti = 1,2,3.
While Z is matrix 6 X 6 build of 4 blocks.

2= {8 3] (B12)
o |h[2x(")gx(_”gT — Rh*xOgx(—DgT (B13)
B = —|R|’xVgx("g” — AR xgx(-Dg" (B14)
Cm —|h|2i(”)gx(")gT — Rhh*xOgx(-DgT (B15)
D= |E|2x(")gx(‘”gT — hR"xOgx(-1gT (B16)
Finally the dispersion relation is determinant of system (B11)
det{I-2} =D =0 (B17)

Solution of equation (B17) is simple in the case r = 0, similarly for a one-sided corrugated
plate in that case transverse and Lamb modes propagate independently of each other and
may be analysed separatelly.

The dispersion relation for S H modes is

D = (1 - Au)(l = Dll) - B“Cu =1 (BIS)

Assuming that

H=hzexp{—ji;-};h=h1exp{j§} (B19)

where h; > 0 i hy > 0 are the amplitudes of corrugation on upper and lower surface,
respectively. Equation (B18) may be written in the form

D =1 {(h + )T — 2hihy cos o - 207 Vgt +
+R2R3E — 2PPy(zT el =0 (B20)

We may approximate the frequency band width — analogously it was made in Sect.
3.1. So we obtain the equation

D= - - (s- K@)+ x— (P -s(s—-K)* =0 (B21)

where
I
K= E\/hi’ + h3 — 2hihycos g, (B22)
x = hih3(2* - s(s — K))*, (B23)

when h, # 0 and h; # 0 solution depends on angle .

There are two special cases:

1. ¢ = 0 then k = |hy — hy|d, when hy = hy equation (B21) describes propagation
of uncoupled modes — there is no Bragg reflection.

2. ¢ =« then k = |hy + hy|/d, when hy = h; small component x may be ommited,
so we have a case of equivalent plate corrugated on one side but with amplitude 2h.
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