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INFLUENCE OF THE ACOUSTIC-STRUCTURAL COUPLINGS
UPON FREE VIBRATIONS OF MECHANICAL SYSTEMS

J. HORACEK and I. ZOLOTAREV

Institute of Thermomechanics
(182 00 Prague 8, Dolejskova 5)

The roles of acoustic-structural couplings in three entirely different aeroelastic systems
are compared. The first system is a thin elastic cylindrical shell containing fluid in a coaxial
annular duct, the second system is a thin plate vibrating in fluid near a rigid wall, and the third
system is a simple single degree-of-freedom mechanical system, vibrating in contact with
a confined volume of an acoustic medium. It is shown that the nature of the acous-
tic-structural coupling is identical in all the studied cases.

1. Introduction

From studies of the dynamical behaviour of cylindrical shells conveying fluid it is
known that in the specific wave-number regions the strong acoustic-structural
couplings exist between the vibration of a light fluid (e.g. a gas) and the shell [2, 3, 4].
Consequently, the spectrum of eigenfrequencies of the coupled shell-fluid system may
be quite different from the spectra of the two separated subsystems (the shell in vacuo
and the fluid in the rigid cylindrical duct).

The main idea of the paper is to point out some general and fundamental
properties of coupled free vibrations of structures and acoustic media. Namely,
the very similar dynamic phenomena as in the shell-fluid systems were also found
for plate-fluid systems and even for systems having finite number of degrees of
freedom.

2. Shell-fluid system

The natural vibration of the cylindrical shell (with the radius R and the wall
thickness h) containing fluid (with the density p, and characterized by the speed of
sound ¢, in a coaxial duct of the radius R, (see Fig. 1) was studied in detail in [4], and
for R, = 0in [2, 3].
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The equations of motion of the thin shell can be written in the following form

pREA =Y 2N o\ R =y [0
e+ 852l o)- ) A

where K is the Goldenweizer-Novozhilov’s structural operator, /is a 3 x 3 unit matrix;
p,, E and v are the density, Young’s modulus and Poisson’s ratio of the shell material;
u, v and w are the axial, circumferential and radial displacements of the shell,
respectively; and p is the acoustic perturbation pressure.

Following closely BoLoTin’s work [1], it is possible for a structural wave of the type

u U
(U) 3% (V) ei(um—ix—nﬂ)’ (2)
W, W.

to derive the perturbation pressure p for the potential flow field in the annulus
in the form

P = pR i, (BR, BR;) w? W ¢! @ 3x=n0) 3)

where w is the circular frequency, & and » are the wave-numbers in the axial (x) and
circumferential (0) directions; U, V, W are the components of amplitude of vibration
of the shell. The function g, characterizes the added mass coefficient of a compressib-
le fluid in the annulus and is given by the formula:

_ 1 16,(BR) *$;(BR)~"$:(BR,) *, (BR)
i GR PR = R "1, 8R) 0 BR) 0 GR) i pR)* Y

where
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I, K, J, Y, are the Bessel functions and the primes denote their derivatives.
Substitution of the expressions (2) and (3) into Eq. (1) yields the characteristic
equation for the natural frequencies of the system
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where the following dimensionless variables were introduced

R=wRp,/E, a=d&R, p=p,R/p,h, c=c,/\E|p,,
{=BR, {,=BR,={RyR; ®

Jf;jare functions of a, n, v, h/R defining the vibration of the shell in vacuo, and  is the
function, that defines the effects of fluid in the annulus

V= t(1-v)p, & )% (10)

The minus sign hold for fluid inside the thin shell (R> R,) and the plus sign for fluid
outside (R<R)).

For the shell of finite length / simply supported at both ends the wavenumber « has
only discrete values a,, =mnR/[(m=1, 2, ...), and for every studied mode of vibration,
which is defined by the n waves in the circumferential direction and by the m halfwaves
along the length of the shell, the Eq. (8) has an infinite number of solutions £.

The equation (8) can be rewritten in the form

['¢a(8) *0a (C) — '6a(CD) 0n ()] F(2%) + p(1—1?) 22 o

-mmww—wwmw%wmmw—Mﬂ,

where F(£2?) is the determinant (8) for the thin shell in vacuo, i.e. for p = 0.

