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1. Introduction

Sound absorbing materials are extensively used in the field of noise control
engineering and architectural acoustics. Indeed they are, for an important part,
responsible for the efficient sound insulation of partitions between rooms and of
enclosures, for the acoustic comfort in rooms and industrial halls etc. Due to the
continuing technological progress, research has been done and is still done in the
motorcar, the aerospace and the manufacturing industries and others, to obtain
absorbing materials who are simultaneously small in volume, have a low density, are
rather cheap and have a good acoustic performance. From the other side it is often
desirable to optimize the behaviour of acoustic materials for very specific purposes. To
achieve highly qualified absorbing materials in a broad field of applications it is
necessary to develop precise and, from time to time, sophisticated theoretical models
which take into account the complex physical phenomena of acoustic materials.

The study of acoustic properties of absorbing materials has occupied scientist since
the work of Beranex [1, 2], MorsE et al. [3] and Zwikker and Kosten [4] in the early
1940’s. A large number of different models, describing the sound propagation in
porous materials, have been published since. An excellent review can be found in the
publication of AtreEnBorouGH [5]. However most of these models require the
introduction of parameters which can not be measured independently, making them
inappropriate for the design of absorbing materials. Since 1956, the Biot theory allows
in a very general and rigorous way the description of sound propagation in porous
materials. This theory has been developed originally for application in the field of
underwater geophysics, where the densities of the fluid (water) and the solids are
comparable. Recently, the Biot theory has been used extensively to calculate the
acoustic properties of porous materials used in noise control engineering, where the
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fluid in the materials is air in stead of water. It has been proven that in a number of
cases, the theory is indispensable to explain the acoustic behaviour of different types of
acoustic materials. In this document the theory of Biot, related to the sound
propagation of acoustic waves in porous materials, will be presented and adopted for
different types of single and multiple layers by using matrix models for the materials.
From the theory it is possible to calculate the characteristics of the material, either the
specific impedance or the sound absorption coefficient.

For practical purposes also precise standardized methods, to measure acoustical
parameters, are developed and still have to be developed. In this document some
standardized methods will be discussed. Comparisons of theoretical predictions and
measured characteristics of porous materials will be discussed.

Measuring methods

1. Measurement of sound absorption in a reverberant room

The International Standard ISO-354(6) specifies a method of measuring the sound
absorption coefficient of acoustical materials used as wall or ceiling treatments, or the
equivalent sound absorption area, such as furniture, persons or space absorbers, such
as baffles, in a reverberation room. It is not intended for measuring the absorption
characteristics of weakly damped resonators.

The results obtained can be used for comparison purposes and for design
calculations with respect to room acoustics and noise control. The measuring principle
is the following: Measurement of reverberation times in a reverberation room with
and without the test specimen. From these times, the calculation of the equivalent
sound absorption area A4 of the test specimen is performed. In the case of plane test
specimens, the sound absorption coefficient is obtained by dividing A by its surface
area S. When the test specimen comprises several identical objects, the equivalent
sound absorption area of an individual object, for example a baffle, is obtained by
dividing 4 by the number of objects.

The equivalent sound absorption area 4, in square metres, of the test specimen,
shall be calculated using the formula

A = 553(V/e)(1/T,—1/T)) 1)

where V is the volume, in cubic metres, of the empty reverberation room; c is the
velocity of sound in air in metres per second; for temperatures between 15°C and 30°C,
the velocity of sound in air, ¢, can be calculated form the formula: ¢ = 331+40.6¢,
where # is the air temperature, in degrees Celsius. T, and T, are respectively the
‘reverberation times, in seconds, of the empty room and after the test specimen has
been introduced.
~ The sound absorption coefficient o of a plane absorber shall be calculated using the
formula:

ag = AIS 2
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where A is the equivalent sound absorption area, in square metres, calculated from
equation (1); S is the area, in square metres, of the test specimen.

For discrete absorbers, the result should generally be expressed as equivalent sound
absorption area per object, which is determined by dividing 4 by the number of
objects tested. For a specified array of objects, the result should be given as equivalent
sound absorption area of the whole configuration.

Recently an annex has been added to the ISO 354 Standard specifying the test
specimen mountings for sound absorption tests. Specific prescriptions are given for
specimens mounted directly against the room surface (type A mounting), for test
specimens mounted with an air space behind it (type E mounting), for test specimens,
such as curtains, drapperies, window shades or window blinds, hanging parallel to the
room surface (type G mounting), for spray- or towel-applied materials, such as plaster
(type 1 mounting) and for sound absorber pads and baffles where the sound
absorption per unit of rectangular unit shall be used (type J mounting).

The feature of this measuring method is that it gives the results of the sound
absorption coefficient or the equivalent sound absorption area of materials for at
random sound incidence, as is generally the case for practical applications. A disad-
vantage of this method is that no information about more fundamental parameters
like the specific acoustic impedance or wave propagation constants in the material can
be obtained.

2. Sound absorbers — Rating of sound absorption

The International Standard Document ISO/CD 11654(7) specifies a method by
- which the frequency dependent values of the sound absorption coefficient can be
converted into a single number. Before this is done the one-third octave band values of
the sound absorption coefficient measured according to ISO 354 are converted into
octave bands. The sound absorption coefficient «,, for each octave band i, is
calculated as the arithmetic mean value of the three one-third octave sound absorption
coefficient, a;, o, a;, within the octave band:

Ot_,,.- 0 (ail+13iz+a13) (3)
&, has to be rounded in steps of 0.05 and maximized to 1.00, that is if a, calculated is
> 1.00 then «, = 1.00.

o, is used to calculate the weighted sound absorption coefficient «,,, from the reference
curve in Fig. 1 and Table 1. Shift the reference curve in steps of 0.1 towards the
measured value until the sum of the unfavourable deviations is less than or equal to
0.1. An unfavourable deviation occurs at a particular frequency when the measured
value is less than the value of the reference curve. Only deviaitons in the unfavourable
direction shall be counted. The weighted sound absorption a,, is defined as the value of
the shifted reference curve at 500 Hz.
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Fig. 1. Reference curve for evaluation of weighted sound absorption coefficient, «,,.

Table 1. Values of the reference curve in Fig. 1.

