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Instantaneous acoustic heating of a viscous fluid flow in a boundary layer is the subject of investigation.
The governing equation of acoustic heating is derived by means of a special linear combination of conser-
vation equations in the differential form, which reduces all acoustic terms in the linear part of the final
equation but preserves terms belonging to the thermal mode. The procedure of decomposition is valid in
a weakly nonlinear flow, it yields the nonlinear terms responsible for the modes interaction. Nonlinear
acoustic terms form a source of acoustic heating in the case of the dominative sound. This acoustic source
reflects the thermoviscous and dispersive properties of a fluid flow. The method of deriving the governing
equations does not need averaging over the sound period, and the final governing dynamic equation of
the thermal mode is instantaneous. Some examples of acoustic heating are illustrated and discussed, and
conclusions about efficiency of heating caused by different waveforms of sound are made.

Keywords: acoustic heating, weak dispersion, boundary layer.

1. Introduction

This study focuses on the nonlinear dissipation of
the sound energy into the non-wave energy in the
boundary layer of the fluid flow. Propagation of the
finite amplitude sound is not longer described by the
Burgers equation, as it is in the standard thermovisous
flows. Fluid flows in a boundary viscous layer reveal
a weak dispersion. As an example of the weak disper-
sion mechanisms, thermodynamic relaxation towards
the equilibrium state may be mentioned. It takes place
in many biological liquids described by the Maxwell or
even more complex dependence of the shear stress on
the shear rate. Dispersion always follows attenuation
(Alekseev, Rybak, 2002). Temkin (1990) indicated
that dispersion and attenuation are connected by the
Kramers-Kronig relations. Propagation of the sound
in horns at the frequencies near cutoff, in waveguides,
and in bubbly liquids represent examples of a strong
dispersion (Hamilton et al., 1998).
It is well-known that the standard attenuation of

fluids leads to a linear dissipation of the sound. The
acoustic heating is an increase of the ambient fluid
temperature caused by a nonlinear loss in the acous-
tic energy. This isobaric increase in the temperature is
not an acoustic quantity but a value referred to as the
entropy, or (the alternative name) the thermal mode.

The variations in the ambient temperature should be
distinguished from an excess temperature associated
with the sound wave, the latter of which is a wave
quantity. The periodic sound as the origin of acoustic
heating in the standard thermoviscous fluid flows was
studied by Rudenko and Soluyan (1977),Makarov
and Ochmann (1996), and Rudenko (2007). Inter-
est in acoustic heating has grown over the last few
years in connection with biomedical and technical ap-
plications. The majority of liquids being of interest are
non-newtonian. That imposes unusual dependence of
the shear stress on the shear rate, including rheolog-
ical and elastic behavior (which is specific for solids)
(Alekseev, Rybak, 2002; Collyer, 1974; Mewis,
1979). Such applications, among others, require an ac-
curate estimation of heating during the medical ther-
apy involving scanning acoustic microscopy mentioned
by Gudra (2008) which uses sound of different kinds,
including impulses (Rudenko, 2007; Hartman et al.,
1992;Wójcik et al., 2008).
Flows of even newtonian liquids in the vis-

cous boundary layer reveal dispersive properties
(Hamilton et al., 1998; Blackstock, 1985; Maka-
rov, 1994). The reason for that is a non-newtonian
dependence of components of the shear stress (i.e.,
the surface forces which appear in the vicinity of the
rigid boundary) on the shear rate. This dependence is
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no longer local, and it is expressed by means of the
coefficient which is proportional not only to the to-
tal attenuation of a flow in unbounded volumes, but
also to the inverse hydraulic diameter of the duct and
its cross-sectional area. The monochromatic sound of
frequency ω attenuates proportionally to

√
ω in con-

trast with standard newtonian flows with proportion
ω2. There appears a dispersion proportional to

