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THE APPLICATIONS OF HANKEL TRANSFORM TO THE COMPUTATION
OF NEARFIELDS OF CIRCULAR BAFFLED SOURCES

R. WYRZYKOWSKI AND A. CZYRKA

Department of Acoustics Institute of Physics
(35-310 Rzeszow, ul. Rejtana 16)

In the present paper we give a new method of computation of near sound fields emitted by
baffled circular sources. We have applied the Hankel transform and King’s integral. Two
examples were calculated — namely the piston with uniform velocity distribution and
membrane for different values of the rate of the speed of elastic waves in the membrane to the
speed in the medium.

1. Introduction

The computation of the near field of a baffled circular piston was given by H.
StenzeL [9] and is quoted in every textbook on acoustics [e.g. 11].

Nevertheless the Stenzel’s solution has two disadvantages; first — the acoustic
pressure is expressed de facto in the form of a triple series and is therefore difficult to
calculate. Second — the method itself is limited to the special case of uniform velocity
distribution.

In this paper we present a different method of solving the problem of a nearfield of
circular baffled sources by means of the integral Hankel transform. Application of this
transform to the Helmholtz wave equation in cylindrical coordinates is due to L.U.
KinG [5]. The idea has been continued by M.C. Juncer in his monograph [4] and by M.
GREENSPAN [3]. The quoted authors limited yet their interest to the far field, computing
the proper integral by means of the saddle point method [4], or to the field on the axis of
the source.

The method is quite general and can be applied to the case of an arbitrary velocity
distribution given on a baffled circular piston. In this paper we have modified the
method and obtained the integral representation of the nearfield of a piston with
uniform velocity distribution and a membrane, of course with its “natural’ Bessel
distribution. Both expressions are given in the form of single integral of Bessel
functions and are easily calculated numerically.
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2. The general probiem of an arbitrary velocity distribution on a circular baffled piston

We will consider the problem of computing the acoustical potential &, which in the
case of harmonic vibrations is proportional to the acoustic pressure p:

p = ipw® = ip,c kP, (1)

where p,, is the density of the medium at rest, w is the angular frequency of vibrations,
k is the wave number and ¢, adiabatic velocity of sound.

The velocity of vibrations u, called also the acoustic velocity, is by definitiion the
gradient of the acoustic potential:

# = —grad &, @

Introducing the cylindrical coordinates system, that is natural in our problem, we can
write down the Helmholtz equation for the acoustic potential in the form:

*® 109 o'

¥+;*a—’_-+?+kz‘p=0, 3)

Here the field is considered to be independent of the angular coordinate ¢. For a given
function u(r) representing the velocity distribution on the source, equation (3) has to
obey the following boundary conditions:

0P|  u(r) O<r<a,
0z z=0_ 0 r>a,

@

where a denotes the radius of the piston. We apply the zero order Hankel
transform to both sides of the equation (3). There are several definitions of
Hankel transform used in literature. In the present paper we use the form
accepted in the monograph [6]. The transform of the acoustic potential &(r.z),
denoted as U(p,z) we write therefore in the form:

U(pz) = u_f rd(r,z) J,(pr) dr, &)

where J () is the Bessel function of zero order. The sum of the two first
therms in equation (3) is transformed, according to the basic property of Hankel
transform [6] into:

7d 100
+-— = —pU ©®)

o roor
The transformed equation (3) takes now the form:

a*u

magt-edphi- My ) ™
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It is, of course, the differential equation for the transformed potential i.e. U(p,z). The
Hankel transform can also be applied to the boundary condition (4). for that purpose
we must transform the velocity distribution u(r). That transform, denoted as H (p) is
equal (5):

Hp) = } r u(r) Jy(p,r) ar, . (8)

We change the upper limit of the integral defining the transform from co to a because
a(r) # 0 only for r < a. Since differentiation with respect to z is independent of the
integration variable in the Hankel transform, the transformed boundary conditions
takes the form:

dUu
- =H 9
dz F1be) o(p) ( )
The general solution of equation (7) has the form:
Ulp,z) = A(p) e V*" ¥4 B(p) &/* %=, (10)