Frequency | 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

o, et

0.8 1.0 1.0

1.0 1.0

If, for any octave band, (&,; — ®;, et sinea) = 0.3 then add a* sign after a,, — value,
e.g. o, = 0.5* This means that the sound absorption coefficient at one or more
frequencies is considerably higher than the reference curve. An example of the
calculation of «,, given in Fig. 2. Shift the reference curve in steps of 0.1 towards the
measured value until the sum of the unfavourable deviations < 0.1. In the example the
unfavourable deviations occur at 250 and 1000 Hz and the result is , = 0.6.

a., practical sound absorption coefficient
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Fig. 2. Example of an u,-calculation.
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Fig. 3. Example of an o =0.6* calculation.

In Fig. 3 the corresponding example is shown when (&, 904, — %p, rer, shitea) = 0.35
= 0.30 that is a,, = 0.6*.

The weighted sound absorption coefficient shall be expressed to one decimal
place. This international standard is, in principle, applicable to all products for
which the sound absorption coefficient has been determined according to ISO 354.
It is, however, often not suitable for application on single items, such as chairs,
baffles, etc.

3. Determination of the sound absorption coefficient and impedance or admittance
by the impedance tube method

The International Standard Document ISO/CD. 10534 [8] describes the deter-
mination of the sound absorption coefficient, the reflection factor and the surface
impedance or surface admittance of materials and objects. The values are determined
for normal incidence by an evaluation of the standing wave pattern of a plane wave in
a tube, which is generated by the superposition of an incident sinusoidal plane wave
with the plane wave reflected from the test object. It is well suited for parameter
studies and for the design absorbers, because only small samples of absorber material
are needed.

There are some characteristic differences compared to the measurement of the
sound absorption in a reverberant room (ISO 354). The impedance tube method can
be applied for the determination of the reflection factor and the impedance or
admittance, also. The sound is incident normally on the object surface. The
reverberant room method will — under idealized conditions — determine the sound
absorption coefficient for omnidirectional sound incidence.
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The impedance tube method relies on the existence of plane incident sound waves
and gives exact values under these conditions (measuring and mounting errors
excluded). The evaluation of the absorption coefficient in a reverberant room is based
on a number of simplified and approximative assumptions concerning the sound field
and the size of the absorber. Sound absorption coefficients exceeding the values one
are sometimes obtained, therefore.

The impedance tube method needs samples of the test object which are of the size
of the cross-sectional area of the impedance tube. The reverberant room method needs
objects which are rather large. It can also be applied for test objects with pronounced
structures in the lateral and/or in the normal directions. Measurements with such
objects in the impedance tube must be interpreted with care.
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Fig. 4. Representation of the standing wave pattern in the tube.

The test object is mounted at one end of the straight, rigid smooth and tight
impedance tube, see Fig. 4.

The incident sound wave p; is assumed to be plane, harmonic in time with frequency
JSand angular frequency w = 2 nf( the time factor ¢/ will be omitted in what follows),
and directed along the axis of the impedance tube in the negative x-direction:

DY Popae o 1o @ R @

Co €y

The amplitude P, is arbitrary.
The wave which is reflected from the test object having a reflection factor R is then:

PE) = "RP e =, (%)

The particle velocities of the waves (counted positive in the negative x-direction) are
respectively:

1
W 5 PO v = — 0. ©)

0
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The field impedance in the negative x-direction in the standing wave is:

_ P42 _ o P +px) )

B v)+v(x) ° Pix)—px)’

Especially at the reference plane x = 0:

Z = Z(0)=ZO%:, (8)
from which follows:
Z|Z —1
" ‘zﬁ ©)
The sound absorption coefficient « for plane waves is
@ =1-|R[. (10)
A pressure maximum in the standing wave is at a place where p; and p, are in phase
12wz = | Pgl - (14| R]): n
A pressure minimum is at a place of opposite phase
|Pial = | Pol - (1= R]). (12)

Using the standing wave ratio s = |p..| / | Ppial:

14| R| s—1
eree

= i and Rl (13)

The sound absorption then follows from the relation (10), with | Prnaxl 30d | Pria | at
a given frequency. .

If the sound pressure in the impedance tube is measured in a logarithmic scale (in dB),
and the difference in level between the pressure maximum and the pressure minimum
is AL = dB, then:

- S (14)
The sound absorption coefficient then follows from:

4 . lodL;’zo

* = G0y 1y o

The phase angle & of the complex reflection factor R = | R| e’ follows from the phase
condition for a pressure minimum in the standing wave:

&+ (2n—1) 1 = 2% xpio (16)
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for the n-th minimum (n = 1, 2, ...) in front of the reference plane (towards the sound

source).
From this:
pomin (—4"min-~ pans. 1), a7)
AIJ
and for the first minimum (n = 1):
«pzn(@—l). (18)
110
The complex reflection factor is then
R =R + jR"
R' = |R|-cos®; R"=|R|-sind®. (19)

According to Eq. (8) one obtaines the normalized impedance z = Z/Z :
7 =P
1-R*—R": 2R"

S L

2 T A—RP+R%?’'° T A-RYP+R"’

(20)

r

Finally the normalized admittance is obtained as the reciprocal of the normalized
impedance:

g=2/JZ = ZG, @1)

with G = 1/Z = v/p the admittance, is the ratio of the sound particle velocity to the
sound pressure at that point.

4. Two-microphone impedance measurement tube method

The two-microphone method (9) of measuring the acoustic absorption coefficient
involves the decomposition of broad-band stationary random signal into its incident
(P, and the reflected (P,) components. The singal is generated by a sound source, and
the incident and reflected components are determined from the relationship between
the acoustic pressure measured by microphones at two locations on the wall of the
tube (see Fig. 5).

From the incident and reflected components of the sound pressure at the two
microphone positions, three frequency response functions are calculated; H, the
frequency response function between the two microphone channels, and H; the
frequency response function associated with the incident component, and H,, the
frequency response function associated with the reflected component. Using these
values, the complex reflection coefficient R is calculated from the following equation:
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1H {35
R = (Hl_ gf @i+ (22)

where k is the wave number, /is the distance between the first microphone location and
the front of the sample (in mm), and s is the spacing between the microphones (in mm).
Using the value for the reflection coefficient, the normalized impedance z and
the sound absorption coefficient & can be calculated from the equations (8)
respectively (10).