√
ω

as well. The dispersion and attenuation, as the lin-
ear phenomena which influence sound propagation in
a boundary layer, were described by Hamilton et al.
(1998) and Coppens (1971); they are well-understood.
The nonlinear dispersion and attenuation are the rea-
sons for an unusual generation of the entropy mode
due to boundary-layer effects in ducts. Propagation
of sound in biological tissues is also followed by the
boundary-layer absorption and dispersion. The gen-
eral mathematical technique to describe the interac-
tion of wave and non-wave motions has been worked
out and applied previously by one of the authors in
some problems of a weakly nonlinear flow. It allows to
distinguish equations governing the sound, vorticity,
and entropy modes, and to account for their interac-
tion (Perelomova, 2003; 2006; 2008). The method
and results based on its application are described in
Secs. 3, 4. Some illustrations and conclusions concern-
ing the acoustic heating caused by some types of sound
are discussed in Sec. 5.

2. Dynamic equations in a fluid

with dispersive properties

The continuity, momentum, and energy conserva-
tion equations describing a viscous fluid flow without
external mass forces read (Landau, Lifshitz, 1987):

∂ρ

∂t
+∇ · (ρv) = 0,

∂v

∂t
+ (v ·∇)v =

1

ρ
(−∇p+ Div P) ,

∂e

∂t
+ (v ·∇)e =

1

ρ
(−p(∇ · v) +P : Grad v) .

(1)

Here, v denotes velocity of the fluid, ρ, p are den-
sity and pressure, e marks the internal energy per unit
mass, and xi, t are spatial coordinates and time. The
operators Div and Grad denote the tensor divergence
and dyad gradient respectively. P is the tensor of the
viscous stress. To complement the system (1), the vis-
cous stress tensor should be expressed in terms of shear
rate. The thermodynamic function e(p, ρ) is also re-
quired. An excess internal energy e′ = e − e0 may be
represented as a series in powers of excess pressure and
density p′ = p−p0, ρ′ = ρ−ρ0 (ambient quantities are
marked by the index 0):

e′=
E1

ρ0
p′+

E2p0
ρ20

ρ′+
E3

p0ρ0
p′2+

E4p0
ρ30

ρ′2+
E5

ρ20
ρ′p′, (2)

where E1, . . . , E5 are dimensionless coefficients. The
series (2) allows consideration of a wide variety of flu-
ids in the general form. A variation in the thermo-
dynamic properties of fluids is manifested namely by
the coefficients different for different fluids, and vari-
ous dependence of the shear stress on the shear rate.
The expressions for the coefficients E1 and E2 are as
follows:

E1 =
ρ0CV κ

β
, E2 = −Cpρ0

βp0
+ 1, (3)

where CV , Cp marks the heat capacity per unit mass
under constant volume and under a constant pressure,
and κ, β are the compressibility and thermal expan-
sion, correspondingly:

κ = − 1

V

(
∂V

∂p

)

T

=
1

ρ

(
∂ρ

∂p

)

T

,

β =
1

V

(
∂V

∂T

)

p

= −1

ρ

(
∂ρ

∂T

)

p

.

(4)

A common practice in nonlinear acoustics is to focus
on the equations of the second order of acoustic Mach
numberM = v0/c0, where v0 is the magnitude of a par-
ticles’ velocity, and

c0 =

√
(1− E2)p0
E1ρ0

is the propagation speed of infinitely small signals
without an account for the viscosity and dispersion.
The present study is further constrained by considering
nonlinearities of the second order, so that we shall con-
sider weakly nonlinear flows discarding O(M3) terms
in all the expansions. The resulting model will account
for the combined effects of the nonlinearity, weak at-
tenuation, and dispersion.

3. Definition of modes in the planar flow

of an infinitely small amplitude

We will consider a one-dimensional flow along the
axis Ox. In one dimension, there is only one compound
of the viscous stress tensor,

Pxx =
4

3
µ
∂v

∂x
+ Âv, (5)

where µ is the shear viscosity, and Â is an operator
describing dispersive properties of a flow. At this point,
we do not specify its form. The only requirement is that
the attenuation and dispersion are small, for the sound
not to distort considerably at distances compared to its