If the dimensionless fluid density p equals zero, i.e., for the shell in vacuo (p, = 0) or
for fluid in the rigid annular duct (4/R— 0), the shell-fluid system is uncoupled and we
get from Eq. (11) three natural frequencies 2, ; (i = 1, 2, 3) of the shell in vacuo, given
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by the equation F (2?)=0, and from the first bracketed term of Eq. (11) the infinite
number of acoustic resonant frequencies

|
Qﬂ.k = C\/m2+zi,k (k=1, 2;-")5 (12) 1
where z,, are the positive roots of the following equation:

Ju(2) Ya(z RyR) — Ju(z RyR) Y, (2) = 0. (13)

For p>0 the two subsystems (the shell in vacuo and the fluid in the rigid duct)
06

a | H/R=01 =

04 r
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are coupled, and from Eq. (11) one obtains an infinite number of frequencies 2. The
first two of them are shown, as an example, in Fig. 2 for the duralluminium shell-air
system (n=4, h/R=1/300, v=0.34, c=0.066, p=0.129, R,/R=0.9. The difference
between the solutions for p=0 (dashed lines) and p>0 (solid lines), in Fig. 2 is
essential near the wavenumber mnR//~ 3, where natural frequencies 2, , and ©, , of
the both subsystems coincide, and where the strong acoustic-structural coupling
exists. From the point of view of vibration of the shell in vacuo one natural
frequency is here split up into the two different frequencies; the difference between
them increases with the density p and by narrowing the annular gap width. In the
regions of strong acoustic-structural coupling we cannot distinguish the acoustic
modes from the structural ones. Out of this regions the vibrations are predominant-
ly structural (-, or acoustical (2—£,,). The more accurate classification of
the modes one gets by analysing the ratios of the perturbation flow and shell
velocities [3].

3. Plate-fluid system
The second aeroelastic system studied is a thin elastic plate of thickness A,

supported by an array of springs and placed near a parallel rigid wall at a distance
H (see Fig. 3). Between the thin plate and the rigid wall there is an inviscid
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compressible fluid of density p,. The springs may be modelled by a continuous
elastic foundatin of spring stiffness k, per unit length of the plate. In
general, the plate is subjected to a longitudinal tension N, per unit width
of the plate.
The displacement w of the plate is governed by the equation
a*w a?w P*w

DE—Nx@+kfw+p,h¥+p=0, (14)
where D= Eh3/12 (1 —v?) is the flexural rigidity of the plate; E and v are, respectively,
the Young’s modulus and Poisson’s ratio of the plate material. The perturbation
acoustic pressure p acting on the vibrating plate is given according to the linear
potential 2D flow theory by the equation

od
p=—p" (a_t)IFU’ 59

where the perturbation flow velocity potential @ must satisfy the wave equation

a*d 0P 1 ¢

—t ===, 16

2 R E P (16)
and the boundary conditions

oP ow o
B 0 ol (17)

on the lower vibrating and upper rigid channel walls, since no fluid can pass through
the surface.
Assuming a solution in the form of travelling waves, we set

M w I (0t—ax
o e o, a
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where W is the amplitude of vibration, e is the circular frequency and & is the
wavenumber. For the plate of finite length / simply supported at both ends the
wavenumber & has only discrete values &, = mn/l, (m=1, 2,...).

Substituting @ and w into Eqgs. (16) and (17) we get the following equation for the

function ¢:
d*¢p - w\? L
s 2 [ d (n)]‘” el 19)

and the boundary conditions (17) become

op W

6zli=0

= 0. (20)

Denoting

; @1

the general solution of Eq. (19) can be written in the form

op=A e ’4+B-e*P for ci>69; (22)
0
@ = A-sinfz+B - cospz for a<cf. (23)
0

Calculating the integration constants 4 and B from the boundary conditions (20) one
obtains the following expression for the velocity potential:

_ _.w coshf(H-z) YN

Q= lﬁw —SlnhﬁT for cz>co, (24)
_ i W . CosB(H—2) =

Q= +1ECB _Sl—nﬂT for G(Co, (25)

and using Eqgs. (18) and (15) we can write the solution for the perturbation pressure in
the form

th :
P = _pthW- MH_ . ei(mt—arx) for m">9;
Co
(26)
t BH :
p= +p,sz'2ﬁ‘L gl e for o':'<c9.
0