For each measurement made on a sample, the following date can be calculated and
displayed in the frequency range of interest from the above mentioned equations: the
acoustic absorption coefficient (magnitude only); the acoustic reflection coefficient,
the normalized impedance, the frequency response function or the calibration result,
each displayed as magnitude, phase, real part or imaginary part.

The two-microphone theory assumes plane-wave propagation, no mean flow and no
losses due to absorption at the tube wall. This absorption is kept to a minimum in the
normaly used two-microphone impedance measuring tube.

to FFT analyzer

from signal
generator
and amplifier stationary {””d"""’ acoustically-hard
sound source Sgng piston disk
\ 1
M sample

Fig. 5. Set-up of the impedance measurement tube

SRR

g‘\

As described above, the frequency response function is calculated from the cross
spectrum of the two microphone signals, so any phase or amplitude mismatch between
these microphone channels will corrupt its calculated value. During the calibration
procedure, the frequency response function is calculated with the two microphones
interchanged, and then again in there initial positions. The geometric mean of these
two results is a complex value which can be added to any subsequent frequency
response function that is calculated using the same setup, effectively eliminating errors
due to any mismatches in the microphone channels.

During the calibration procedure, the calibration frequency response functions for

the microphones in the standard positions (H,) and the interchanged positions (H,)
are calculated as:

Hei = | Heohe', (23)
and:
Hg, = |H,| e/® 24)
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where @ is the phase of the calibration frequency response function H,, @, is the

phase of the calibration frequency response function H, and j is \/—1.
From these values, the calibration factor (H) is calculated as:

He = | Hel ¢! (25
where |Hel = | He, | /| He, ), (26)
bc = (1/2) (P, +¢,). @27

This calibration factor can now be added to any frequency response function that is
calculated using the tube set-up, giving a value that is uneffected by the amplitude or
phase mismatches between the microphone channels.

For example, the following frequency response function is measured, with the
microphones in the standard positions:

H = |H|ée* (28)
The correction factor is added, giving the corrected frequency response function (H 1):
H, = (H[Hp) = |H,|e’* (29)

where
2 =i 5
¢, =D — &, (31)

This frequency response function H, is the value that is used to calculate the acoustic
properties of the test sample.

5. Two-microphone free field method

The two-microphone free field method [10, 11, 12] used to calculate the
normalized surface impedance of a test sample involves the measurement of the

Fourier transform of the pressure at the point half between the two microphones
(see Fig. 6):

_avkatRa

4 2

(32)
where P, and Py are the Fourier transforms of the sound pressure at the microphones
A and B. The particle velocity at that point can be expressed by the Fourier transform
of the pressure gradient:
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P,—Py
SI2AT R, 33
iy (33)

For plane acoustic waves the normalized impedance at the measuring point is given by:

1 P jwdzl+Hgp
* = = S ——
< pc V, % 1+Hzy' (34)
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Fig. 6. Measuring set-up for impedance measurements with the two-microphone transfer function

technique.

Since the impedance is measured at the point z, and not at the surface, a correction
has to be made. It can be shown [10, 11] that the normalized specific impedance at the
sample surface is given by:

_ z*+jjcos - tan (wz cosb/c)
~ 1+j:cos0-tan(wz,cos/c) °

z(0)

(35)
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Several alternatives on this two-microphone free field method have been worked out
e.g. by Cnunag [13, 14] and Cnu[15] for plane waves.

The most important disadvantage of the preceeding methods is the plane wave
assumption. Therefore the spherical wave estimate technique has been developed [16,
17]. If the distance between the source and the measuring surface is finite, the sound
pressure above the surface is approximated by:

ikr Jkr?
LS (36)
r r
with R, the spherical reflection coefficient, r the distance between the source and the
measuring point and r’ the distance between the imaginary source and the measuring
point. 3
The reflection coefficient for spherical waves follows from:

e Jkr, e Jjkra
— H4p
r ¥
R, = — RN TA (37
‘wr_',l = Jkr

The normalized specific acoustic impedance as a function of angle of incidence can be
obtained from:

Table 2. Comparison of different measuring techniques to obtain sound absorption characteristics of
materials and objects

Techniques: (1) — Reverberant room method, (2) — Rathing method, (3) — Impedance Tube method

(single microphone), (4) — Two-microphone impedance tube method, (5) — Free field two-microphone

method
Measuring
i M @ ® @ ®)
Source signal | broad band broad band discrete broad band broad band
frequency
Sound incidence at random at random perpendicular | perpendicular | perpendicular
and oblique
Sample surface | + 12 m? + 12 m? tube section tube section unlimited
Test materials | all types: same as for (1) | restricted restricted all types of flat
walls, ceilings, absorbers, road
furniture, per- and ground sur
sons, chairs, faces
space absor-
bers etc...
Measuring time| fast fast time consuming| fast fast
Test results @ (can be>1) | (always<1) |a(always<l) |a(always<l) |a (always<l)
A (eq.abs.area) R R R
A/test object z=Z[Z, z=Z[Z, z=Z|Z,
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i s 1
z,(G) = E—(-)—S.é ¥ ]——.R, (1 o .]TC;‘) (38)

An advantage of the spherical wave estimate technique is that measurements can be
done in surroundings with background noise.

In Table 2 the features of the 5 different measuring methods to obtain
absorption characteristics of sound absorbing materials are compared with each
other.