A. Perelomova, W. Pelc–Garska – Acoustic Heating Produced in the Boundary Layer 207

wavelength. It is convenient to rearrange the formulae
into the corresponding dimensionless quantities in the
following way:

p∗ =
p′

c20 · ρ0
, ρ∗ =

ρ′

ρ0
, v∗ =

v

c0
,

x∗ =
ωx

c0
, Â∗ =

Â

ρ0c0
, t∗ = ωt,

δ =
4µω

3c20ρ0
,

(6)

where ω is the characteristic frequency of sound (or in-
verse duration in the case of pulses). All formulae that
follow, including the relationships of modes and dy-
namic equations, will be written in the leading order.
We suppose that δ is of order M , as well as the result
of applying Â∗. Starting from Eq. (7), the upper in-
dexes (asterisks) denoting dimensionless quantities will
be omitted throughout the text. In the dimensionless
quantities, accounting for Eqs. (2), (5), (6), Eqs. (1)
take the form:

∂ρ

∂t
+
∂v

∂x
= −v ∂ρ

∂x
− ρ

∂v

∂x
,

∂v

∂t
+
∂p

∂x
− δ

∂2v

∂x2
− Â

∂v

∂x

= −v ∂v
∂x

+ ρ
∂p

∂x
− ρδ

∂2v

∂x2
− ρÂ

∂v

∂x
,

∂p

∂t
+
∂v

∂x
= −v ∂p

∂x
+ (D1p+D2ρ)

∂v

∂x

+
δ

E1

(
∂v

∂x

)2

+
1

E1

∂v

∂x
Âv.

(7)

The quadratic nonlinear terms form the right-hand
side of the set (7). The dynamic equations in the rear-
ranged form include the following dimensionless quan-
tities:

D1 =
1

E1

(
−1 + 2

1− E2

E1
E3 + E5

)
,

D2 =
1

1− E2

(
1 + E2 + 2E4 +

1− E2

E1
E5

)
.

(8)

The linearized version of Eqs. (7) describes a flow of
an infinitely small amplitude, when M → 0:

∂ρ

∂t
+
∂v

∂x
= 0,

∂v

∂t
+
∂p

∂x
− δ

∂2v

∂x2
− Â

∂v

∂x
= 0,

∂p

∂t
+
∂v

∂x
= 0.

(9)

The linear hydrodynamic field is represented by acous-
tic modes, propagating in the positive and negative

directions of the axis Ox and the entropy mode.
Every type of motion is determined by one of the
roots of the dispersion relation of the linear flow,
ω(k) (k is the wave number) (Rudenko, Soluyan,
1977;Makarov, Ochmann, 1996;Chu, Kovasznay,
1958) and fixes relationships of perturbations, which
are independent of time (Perelomova, 2003; 2006;
2008). The dispersion relations for acoustic modes
propagating in the positive direction of the axis Ox
(marked by index 1), the negative direction of the
axis Ox (marked by index 2), and the entropy modes
(marked by index 3), determine relations of an excess
pressure and perturbations in density and velocity for
every mode. They are independent of time. In the lead-
ing order, the relations take the form:

ψa,1 =



ρa,1
va,1
pa,1


 =




1

1− 1

2

(
δ
∂

∂x
+ Â

)

1


 ρa,1,

ψa,2 =




1

−1− 1

2

(
δ
∂

∂x
+ Â

)

1


 ρa,2,

ψe =




1
0
0


 ρe.

(10)

The relations (10) may be established demanding the
equivalence of the dynamic equations for every per-
turbation (ρ, v and p) specifying every mode. Equa-
tions for any perturbation in the frames of every mode
should be equivalent in the leading order, i.e. involv-
ing terms standing by powers of small viscous and dis-
persive parameters not higher than the first one. Ev-
ery equation includes the first-order derivative with re-
spect to time. The linear dynamic equations do not ob-
viously indicate interaction between modes. The equa-
tion describing the acoustic excess density in a wave
propagating in the positive direction of the axis Ox, is:

∂ρa,1
∂t

+
∂ρa,1
∂x

− δ

2

∂2ρa,1
∂x2

− 1

2
Â
∂ρa,1
∂x

= 0. (11)