The second term of the r.h.s. (10) tends to infinity when z increases and p> k. Therefore
we have to put:

B(p) = 0, (1)
and finally get:

Ulp,2) = A(p) e Vo=, (12)
now we can calculate easily the l.h.s. of the boundary condition (9). We have namely
from (12): 3
dU

e I R/ o | (13)
Thus the unknown in (12) A(p) is equal:
1 dUu
Alp) = — — 4
® i (14)
ing sl dU 3
Substituting in r.h.s. (14) i from (9) we obtain:
z=0
1
A(p) = — H (p), 15
(» T i o) (15)

While examining specific cases (examples) we know the accepted distribution u(r) and
therefore we can find its transform H (p) (9) which allows us to compute 4(p) (15) and
the transform U(p) of the acoustic potential be means of the formula (12). Then:
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1
= - e L z_
Ulp,z) \/Tsz“ ) e~V (16)

The potential can be computed as the inverse Hankel transform of order 0:

8(r2) = | Up2) Tonp dp, an

and, after substituting in (17) the value U(p,z) (16) we have finally:

o) = - | J;% Hyp) e~ p dp (1)

The above integral can be obtained also by means of another methods, e.g. by
integrating the adequate Green function [4]. It is called the King’ integral. However the
method presented in this paper seems to be clearer and simpler.

In practical applications we must integrate (18) from 0 to k and from k to oo, to
obtain real and imaginary part of &(r,z).

3. Acoustic potential in the nearfield of a baffled rigid piston with uniform velocity
distribution
The velocity distribution u(r) has in our case the form:

<
o) = uo,J O<r<a (19)

r>a

According to the formula (8) the Hankel transform of that distribution is:

H(p) = u, } rJ (pr) dr. (20)

The r.h.s. of (20) represents an elementary integral [2] [9] and we write:

Hp) = w22, @1)

where J () is a first order Bessel function. According to the formula (18) the acoustic
potential takes now the form:

® —Jp’Tk’
040) =~ | el 7p0) 10 @)

The formula (22) can be written in a simpler form introducing a new variable;

x = pa (23)
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Then:
o 2 y e—J:F:'('ka_)’; r 2\

In the formula (24) we have only the relative values 2, g and the so called diffraction

parameter ka. We divide the integral into two parts namely from 0 to k and from k to
oo. We separate the real and imaginary part and obtain:

ool 1a SIN (~/(ka)2—x2 E) {
@(E, :z) = u,a { N J, (%) J"(:—z x) dx +
PR el

= r
— uga i‘; 7~(— T J,(x) J"(E x) dx +
xq COS (,/(ka)z-—.x:z f)
Y 1 (%) J, (£ smx) dx.

(25)

+ iu,a
¥ { J(kay>—x?

In the formula (1) expressing the acoustical pressure p by means the potential @ we
have in our case the following coefficient before the integral namely wpua, which has
the dimensions of a pressure. For that reason we will compute and show in figures the
relative pressure equal:

p
g 6
pa= 26)

4. Circular membrane

We have a circular membrane fastened on its edge. The displacement distribution,
independent of the angular variable ¢ has the form:

E(rt) = ATJED) e = L fr) . 27

In the above formula £ denotes the wave number of standing waves in the membrane,
depending on the variable r. The set of admissible wave numbers is a descrete one and
for that reason we have the index n. On the edge i.e. for the value r = a the displacement
must fulfil the condition:

$o@) = 0, (28)

J(kDa) = 0. (29)

or:

That condition gives us the set of admissible wave numbers k. Denoting by «,, the
value of n-th zero of zero order Bessel function we have:
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a
The velocity of vibration on the membrane equals therefore (27):
aé 1 (7] it . r eum
u(r,t) = E =2 lmAJo(k,, I') e = “DA‘IO ( E (31)

and can be written as:

uolu(am £) 0<r<a

SN r>al @

where:
u, = iwA (33)

The presence of i in (33) is of course meaningless — we can, for instance, accept an
imaginary value of 4 — it is only the problem of the phase shift.