Theory

1. Reflection and transmission of plane waves
A plane harmonic wave can be represented by a displacement potential:

@(r) = Ae™Hr+ior (39)

4 is the amplitude, w/2n = f is the frequency and k is the wave number of the
harmonic wave. If the medium is lossless than k is a real number, otherwise it is
complex. The pressure p and the particle velocity v are given by:

o%p
a0 iLogi Dif 4
p p 5:2 2 ( 0)
v = iwVe, (41)

where p is the density of the fluid. The ratio of the sound pressure and the particle
velocity for a plane harmonic wave in an unbounded medium is called the
characteristic impedance Z, of the medium and is equal to:

e Pl (42)

where ¢ = w/k is the speed of sound in the fluid. The characteristic impedance of air
for instance is 415 Ns/m? for water Z, = 1482 - 10° Ns/m3. Let a plane wave be

incident on the interface between two semi-infinite fluids with a plane boundary as in
Fig. 7.
The incident wave can be written as:

(pinc g Ae—jk(xlsin8+x’cos6)+jwt, (43)
with 0 the angle of incidence. The reflected plane wave can be written as:

P = Me—jk(x,sinﬂ+x,w58)+jmt’ (44)
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Fig. 7. A plane sound wave incident on a houpdary hetween two semi-infinite fluids.

with R the amplitude of the reflection coefficient at the intarface. |n the general case,
R is a complex number and consists of a magnitixie apd s phase; B = | R| ¢’*, with
0<|R| < 1. The transmitted wave can be written as:

P = TAe™ Moot Bjndim, (45)

with T the transmission coefficient. |

The ratio of the acaustic pressure and the norlu.i samponent of the palocity at the
interface is called the mormal surface impedance & In genergl Z is a complex,
frequency dependent number Z = R + jX.

It can be shown that:
s SR o TP
o o v, cosd 1—R' (46)
and
Zcost—pe
4
Zcosb+ pe 7
In a lot of applications, the absorption coefficient « s uged as a parameter:
a=1-—|RP. (48)

Since it is a ree it is a real number, o gives less information about the acoustic
behaviour of the interface than the surface impedance. Combining Eq. (47) and (48)
results in:

i 4Rcosf
~ (ReosB+1)? + (X cosb)?’

“9)
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2. Single wave propagation for materials with low flow resistivity

Empirical relations between flow resistivity and characteristic impedance and
propagation constant

A plastic foam can be considered as an elastic solid frame containing bubbles. In
high porosity low density foams, the gas bubbles have approximately the shape of
dodecahedra. The lines of intersection and the membranes between different cells
occupy only a few percent of the total volume fraction for most materials used in noise
control and architectural applications. If all the membranes are ruptured, the foam is
called reticulated. For most practical purposes, the sound propagation in reticulated
foams can be simplified since the viscous coupling between frame and air is weak. In
a large frequency range, the sound propagation in such materials is mainly determined
by a wave propagating in the air in the material. In that case, the characteristic
impedance and the propagation constant (or equivalently, the speed of sound ¢ = w/k
and the complex density p = Zk/w) are defined by the flow resistivity p of the material,
which is defined as the ratio of the air pressure difference Ap accross a test specimen
and the steady volumetric air flow rate Q crossing the test specimen, normalized for
the cross-sectional area A4 and the thickness d of the test specimméti:

¢ = % -% (Ns/m#). (50)

} —
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Fig. 8. Experimental set-up for the determination of the flow resistivity . I and 2 airflow meters with
different range, 3 air flow control waves, 4 sample and measuring cel, 5 manometer walves, 6 and 7 oil
manometers with different range.
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The flow resistivity of reticulated foams varies from a few thousands Ns/m* to
approximately 20000 Ns/m*. The flow resistivity can be measured with the apparatus
shown in Fig. 8 (18).

The relation between the flow resistivity and the acoustic properties of open cell
porous materials has been determined by several authors for fibrous materials and
plastic foams [19, 20, 21]. These relations are based on a number of measurements of
Z, and k as a function of . The results are [21]:

- 06731
Re(Z) = e, [1 + 0.1087 (ﬁ;[) ] (51)
— 06193
Im(Z) = —p,c, 0.2082 (-’1;—’) ; (52)
—0.7173
Re(k) = CE [1 + 0.0608 (B_;,I) ] (53)
0
= 06601
(k) = -2 |1 + 01323 (%L . (54)
CD ag
In these equations p, is the density of air and ¢, is the sound speed in air. Equations

(51) to (54) are considered valid if 0.01 < < 1.

(poS)
o

Reflection and transmission from layers of reticulated materials

Transfer matrix of a layer.

Let us consider a set of n — 1 layers of reticulated materials (Fig. 9). Each layer has
a thickness d;, a complex density p, and a complex speed c;. The media above and
below the layered system are two semi-infinite fluids. We will determine the amplitude
of the reflected and transmitted wave as a function of the amplitude of the incident
wave. An elegant method is based on the construction of a transfer matrix for each
layer. Let us concentrate on the m-th layer. We temporarily choose the origin of the x,
axis on the boundary between the m-th and the (m-1)th layer. The displacement
potential in the layer m consists of an incident and a reflected wave:

O, = ' e I 4 P, eI, (55)
In this equation @, and @",, are equal to:

P = Ao *F0 4 ot

Al W A ] £

and «, = k, cos0,,.
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Fig. 9. A system of n-1 layers of acoustic material.

The normal component of the velocity and the sound pressure are:

5P,

P TP TR (56)
. oD,

Uy = Jo 72_. (57)

The equations can be written in matrix form:
P Pm?cosP—jp w?sinP | [ @', + @", ‘
- e 7 w1 (58)
v, — jeot, sinP wa, cosP || &', — D",

where P = k,, | x,| cosd,,. If we evaluate this equation at x, = 0 and x, = —d,,, wecan
express p and v, at the top of the layer as a function of p and v, at the bottom face:

p = p
(”3) x,=-d Tl (”3) x,=0 . &

The four elements of the matrix [A,] are:
A, = cos(k,d,cos0,) = A,

Ay =j % sin (k,,d,, cosf,),

. cosl,,
Ay =]

sin (k,d,, cos0,,).
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This matrix is the acoustic transfer function of the layer m. By application of equation
(59), we can find the relation between p and v, at the two boundaries of the layered

system:
P g p
S s 1

(4] = [Ad[Aa-1]-[25)

The system with n-1 layers can be treated with the same easiness as for one layer. At
the face x, = — L, we can write:

Pasy = A0%Pysy (€741 4 ReFunil) gtz tindy, it (61)
Uyppg = Aa)zan+1 ej“-u]- -t Reﬁn:L) e“.jk-nx"insu-x“‘fﬂ’f ; (62)

and at the face x, = 0:
py = Aw?p, Te hmsditior, (63)

YRR VI N 0 (64)

In these equations R is the reflection coefficient and T the transmission coefficient
of the system. 4 is the amplitude of the incident wave. The Equations (59)
to (64) give:

_ G+ A,0p ) — (A +25,00p) 0, o2 L
T Gyt A @) Oy + (A0, +4,,00p) 0P,

(65)

& 28,1 0Py, PET N A (66)
(A2 +21,00) 0y g + (A0, + 4, 0p ) 0p,

Application to one layer of foam, stuck on a hard backing

A layer of foam of thickness d is stuck on a hard backing (Fig. 10). The normal
component of the velocity at x, = 0 is equal to:

0(0) = 0. (67)

From Eg. (59) we obtain v, and p at x, = —d:
vy(—d) = 1,,0(0), (68)
p(—d) = A,,p(0). (69)

|
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The normal surface impedance of a layer becomes:

p(—=d) 4
z = - (70)
Da(_d) ’121
or:
Z = N coth (jkd cos0’) (71)
~ cosf’ x
e | e
air
d foam
7 T O T T T
X3

Fig. 10. One layer of foam, stuck on a hard backing.