The density perturbation for entropy motion satisfies
the equation describing the stationary field:

∂ρe
∂t

= 0. (12)

The linear dynamic equations for every type of mo-
tion may be extracted from the system (9) by means
of projecting of the equations into specific sub-spaces
(Perelomova, 2003; 2006; 2008). In general, every
perturbation of the field variables contains contribu-
tions from each of the three modes, for example, ρ =
ρa,1 + ρa,2 + ρe.
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4. Dynamic equations in a weakly nonlinear

dispersive flow

4.1. Weakly nonlinear dynamic equation governing
the sound

The nonlinear terms in every conservation equation
from the right-hand side of the system (7) include, in
general, a contribution of every mode. In the studies
of a weakly nonlinear flow, we fix linear links deter-
mining every mode and consider every excess quan-
tity as a sum of the specific excess quantities of every
mode. The consequent decomposing of the governing
equations for the sound and thermal modes may still
be achieved by means of the linear projection. In sim-
ple terms, projecting is a linear combination of equa-
tions in a way that allows to keep the terms of the
chosen mode in the linear part and reduce all other
terms. One can readily derive the equation governing
the sound multiplying the second equation from (7)
by 1/2, applying 1/2 + Â/4 at the third equation and
taking their sum. That reduces all linear terms be-
longing to the second acoustic and the entropy modes.
Keeping only the terms corresponding to the acous-
tic rightwards progressive wave in the nonlinear part,
and expressing all acoustic quantities in terms of excess
acoustic density by use of links (ψa,1 from Eqs. (10)),
one can readily obtain an equation supplementing the
well-know Burgers’ equation (accounting for the stan-
dard attenuation exclusively) by the terms responsible
for dispersion (Blackstock, 1985):

∂ρa,1
∂x

+
∂ρa,1
∂t

− δ

2

∂2ρa,1
∂x2

− 1

2
Â
∂ρa,1
∂x

= −1−D1 −D2

4

∂ρ2a,1
∂x

. (13)

The nonlinear term in the right-hand side of Eq. (13)
may be considered as a result of the self-action of the
sound, which corrects the dynamic equation (11) by
nonlinear terms.

4.2. Interaction of the thermal mode with
the dominant sound. Acoustic heating

An important property of projection is not only to
decompose the specific perturbations in the linear part
of equations but to distribute nonlinear terms correctly
between different dynamic equations. In the context of
acoustic heating, the magnitude of excess density spe-
cific to the entropy mode is small compared to that of
sound. It may be easily verified that the modes with
relationships (10) satisfy, in the leading order (up to
the terms proportional to the squared parameters re-
sponsible for dispersion and attenuation), the equality
below:

(
1 0 − 1

)


ρa,1 + ρa,2 + ρe
va,1 + va,2 + ve
pa,1 + pa,2 + pe


 = ρe, (14)

which suggests a way of combining of the set of
Eqs. (7). The relationships which determine the sound
should be completed by nonlinear quadratic terms
making it isentropic in the leading order. These cor-
rections are similar to those specific to the Riemann
wave in the ideal gas (Riemann, 1953). In the case
of the wave progressive in the positive direction of the
axis OX , they are

va,1 = ρa,1 −
1

2
Âρa,1 −

δ

2

∂ρa,1
∂x

− 1

4
(3 +D1 +D2)ρ

2
a,1,

pa,1 = ρa,1 −
1

2
(1 +D1 +D2)ρ

2
a,1.

(15)

The nonlinear corrections of the second and higher or-
der terms depend on the equation of state, and in the
case of an ideal gas they coincide with the well-known
links, originally derived by Riemann (1953), in the
Riemann wave with D1 = −γ, D2 = 0, Â = 0, and
δ = 0.
For simplicity, let sound be associated exclusively

with a wave propagating in the positive direction of
the axis Ox: pa = pa,1, ρa = ρa,1, va = va,1. The linear
combination of the left-hand and the right-hand sides
of the Eqs. (7) in accordance to (14) results in:

∂

∂t
(ρ− p)=

∂

∂t
ρe=− 1

E1

∂ρa
∂x

Âρa−
δ

E1

(
∂ρa
∂x

)2

. (16)

Only acoustic quadratic terms are kept in the right-
hand side of Eq. (16). The acoustic terms of the left-
wards propagating sound are also completely reduced
in the linear part of the final equation. It is convenient
to rearrange Eq. (13) in the dimensionless variables,
coordinate x, and the retarded time τ , τ = t − x, as-
suming its weak dependence on x (Mx) (Rudenko,
Soluyan, 1977). It takes the form:

∂ρa,1
∂x

− δ

2

∂2ρa,1
∂τ2

+
1

2
Â
∂ρa,1
∂τ

− 1−D1 −D2

4

∂ρ2a,1
∂τ

= 0. (17)

Right up to this point, we did not make any assump-
tions about a specific form of the operator Â. Provided
that the boundary layer is thin in comparison with the
transverse dimension of the duct, the dimensional dis-
persion operator, which applies on any scalar function
ϕ, is as follows (Blackstock, 1985):

Âϕ(x, τ) =
C

4B

√
4µ

πρ0ω

∞∫

0

ϕ(x, τ − τ ′)√
τ ′

dτ ′, (18)

where C is the perimeter of the duct and B is its cross-
sectional area.
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This section is restricted to the acoustic field repre-
sented by the rightwards propagating sound, although
it may be easily expanded to include leftwards prop-
agating waves or any superposition of two acoustic
branches.

5. Numerical examples

The solution of Eq. (16) governing the decrease in
the ambient density ρe, is a fairly complex problem
considering that the excess acoustic density should sat-
isfy Eq. (17), which itself is nonlinear and accounts for
attenuation (standard and due to the operator Â and
dispersion). It should be underlined that ρe is not an
acoustic quantity. The equation governing its dynam-
ics, Eq. (16), includes nonlinear acoustic terms pro-
portional to coefficients responsible for dissipation and
dispersion in the right-hand side. They play the role of
a nonlinear source of heating and reflect the fact that
the origins of the phenomenon are nonlinearity, vis-
cosity, and dispersion. Equation (16) is instantaneous,
it describes the dynamics of the entropy mode at any
time, and does not require periodicity of the sound.
Let us consider only the terms originating from dis-

persion related to the viscous boundary layer along the
rigid walls bounding flow. As for the governing equa-
tions for the sound, Eq. (17), there is no general analyt-
ical solution of it, even without the free-stream losses
(Hamilton et al., 1998). The distortions of the ini-
tially sinusoidal waveform were computed numerically
(Coppens, 1971). They agree with the general conclu-
sions that the wall dispersion produces phase speeds
that are smaller than the free-space phase speed 1. The
phase speed increases with the frequency, and the clas-
sical thermoviscous attenuation coefficient is recovered
at high frequencies. Boundary-layer dispersion causes
rounding of the positive portions and cusping of the
negative portions of the waveforms. In terms of the di-
mensional temperature T̃e, accounting for Eq. (16), the
governing equation of acoustic heating takes the form:
(
∂T̃e
∂t

)

disp

≡ Qdisp = − 1

β

∂

∂t
ρe

= D
∂ρa
∂x

∞∫

0

ρa(x, τ − τ ′)
dτ ′√
τ ′
, (19)

where D =
C

4BE1β

√
4µ

πρ0ω
. Equation (19), along with

Eq. (16), is the main result of this study. The standard
attenuation would give the increase in the temperature
as follows:(

∂T̃e
∂t

)

stand

≡ Qstand = S

(
∂ρa
∂x

)2

, (20)

where S =
δ

E1β
.

5.1. Acoustic heating caused by the periodic sound

As an approximate excess acoustic density, satis-
fying the linear wave equation without an account for
attenuation and dispersion, let us consider the periodic
waveform:

ρa(τ) =M sin τ. (21)

Equations (19), (20) yield:

Qdisp = DM2

√
π

2
cos(τ) (cos(τ) − sin(τ)) ,

Qstand = SM2 cos(τ)2,

(22)

and in the quantities averaged over the sound period

〈Qdisp〉 =
DM2

2

√
π

2
, 〈Qstand〉 =

SM2

2
.