Substituting p and w from Eqs. (26) and (18) into the equation of motion (14) we
finally get the following characteristic equation for natural frequencies @ of the
coupled plate-fluid system
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Di*+ N, @+ k, — p,ho? — p,w? - ¥(f) = 0, 27
where ¥(f) denotes the function
COﬂ;}ﬁH for a'c>c9
s 0
R cot fH o 25)
- for a<—.
B €o
Introducing the following dimensionless parameters
Q = wh\Jp,/E, «=hd,
N,=N,/Eh, K=kh[E,
0\2
P=P:/P,s C=CD/V P,/E, £=ﬁh= a4 (;) ’ (29)
H=Hh,
the characteristic equation can be rewritten in the form
: e izong sppaigen gl o ppliasy (30)
@ | 120-9 . 1
where s
Q
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For the uncoupled plate and fluid systems (p=0) we get from Eq. (30) the natural
frequency of the plate in vacuo (p,—0)

a-t
- —— 2
Q, \/12(1_v2)+Nm + K, (32)

and the infinite number of acoustic resonant frequencies for the fluid in the rigid
(ps— c0) channel:

2
Q,,=c [a+ (k=n) ; (k=0;,1, 2,...) (33)
H
because the equation
1 ey
e =CtglH =0 34

must be satisfied.
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For the coupled plate-fluid system (p> 0) we get from Eq. (30) the infinite number
of natural frequencies . The greater is the dimensionless density p, the greater
becomes the difference between the natural frequencies 2 of the coupled system and
the natural frequencies 2 or 2, of the separated acoustic and structural subsystems.
The parameter p is a measure of importance of the acoustic-structural coupling.

An an example, the natural frequencies £2 of the pre-stressed duraluminium plate
interacting with the compressed air contained in the channel were calculated (p=0.01,
¢=0.066, v=0.34, H=10, N,=0.5, K=(0.0125)?). The first three branches of the
solution 2 for the coupled system (p=0.01) are shown in Fig. 4a (solid lines marked by
the numbers 1, 2, 3). The solutions 2, and £, for the uncoupled systems (p=0) are
also plotted here thin dashed lines.
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The results of Figs. 2 and 4a show that the dynamical properties of the studied
plate-fluid and shell-fluid systems are very close concerning the coupling of acoustic
and structural natural frequencies.
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The more detailed analysis of the acoustic-structural couplings gives the cal-
culation of the amplitude p, of the acoustic pressure on the vibrating plate surface.
From Eq. (26) we get for the amplitude p, the expression

P= —pE7 P, 69)
where P, = Q?¥(£) characterizes the ratio p,/W of the amplitudes of the pressure and
the displacement of the vibrating surface. The characteristics P, for the studied
plate-fluid system are plotted in Fig. 4b for the first three natural frequencies
© depicted in Fig. 4a. The results displayed in Fig. 4 show, that if the mode is
predominantly structural (- £,) the amplitude of the pressure is very small (P,—0)
e.g. for the branch 2 and «>0.1. For predominantly acoustic modes (2-£,,) the
pressure P, is much higher, e.g., for the branch 3 and «<0.1. If the acoustic and
structural modes are strongly coupled (see the branches 2 and 3 near a=0.14), the
pressure amplitudes P, in absolute values for these two modes of vibration are
comparable, and the difference between two modes is only in the opposite phase of the
plate deflection and the pressure. We cannot distinguish the acoustic modes from the
structural ones. From the point of view of free vibration of the plate in vacuo on mode
of vibration is, in the region of strong acoustic structural coupling (x~ 0.14), split in
the two modes, similarly as for the shell-fluid system.

4. Simplified mechanical system

The single degree-of-freedom system, with mass M and stiffness k vibrating in
contact of its surface S with a fluid near a rigid wall is depicted in Fig. 5a. This
mechanical system can be, e.g., a very simplified model of the shell-fluid system solved
in Sec. 2 of the paper. The analogy between the two systems is illustrated in Fig. 5b,
where the mode n=4 for the shell is schematically plotted.

The free vibration of the mechanical system is described by the equation

M) + kw(t) + | p(x,0) dS = 0, (36)

where p is a perturbation pressure on the surface S = h L. For simplicity it is supposed
that pis a function of time ¢ and the coordinate x (0 < x< L); L and 4 are the length and
the width of the surface of the mass M, respectively.