In this equation, Z, is the characteristic impedance, k the propagation constant. 0’ is
the angle of refraction and is given by Snell’s law:

cosd’ = /1 — (k,sin0/k)?, - (72)
with k, the wave number in air and 0 the angle of sound incidence.

The Figure 11 shows the normal surface impedance at normal sound incidence
of a 5 cm thick foam layer, stuck on a hard floor. The low resistivity of
the material is 5000 Ns/m*. The characteristic impedance Z_ and the propagation
constant k have been calculated using the Egs. (51) to (54) and the normal
surface impedance with Eq. (71). The dots are experimental results, obtained
with the free field method described in chapter measuring methods, point 5.
For comparison, the values of the reflection and absorption coefficient have
been calculated using the Eqs. (47) and (48). The A/2 anti resonance at 3000
Hz can clearly be noticed.



LR T e L

"
=
R LR et i To e

I L 1

0 1 2 ) 4 L]
frequency [(kHz]

Fig. 11. a) Real (1) and imaginary (2) part of the normal surface impedance at normal sound incidence of

a 5cm thick reticulated foam, stuck on a hard backing, as a function of frequency. The foam flow resistivity is

5000 Ns/m* Eqs. (71) and (72) and (47) and (48). * experimental results from two-microphone

technique. b) Magnitude of the reflection coefficient of the same foam layer. c) Absorption coefTicient of
the same foam layer.
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a 5 cm thick reticulated foam, stuck on a hard | ®' i
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flow resistivity is 5000 Ns/m* Eqgs. (71) | ]
and (72) and (47) and (48). * experimental _ TG sl WO I I Rl e e
results from two-microphone technique. 0 ! 2 3 4 5
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Figure 12 shows the normal surface impedance of the same foam layer for the
angles of incidence = 15°, 30°, 45°, 60° and 75°.

The above described method allows for the calculation of the normal surface
impedance of any combination of layers of reticulated foam including air gaps. The
method is very well suited for design purposes.

3. Acoustical properties of materials with medium and high flow resistivity

The model presented in the previous paragraph allows for the calculation of the
acoustic behaviour of materials with low flow resistivity. In a lot of cases, these
conditions are not satisfied, and an incident sound wave will generate a movement of
the air in the pores as well as a movement of the frame. This may occur for instance in
materials with medium and high flow resistivity [22, 23] or partially reticulated
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materials [24], where the pores are very tortuous. Also all cases where the surfaces of
the porous material is covered with a plate or a membrane can not be treated with the
theory presented in the preceeding paragraph. In 1956, Mr. Bior [25, 26] developed
a semi-fenomenological theory for the propagation of stress waves in porous elastic
solids containing a compressible viscous fluid. Biot treats the average motion of the
fluid and the solid on an equal footing. In 1986 D. Jounson [27] showed that the Biot
equations are the most general equations to describe the dynamic behaviour of
a two-component system. The most important result is the existence of a second
compressional wave. In the next paragraph, a brief introduction of the Biot theory will
be given. It will be explaned how the propagation constants can be calculated from
foam properties. Measuring equipment for the evaluation of different parameters will
be discussed and a matrix formalism to calculate the acoustic behaviour of layered
systems will be presented.

3.1. Theory of Biot

Equations of motion

Let u be the average displacement of the frame and U the average displacement
of the fluid in the volume element dV of the porous material. We make the
assumption that the pore size is small compared to the volume element dV
and that dV is small compared to the wavelength of sound. The equations
of motion of the porous material are:

P ?;2+pu 6;2 =PV(V: u)+QV(V-U)— NVxVxu+bF(w) I:aa—(:—g—‘:] (73)
Py {i;g+ P12 ZF =RV(V-U)+ RQV(V-u)— bF(w) [%g —%ﬂ (74)
In these equations p,, p,, and p,, are determined as follows:
Pii =Py + Pas (75)
P = hps + Pas (76)
P12 = —Pa> : ()

p, and p, are the densities of the frame and air respectively and p, is the mass
coupling term, which can be related to the structure factor k, and the porosity 4 by
the equation:

P hpf(ka_ 1) (78)

The mass coupling term allows for the force acting on one component of the
porous material whenever the other component is accelerated. The coeficient bF(w) in
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the Eqgs. (73) and (74) is the frequency dependent viscous coupling term. At low
frequencies, the velocity profile of the air in the pores of the material are
approximately given by Poisseulles law. At high frequencies, the velocity profile is
approximately constant, except for a small region near the pore walls. The parameters
P, O, R and N in the Eqgs. (73) and (74) are elastic constants that can be determined
with different gedanken experiments [28, 29]. For a plastic foam, where the
compressibility of the frame K, is much smaller than the compressiblity of the frame
material, these parameters can be approximated by:

N = shear modulus of the frame (79)
2
P K A N D K. (80)
3 h
Q=(1-hK,, (81)
R=hK,. (82)

K, is the compressibility of the air in the porous material.

Stress-stain relations in porous materials

Stresses are forces per unit area acting on the frame or the fluid of the porous
material. Let 7 and t,j be the stress tensor for the frame (s = solid) and the fluid (f
= fluid) part of the porous material respectively. The stress-strain relations for the
material are than given by:

%, = [(P=2N) V - u+QV - ma,,+N(g—“+g“) (83)
Xj X
ofy = —hpd,; = [RV-U+QV-u] 5. (84)

In these equations we can clearly notice the influence of a third coupling mechanism
between the movement of the air and frame as a result of the term 0.