The relative efficiency of heating depends on the ratio
of D and S, that is, on the geometry of a duct, the
characteristic frequency of the sound and the thermo-
dynamic and viscous properties of a fluid.

5.2. Acoustic heating caused by pulses

Let us consider an excess dimensionless acoustic
density in the form of traveling pulses:

A. ρa(τ) =M exp
(
−τ2

)
,

B. ρa(τ) = −2Mτ exp
(
−τ2

)
.

(23)

A

B

Fig. 1. Acoustic pulses (23) A, B.
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A

B

Fig. 2. Increase in the temperature in time unit caused by
pulses (23) A, B. The part associated with the dispersion
is plotted in the bold line, and the part relating to the
standard attenuation is plotted in the normal line.

For these pulses, Qdisp is expressed in terms of special
functions.
The increase in the background temperature af-

ter passing a pulse, is determined by the integral
∞∫

−∞

Q dτ . Numerical evaluations result in the ratio

of temperatures caused by dispersion and the stan-

dard attenuation,

∞∫

−∞

Qdisp dτ

/ ∞∫

−∞

Qstand dτ , which

equals 1.03D/S (A) and 0.52D/S (B). The “disper-
sive” part of heating in the case of asymmetric pulse
is considerably smaller.

6. Conclusions

The equation governing acoustic heating, Eq. (16),
is the result of a decomposition of the weakly nonlin-
ear equations governing the acoustic and non-acoustic
motions of a fluid. The method may be applied to a
wide variety of flows with different mechanisms of dis-
sipation and dispersion, which are described by an op-
erator Â. The Maxwell model of liquid is described

by a term proportional to

t∫

−∞

∂v

∂x
exp(−(t− t′)/tR)dt′,

where tR is the characteristic relaxation time to the

thermodynamically equilibrium state (Alekseev, Ry-
bak, 2002). Some evaluations of a nonlinear generation
of the entropy mode caused by this type of relaxation
may be found in (Perelomova, 2008; Perelomova,
Pelc–Garska, 2010). For both tube wall and relax-
ation dispersions, the phase speed increases with fre-
quency, although tube wall dispersion produces phase
speeds that are smaller than the free-space phase
speed. The curves of the energy released in both cases
distort in a different way as compared to the standard
attenuation. Some other linear relaxation mechanisms
have been mentioned in the review by Makarov and
Ochmann (1997), among them, the frequency inde-
pendent thermodynamic relaxation, specific for a high-
frequency sound. They may be easily considered, ac-
counting that generally Â is a sum of all operators
responsible for dispersion.
The applied method results in the instantaneous

equations and does not need temporal averaging of
the conservative equations with respect to the pe-
riod of sound. This distinguishes it from the tradi-
tional decomposition of equations for acoustic and non-
acoustic motions which is based on averaging of con-
servation equations over the sound period (Rudenko,
Soluyan, 1977; Makarov, Ochamnn, 1996). The
main result of this study, besides Eq. (16), is Eq. (19),
describing the excess temperature of the entropy mode
of a flow in a duct with rigid walls. The numerical ex-
amples reveal that the heating caused by the standard
attenuation is much less effective with respect to the
“dispersive” one if caused by a bipolar pulse, as com-
pared with a mono-polar. As for the periodic sound,
the efficiency takes intermediate place between mono-
polar and bipolar pulses and equals 0.89D/S. Some
general peculiarities may be concluded a priori. The
acoustic heating grows with an increase of the acous-
tic Mach number M and dispersive parameter D. The
efficiency of “dispersive” heating increases in the do-
main of a small characteristic inverse duration of an
impulse ω. For detail evaluations, one requires knowl-
edge about thermodynamic properties of a liquid. In
an ideal gas, βE1 = 1/(T0(γ− 1)), where γ is the ratio
of specific heats and T0 denotes unperturbed tempera-
ture of a gas. For the liquid water in normal conditions,
βE1 = 2 · 10−9 K−1. The dimensionless standard at-
tenuation δ = 3.75 · 10−15ω, where ω is measured in
s−1. The acoustic Mach number M belongs typically
to the domain between 10−4 and 10−2.