The pressure p(x,f) is obtained from the 2D potential inviscid flow theory, as in
Sec. 2 of the paper for the plate-fluid system. Equations (15), (16) and (17) for the fluid
field are completed by the following boundary condition

Plizo= @le=r =0 (37
at the free edges of the volume of fluid.
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The harmonic motion of mass M with frequency and an amplitude W gives
w=We" and ¢(x, z 1) = ¢(x, 2) ', (38)

where the potential ¢ is the solution of Eq. (16) with the boundary conditions (17) and
(37). Solving this boundary problem we get for ¢ the solution

+a
@(x,z) = ) sin kux (d;cos Bz + Bysinf, z), (39)
k=1
where

B = V@l = xt, w; = knjL. (40)
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Calculating the integration constants 4,, B, from the conditions (17) and using Eq.
(15), the perturbation pressure is obtained,

==

p(x,0) = p, £ ) cot (B, H) sin (x,x) e**. 41)
L =1 Kb

L fa
Substitution of the integral F(f) = | p(x.f) h dx and w in Eq. (36), yields the

0
characteristic equation for the natural frequencies of the coupled fluid-mechanical
system
— LLOgy minig t(H Q2—(2j+1)
_Qz_*_lz_}_pnz_zz : 2(20(_\/_ (2_]+))=
s G+ D o g2 —2j+1)

0, (42)

where the following dimensionless quantities were introduced:
Q = oL/nc,, A=+Jk/M Ljnc,, p=pSH/M, H=HIL.  (43)

The modes of vibration may be characterized by the ratio of amplitudes F, of the
aerodynamic force F(f) and the amplitude of vibration

FA/(PIC%S) i ZE 02
—PVTL— =T P (Q /12) (44)

F

The first two natural frequencies Q of the coupled fluid-mechanical system with
the parameters H=0.13 and p=0.12 which are the equivalents of the solved shell-fluid
system (H=R—R,;, L=nR/n, h=I/m, M= p, hn Rl/(m ' n)), are depicted in Fig. 6 as

Q
- H/L=Q13
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functions of A (full lines). If the di:l:ncnsionless density is small (p—0), one obtains from

Eq. (42) the natural frequency Q,=4 of the mechanical system in vacuo, and the
acoustic resonant frequencies

Q4 =V + GIH? (k=1,2,..; j=0, 1,...) (45)

of the volume of fluid in the rectangular immovable slot dashed lines. Similarly to the
shell-fluid system (see Fig. 2), in Fig. 6 appear the regions of A where strong
acoustic-structuia.l couplings exist, or where the vibrations are predominantly

structural (2-—-£,) or acoustical (2-9,,,). The results of Fig. 6 are not only in

a)
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qualitative agreement with the results of Fig. 2. Concerning, for example, the
difference between the split natural frequencies £ in the regions of strong coupling
(A~ 1in Fig. 6 and a,,=2.8 in Fig. 2), the difference reaches approximately 24% in
both the cases studied.

By narrowing the gap width in the fluid-mechanical system (see Fig. 7a, where H
= 0.13/2), the regions of strong couplings substantially increase. The modes of
vibration can also assorted according to the values of the force F (see Fig. 7b). If the
mode is predominantly structural (see, e.g. branches 1 in Fig. 7 for 1 <0.4), then F—0.

If the mode is predominantly acoustical, then F— + oo (see, e.g., branches 1 for
A>2.4). In the regions of strong acoustic-structural coupling (e.g. for branches 1 and
2 pear 1=1) we cannot distinguish the structural modes from the acoustic ones,

because the absolute values of the aerodynamic force F for both the coupled natural
frequencies R are practically identical.

5. Conclusion

It was shown that in fluid-elastic systems the strongest acoustic-structural
couplings exist if the resonances of acoustic and mechanical subsystems are close to
each other. In this case the coupled fluid-mechanical system has two different natural
frequencies which are neither purely acoustic nor purely structural, and the dynamic
properties of this system can not be studied separately for the structural and acoustical
subsystems. Even a light medium can significantly change the spectrum of natural
frequencies of a structure.

In all examples studied it was proved that the nature of the acoustic-structural
couplings is the couplin of two oscillators, namely the mechanical structural and the
acoustical one.
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