Propagation constants in an elastic porous material

The average displacement vectors of the frame and gas can be written as a function
of a scalar and a vector potential [30]:

u=Vop+ VxH, (85)

U = Vy + VxG (86)
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Insertion of Egs. (85) and (86) into (73) and (74) yields two sets of equations: one
for longitudinal displacements and one for transverse displacements [31, 32]. For the
longitudinal displacements, assumption of harmonic time dependence results in:

Q=0+ ¢, (87)
¥ = 1,0, + 1,0, (88)
with:
V*+ kDo, = 0, (89)
V2+ kDo, = 0. (90)
In these equations, the propagation constants are:
por
k2 = SR—0 [(ﬁuR + PP —2p,,0) + JZ} o1
4 = (R + prpP = 25,0 — 4(PR—0?) (51— i) 92)

Hence, two longitudinal waves ¢, and ¢, with a different propagation constant k,
and k,, can propagate in a porous material. They are called the slow (P,) and the fast
(P,) wave. It can be shown that for the slow wave, frame and air move approximately
in phase opposition; whereas for the fast wave they move in phase. As a consequence,
the slow wave will have much higher attenuation than the fast wave. It is important to
note that both the P, and the P, wave have an amplitude in the solid and in the liquid
phase.

For the shear wave we obtain:

G = uH, 93)
with:
V2H + k3H =0,
The propagation constant is equal to:
2 pyypyy— Pl
k3= _ir3 "3 (%4)
N By

Determination of material parameters

The porosity

In the Biot equation, the porosity A is the amount of air in the porous material that
can participate to the sound propagation. For open cell reticulated foams, the porosity
can be easily determined if the density p of the frame material is known.
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h=1—-mlVp. (95)

In this equation, V is the volume and m is the mass of the sample. For materials
containing closed cells the situation is more complicated. Since the gas in the closed
cells can not be accessed from the outside, it should be considered as a part of the
frame. The major influence of the closed cells is that they modify the compressibility
of the frame. The acoustic porosity can be measured with a device shown in Fig. 13.

®
@
| L\
Ah
‘ -5 b B P,
h : !
F‘t‘ by IR
N ™
N [E= 0]
N
Fig. 13. Measuring set-up for the determination of the porosity

h. 1 — sample volume, 2 — sample, 3 — controlling gas volume,
4 — manometer.

The porosity of reticulated foams is typically higher than 0.95. For most non-
reticulated foams a porosity higher than 0.90 is measured, indicating that a lot of the
cell membranes have been ruptured or pierced.

The shear modulus

Since losses due to the viscoelasticity of the frame have to be taken into account,
the dynamic shear modulus should be used in the equation of Biot. The dynamic shear
modulus can be several times higher than its static value. The shear modulus can be
measured with a divice shown in Fig. 14. Two samples of equal thickness are glued

1)
|

s

I
I

Fig. 14. Measuring set-up for the determination of the shear modulus N. / — Briiel and Kjaer 4810 shaker,
2 — Briiel and Kjaer 8001 impedance head, 3 — movable plate, 4 — sample, 5 — rigid plate.

Eik
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between a solid wall and a thin movable plate. A shaker generates shear waves in the
two layers. An impedance head measures the force exercised on the plate, together
with the velocity of the plate. These two outputs can be fed to a two-channel FFT
analyzer and the frequency response function is given by

g = —i (2SJE]—V’ cotg ( \/g cm') = mw) (96)

In this equation, S is the surface of the sample, p the density, N the shear modulus and
I the thickness of the layer. The parameter m is the mass of the movable plate plus the
mass of the part of the impedance head that participates in the movement of the plate.
The magnitude of the shear modulus can be evaluated from the resonance frequency:

ml?
IN| = 25 ey o7

and the loss angle § can be evaluated from the width 2o of the resonance peak

3 e v (98)

The shear modulus can be evaluated as a function of frequency by measuring different
samples with different thickness /.

The frame compressibility

The frame compressibility K, can be evaluated from the shear modulus and the
Young modulus E, which can be measured on a rod of porous material vibrating in
longitudinally [33]

EN

K =368v=p

(99)
The dynamic measurement of the Young modulus of the frame should be performed in
vacuum, since the relative motion of the air and the frame influence the results
considerably, due to the viscosity of the air. This can be safely done with reticulated
foams, but the closed cells in non-reticulated foams will be destroyed when the
material is brought in vacuum, changing the compressibility of the frame can be
obtained from the value of the shear modulus and the static measurement of the
Poisson ratio v, by measuring the change in diameter when a rod of porous material is
stretched. The compressibility than is given by: |

2 1+v

K =3Ni > (100)
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The tortuosity

The tortuosity k, can be measured with a device if the frame material is an electrical
insulator (Fig. 15). The air in the pores is replaced by an electrical conducting liquid,
and the electrical resistivity r of the slab of the material is measured. The tortuosity is
than given by:

ky = h(r/r,) (101)

In this equation r, is the electrical resistivity of the conducting liquid. For
a material with parallel cylindrical pores making an angle 6 with the normal, the
tortuosity is equal to k, = 1/cos?0. Most reticulated foams have a tortuosity close to 1,
whereas the tortuosity of non-reticulated foams can obtain values as high as 4.

o

|
|

AC supply T AC ammeter )\®

digital
voltmeter

Fig. 15. Measuring set-up for the determination of the tortuosity k,. / — pumping system, 2 and 3 — grid
electrodes, 4 — electrolyte fluid, 5 — electric connections.