According to the formula (8) the Hankel transform of the velocity distribution (32)
has now the form:

s r
Hp) = u,| J'Jo(mm E) J(pr) dr (34)
]
The integral in the r.h.s. (34) is given in the tables [2], [7] and we obtain:
ag J, (@) J(pa) — paJ(a,) ], (pa)

(u_o.)= i (3)

Hyp) = u,

Of course Ji(a,,) = 0 and we get:
e, J. () J (pa)
H,(p) = u,—> 1 "3 &P (36)
e 4
(2)
The wave number k in the formula (18) is the wave number of waves propagating in the
medium (e.g. air). The angular frequency of these waves is:

o, =k -c, €Y

where c,, denotes the velocity of elastic waves on the membrane. To this frequency
corresponds the wave number in the medium equal:

o C,
N i, 33
a c ()

where ¢ denotes the velocity of sound in the considered medium.
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Substituting H (p) (34) into the formula (18) we get the acoustical potential in the
nearfield of the membrane in the form:

© ,—Jp—k k‘z
B(rz) = —oy u,J, (a, )I[(a )2 Jn@aj@
=)' |V

a

pdp (39)

We introduce in the formula (39) the variable x (23) and we get:

o€ ““*“’%Jo(x) Jﬂ(ﬁ JC)
a
xd

rz

-, — | = =g u, (@ S N x 40
o{o3) - wneo s S e @

According to the formula (38) we have:
k= oy < 1)

c
Therefore we can write (40) in the form:
)2z
e Jo(%)'s 7,97, gx)

dx 42)

i3]

fp(g.z) = —agu al,(@,) | = x
& (@2 — k%) /x’——(am—c-’“

We separate in (42) the real and imaginary parts and get finally:

a'a

Cm \2 z ro\
"7 sin B —= | — X3~ Ju(x).fo(— x)
@(E f)_a uaj(am)'[ ( ( "-') a) a S di
2
on

% o )y f.x:)
—agusal, (@) | az xdx + 43)
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To compare the results obtained for the piston and the membrane we must normalize
the formulae for the membrane in a way assuming the same output for both sources.
We denote by u,, the velocity amplitude for the membrane —now we must distinguish
between that value for the piston and of the membrane. According to (32) the output of
the membrane equals:

a 2x a

0.'= jjumJo(% r)rdrdcp = Muijo(%g l") rdr. C)
0o

0

The integral in the r.h.s. (44) is an elementary one [2] and:
a2
0, = 2[u,, = J, (a5,)- 45)
Om

The output of the piston with the constant velocity distribution u, equals:

0, = Nau, (46)
Equating (46) to (45) we get:
=— %o
Uow = 3 FACH) u, 47)

In the figures we represent of course the amplitude of the relative pressure (26). The
numbers ka for the piston were chosen the same as for the membrane e.i.
corresponding to the successive zeros of Ji( ).

5. Conclusions

We have computed numerically the normalized pressure modulus versus the
relative distance from the axis (r/a) and the relative value z/a for a piston and
a membrane.

The computations were performed for the values of ka corresponding to successive
zeros of the Bessel function J,( ). Besides, for the membrane, the comutations were
performed for the C,/C equal 0.5; 1.0 and 1.5.

Of course the modulus of the pressure depends on the value of ka for both the
piston and the membrane and with the increase of ka the sound field becomes more
complicated — if one may use that word in the nearfield —more "directional”. For the
membrane the increase of the ratc L, /C deteriorates the “directivity”. (Fig. 1...3)

The figures 3 and 4 represent the norrualized pressure modulus of the z axis, namely
for rfa = 0.

The numbers of figures were represented in a very clear way, namely denoted for
P by the piston, M(a), M(t), M(c) for the membrane (C,/C=0.5; 1.0; 1.5).
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Fig. IM(c) Same as Fig. 1M(a) but coefTicient
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Fig. 2P The normalized pressure modulus
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