References

1. Alekseev V.N., Rybak S.A. (2002), Equations of
State for Viscoelastic Biological Media, Acoustical
Physics, 48, 5, 511–517.

2. Blackstock D.T. (1985), Generilized Burgers equa-
tion for plane waves, J. Acoust. Soc. Am., 77, 6, 2050–
2053.



A. Perelomova, W. Pelc–Garska – Acoustic Heating Produced in the Boundary Layer 211

3. Chu B.-T., Kovasznay L.S.G. (1958), Nonlinear in-
teractions in a viscous heat-conducting compressible
gas, J. Fluid. Mech. 3, 494–514.

4. Collyer A.A. (1974), Time dependent fluids, Phys.
Educ., 9, 38, 38–44.

5. Coppens A.B. (1971), Theoretical study of finite-
amplitude travelling waves in rigid-walled ducts: be-
haviour for strengths predicting shock formation,
J. Acoust. Soc. Am., 49, 306–318.

6. Gudra T. (2008), Ultrasounds in gas media: gen-
eration, transmission, applications (review paper),
Archives of Acoustics, 33, 4, 581–592.

7. Hamilton M., Il’inskii Yu.A., Zabolotskaya E.A.
(1998), Dispersion, [in:] Nonlinear Acoustics, Hamilton
M., Blackstock D. [Eds.], pp. 151–175, Academic Press.

8. Hartman C.L., Child S.Z., Penney D.P., Car-
stensen E.L. (1992), Ultrasonic heating of lung tissue,
J. Acoust. Soc. Am., 91, 1, 513–516.

9. Landau L.D., Lifshitz E.M. (1987), Course of The-
oretical Physics, Vol. 6: Fluid Mechanics, 4th ed.,
Nauka, Moscow.

10. Makarov S., Ochmann M. (1996), Nonlinear and
thermoviscous phenomena in acoustics, Part I, Acus-
tica, 82, 579–606.

11. Makarov S., Ochmann M. (1997), Nonlinear and
thermoviscous phenomena in acoustics, Part II, Acus-
tica, 83, 197–222.

12. Makarov S. (1994), Self-reflection in nonlinear acous-
tics. Theoretical ground and possible applications,
Acustica, 80, 1–13.

13. Mewis J. (1979), Thixotropy – a general review,
J. Non-Newtonian Fluid Mech., 6, 1–20.

14. Perelomova A. (2003), Acoustic radiation force and
streaming caused by non-periodic acoustic source, Acta
Acustica united with Acustica, 89, 754–763.

15. Perelomova A. (2006), Development of linear pro-
jecting in studies of non-linear flow. Acoustic heating
induced by non-periodic sound, Physics Letters A, 357,
42–47.

16. Perelomova A. (2008), Acoustic heating in a weakly
dispersive fluid flow, Acta Acustica, 94, 3, 382–387.

17. Perelomova A., Pelc–Garska W. (2010), Effi-
ciency of acoustic heating produced in thermoviscous
flow of a fluid with relaxation, Central European Jour-
nal of Physics, 8, 6, 855–863.

18. Riemann B. (1953), The collected works of Bernard
Riemann, Dover, New York.

19. Rudenko O.V. (2007), Nonlinear waves: some
biomedical applications, Physics-Uspekhi 50, 4, 359–
367.

20. Rudenko O.V., Soluyan S.I. (1977), Theoretical
foundations of nonlinear acoustics, Plenum, New York.

21. Temkin S. (1990), Attenuation and dispersion of sound
in bubbly fluids via the Kramers-Kronig relations,
J. Fluid. Mech. Am., 211, 61–72.

22. Wójcik J., Kujawska T., Nowicki A. (2008),
Pulsed nonlinear acoustic fields from clinically rele-
vant sources: numerical calculations and experiments
results, Archives of Acoustics, 33, 4, 565–571.