3.2 Matrix representation of layered porous materials

Matrix formalism of a layer of porous material [34]

Figure 16 represents a layer of porous material with a thickness d. A plane wave is
incident from above the layer. The incident waves generatea P, P, and a S wave in the
porous layer. At x, = 0 each of these waves is reflected and generates a P,, P, and
S wave.
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Fig. 16. A layer of foam with a thickness d,
stuck on a hard backing.

e @
air
' . porous
& ! material
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The three incident waves can be represented with three displacement potentials:
P; = Ape PNt nwmdriet § - 123, (102)

For the reflected waves we have:
@] = A} e MEwprrmwItiat j — |93 (103)

Since the wave numbers of the P,, P, and S wave are complex, the w ;i are complex too.
As a result the waves represented in Egs. (102) and (103) are inhomogeneous waves.
The planes with constant amplitude do not coincide with planes of constant phase.
The total sound field in the layer is given by:

Q) = @i+ ¢0f = @je M4 gfeFit, (104)
@)= Aj e Fxtiot (105)

@] = Aj e Kxtim, (106)

aj = kjo:,c = kjw_n. (]07)

The sound field in the layer is known if the six amplitudes 4} and A4 are known. The
amplitudes can be calculated when six independent stresses and displacements are
known at one of the two phases of the layer. The six independent stresses and

displacements which have been chosen are: u,, u,, U,, 1, g g
Let V be the vector:
Ve dppma iy ody thorf]™ (108)

The displacement and the stress components can be written as a function of the
potentials with the aid of the Egs. (83) to (88).

L S SO

e ox, 0%, .dx,

(109)



SOUND ABSORBING MATERIALS

237

s i

“= ox, T ox,  ox,
do do do
R
3 3

F
¥, = (P—2N) V-u+ 2N s,
0x,

) )
11, =N (b%:: + 62)’
4, =RV- U+ QV-u.
These equations can be written in matrix form:
V =[G(x)]®

the vector ® being given by:

9j + @j
?; — @j
?j + @)
?j —
?j + @j
B 7. %4

(110)

(111)

(112)

(113)

(114)

(115)

(116)

The values of the vector V at the two faces of the layer can be obtained by putting

x, resp. equal to 0 and —d:
Vix,= —d) = [G(-d]P
V(x,=0) = [GO)]2,

(117)
(118)

Inverting [G (0)] gives a relation between the values V and the two faces of the layer:

Vixy=—d) = [G(=d] [G(0)]* V(x,=0).

(119)

The matrix [y] = [G(—4d)] [G(0)] ! is an acoustic transfer matrix for the layer.

Transfer matrix of a layered system

Figure 17 represents two layers of porous material in contact with each other.
M and M’ are two points in each layer, close to the interface R. In the general case,
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R Fig. 17a. Two layers of foam in contact with each other.

characterizing the interface R requires the introduction of a coefficient of permeability
for the interface [35].

However, for high porosity foams a simple transition matrix for the interface can
be constructed. The continuity at the interface are:

u, (M) = u, (M), (120)

uy, (M) = u, (M) (121)

ho[Uy(M) — uy(M)] = h,[U (M) — uy(M)], (122)
hs(M)/h, = 43 (M))]hy, (123)

113 (M) = 13(M), _ (124)

(M) + (M) = 5 (M) + th(M). (125)

The Eqgs. (120) and (121) are self explaining. The Eq. (122) expresses the continuity
of the fluid across the interface. The Eq. {123) expresses the continuity of pressure in
the pores at the two sides of the interface, while the Eqs. (124) and (125) express the
continuity of the shear and total normal force at both sides of the interface. From
these equations, we obtain a transfer matrix [y,,]. If the porosities of the two materials
are equal, the transition matrix is unity. The transfer matrix for the layered material is
given by:

D] = [l Dl ]~ - (126)

This method can be easily extended in the case of more than two layers.

3.3 Applications

One layer of foam, stuck on a hard backing

Figure 10 represents one layer of foam, stuck on a hard backing. The edge
conditions at x, = 0 are:

u = u, = U, =0, (127)
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and at x, = —d.
113 = 0,
3= —-1-Hp

= tfy = —hp,

o[k u,—hU) = %

(128)
(129)
(130)

(131)

pis the pressure in the air above the layer, close to the surface. The vector Eq. (108) can

be written as:

V(x3= —d) = s

These equations can be solved for the normal surface impedance Z:

Z = (4,4,— 4,4,)%

1'33 x3=---d

(132)

(133)

X [(1—hy? (4,4,—4,4) h(1—h) (4,4, —A4,4,— A A, +A4,4.) + h*(4,4,4,4)],

4= 72055~ V2s¥sar :
A3 = V26Vss — VasVs60
A3= 7355 — V3¥s45
4, = Vslss — VagPses

w

4,= Yaalss — VasVsas
44= Yag¥ss = VasVse»
4= YoTss = VasVsss

Ay = Yog¥ss— VesV'ss-

Figure 17b shows the normal surface impedance of a 2 cm thick partially reticulated
foam layer at different angles of sound incidence. The parameters of the layer are
given in the figure caption. It must be emphasized that, since the coupling between the
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Fig. 17b. Real (1) and imaginary (2) part of the normal surface impedance of a 2 cm thick foam layer, stuck

on a hard backing, as a function of frequency. equation (133), * angle of incidence (experimental

results),a) @ = 0°,b) 8 = 15°,¢) 0 = 30°,d) 0 = 45°,e) 0 = 60°, ) @ = 75°. Foam parameters: N = 4 x 10°
N/m?% d = 2cm, k, = 45, h = 093, p, = 30kg/m? C = 24,v = 0.2, 0 = 55000 Ns/m*.

movement of the frame and the air in this material is high (large flow resistivity and
high tortuosity) a one wave approximation as in paragraph 2, for the single wave
propagation, is not valid.

A layer of porous material, covered with an impervious screen [36]

In a lot of applications, the foam has been covered with an impervious screen, in
order to protect it from chemical agents or heat. The screen can also be applied to
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Fig. 18. A layer of foam with an impervious screen. 1) layer of ¢
0] ®© [
foam, 2) impervious screen, 3) hard backing, 4) air.
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increase the acoustic absorption in the low frequency region. Figure 18 represents
a foam layer, covered with an impervious membrane. 4, is a point of the membrane.
A, and A4, are points in the air above the layer and in the porous layer, close to the
membrane. The equations of motion of the membrane are:

—0¥pud) = 15(d,) + th(4,) — 134, (134)
—(szz(As) = r;a(Az): (135)
with:
p, = p — Tk%in0/w? (136)
p, = p — Sk?in0/w? (137)

T is the tension in the membrane and S is the stiffness of the membrane. The
membrane causes the following edge conditions:

uy(4,) = U4, = u(4,) = U (4) (138)
u(4, = u(4) (139)
At 4, we have

u(Ay) = uy(d,) = Uf4,) =0 (140)
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The normal surface impedance is given by:

gl
e, G 4
Jo U(A)
which gives with Eq. (119):
P hap 2 Vot VedA— o5+ 769 B+ (715766 C -

(}'24A_?ZSB+?26C)
A = (j0pY1s—7Vs9) 26— V36) — U@P3¥16— 759 (V25— V39
B = (jop,714—7s) Va6~ V39 — (0P16—Vs6) (V2a—73)

C = (jop,¥14—V5) Was—Vas) — (@0P15=7s9) (W2a—734)

1 ; e
L 2 @ 4
IRIF . .
0 L '
T T T T
= | 4

Fig. 19. Magnitude and phase of the reflection coef-
ficient of a plastic foam, covered with an impervious
- 1 screen. Material parameters: T = § = 0, p = 0.02

o : ! kg/m?, thickness = 25x107% m. equations 47
and 142, * experimental results.

frequency [kHz]

Figure 19 represents the reflection coefficient at normal sound incidence,
calculated form the Egs. (47) and (142), of a foam layer with an impervious screen. As
a comparison Fig. 20 shows the reflection coefficient of the same foam layer without
the impervious screen.
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Fig. 20. Magnitude and phase of the reflection coefficient ~ ° : 2 3 4 5
of the foam layer as in Fig. 19, but without the screen. frequency [kHzl

The acoustic transmission through layered systems

The acoustic insulation properties of foam layers, sandwiched between elastic solid
plates has a wide range of application, including buildings, cars, airplanes and
industrial plants. A reliable theoretical model to predict the acoustic insulation of the
partitions can save a lot of development time. We can use the matrix formalism,
developed in the preceding paragraph, to calculate the sound transmission through
such layered systems. Figure 21 represents a plate/porous layer/plate system. Let u be
the displacement of the plate and let M, and M, be two points at the left side,
respectively the right side of the plates. The equation of motion of the plate, glued on
a layer is given by [37]:

O*u, 2y d

0
D223+ pd 52 = [T (M) +Th (M)~ th(M)] + 5

0115
3x‘,‘ 12 [_5371 (Mz):| . (143)

In this equation, p is the density and d the thickness of the plate, D, the bending
stiffness of the plate is given by:

Ed?

D= —12(1—1?2). (144)
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E is the Young modulus and v is the Poisson ratio of the plate material. The x,
component of the plate in M, can be written as:

d Ou,
i et (145)
The equation of continuity in point M, are:
d
u(My) = —j3 ksinfu(M), (146)
u(M)) = uy(M,) = U(M), (147)

(Dk‘sin‘ﬂ—pdwz)uS(M1)=|:-c;3(M,)— (M) —1 3(M1)+datl3 (M )], (148)

and in M
2 A
u (M) = +j 0 ksinfu,(M,), (149)
u(M,) = u (M, = UM), (150)
, d' ot
(D'k*sin*0— p'd'w?) u (M) = [ LMY+ 75 (M)~ M)+ x” (Mg].(lsn
. 1
X?
plate 1 plate 2
air N air
7 \
incident f porous N
wave layers N
7
%
CTANZ M, M, NM,
e /// 'Q X
% e
/ N fransmitted
f N wave
7
7
7 ¥
B
! Fig. 21. A porous layer placed between two plates.
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In these equations, k is the wave number in air and @ is the angle of incidence.
These equations, together with the transfer matrix for the porous layers can be used to
express u,(M,) and 1§, (M) as a function of u(M,) and 4 (M ):

u.'i " o] ul!
[1{3] - 3T [p] [1:{3] . (l 52)

The matrix [f] can be considered as an acoustic transfer matrix for the plate/porous
material/plate system. The extension to an arbitrary number of such constructions in
series is straightforward.

The sound field in M, and M, can be written as:

(p(Ml) — e+.ikx,:ina +.im+ Re+ikx,sind + jot (l 53)
(P(MJ = Te+jtxlsin8 — jklcosd + jeot : (] 54)

With the Eqgs. (40) and (41) we obtain for the transmission coefficient:

_kcosf
2j =
T'=s—F"——. (155)
Y+ Y_]kCO:B
pw
Jkcosf 2k
X =( 28 T ﬁu) & hns 5 (156)

(157

i
[dB]
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Fig. 22. Transmission loss factor of a steel plate/foam/steel plate system. Steel data: d = 0.001 m, D = 16.3
(140.01j) Nm. Foam parameter: d = 0.05 m.
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Fig. 23. Transmission loss factor of a plywood/foam /plywood system. Plywood data: d = 0.085m, D = 390
(140.04j) Nm. Foam parameter: d = 0.05 m.

The transmission loss factor TL is equal to (38):
x/2 .
TL = —10log (2 [ 172 sin@ cos® dﬂ). (158)
0

The Figure 22 shows the transmission loss factor of a 5 cm thick foam layer,
sandwiched between two steel plates. Figure 23 shows the transmission loss of
a parition made of a plywood panel, a 5 cm thick polyurethane foam layer and a second
plywood panel. The plate and foam parameters are given in the figure caption.

Conclusions

The acoustic characteristics (sound absorption and transmission) of absorbing
materials can be calculated from independent measurable parameters. In the case of
reticulated foams, when the coupling between the movement of the frame and the air is
weak, the acoustic behaviour is fluid-like and the characteristic impedance and the
propagation constant of the wave in the foam can be calculated from the flow
resistivity and empirical equation from Delany and Bazley. The reflection and
transmission coefficient of layers of reticulated foam can be calculated easily with
a matrix formalism.

In the case of non-reticulated foams or when the foam is covered with a membrane,
plate of facing with a high flow resistivity, the acoustic behaviour is more complicated.
Two compressional and one shear wave can propagate in these materials. The
propagation constants and the relative amplitudes of these waves can be calculated from
the porosity, the complex shear modulus, the Poisson ratio, the tortuosity and the flow
resistivity using the Biot theory. Frequency dependent viscous and thermal effects have
to be taken into account. A layer of material can be characterized acoustically with
a 6 x 6 matrix. The matrix formalism allows for a straightforward calculation of the
reflection and transmission coefficient of a variety of layered systems.
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