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The performance of four spectral techniques (FFT, AR Burg, ARMA and Arithmetic
Fourier Transform AFT) for mean and maximum frequency estimation of the Doppler spectra
is described. The mean frequency was computed as the first spectral moment of the spectrum
with and without the noise subtraction. Different definitions of f,,, were used: frequency at
which spectral power decreases down to 0.1 of its maximum value, modified threshold crossing
method [23] and novel geometrical method. “Goodness” and efficiency of estimators were
determined calculating the bias and standard deviation of the estimated mean and maximum
frequency of the computer simulated Doppler spectra. The power of analysed signals was
assumed to have the exponential distribution function. The SNR ratios were changed over the
range from 0to 20dB. The AR and ARM A models orders selections were done independently
according to Akaike Information Criterion (AIC) and Singular Value Decomposition (SVD). It
was found, that the ARMA model computed according to SVD criterion had the best overall
performance and produced the results with the smallest bias and standard deviation. The
preliminary studies of the AFT proved its attractiveness in real-time computation, but its
statistical properties were worse than that of the other estimators. It was noticed that with noise
subtraction the bias of f, _ decreased for all tested methods. The geometrical method of f,,
estimation was found to be more accurate of other tested methods, especially for narrow band
signals.

1. Introduction

Doppler ultrasound is widely used technique for measuring of blood flow in vessels.
The proper estimation of mean and maximum Doppler frequency is crucial for flow
quantification. The mean Doppler frequency (f,..,) carries the information on the
mean blood flow velocity; for known vessel diameter, the volumetric flow can be then
computed. The detection of the maximum frequency (f,.,) is 2 good indicator of
narrowing of the vessel. The tighter the stenosis is, the higher is the expected velocity.

Different methods of the estimation of the Doppler frequencies in the time and
frequency domains are described in literature [4, 17, 25, 28]. The performance of both
parametric and non-parametric spectral estimators was done by VArrkus et al. [38], but
there is however, a lack of analysis of assessment of the influence of the applied spectral
estimation methods on maximum Doppler frequency measurement.
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The influence of four methods used for modelling of the power spectral density
(PSD) on mean and maximum frequency estimation is described in this paper. The
examined methods were: FFT, AR Burg, ARMA and arithmetic Fourier transform
(AFT). For all mentioned spectrum estimators the mean frequency was computed as
the first moment of the spectrum with and without noise subtraction. The novel
geometrical method of f, determination is described and compared with other
methods described by d’ALEssio [12] and Mo et al. [23]. The evaluation was done using
computer simulated stationary Doppler signals with added white noise.

Performance of examined estimators was determined by calculating bias and
standard deviation of f.,, and £,

2. Doppler signal modelling

The early theoretical and experimental work of Suunc et al. [30] showed that the
scattering of ultrasound in blood was proportional to the fourth power of frequency.

The scattering was found to depend upon the hematocrit HTC of blood. The
increase of scattering was observed for HTC up to 24% reaching the plateau between
24% and 30% and next decrease occured. SHUNG et al. [30] concluded that for HTC
greater than 20% the assumption of the independent backscattering was rather
unrealistic. Their results were in good agreement with Twersky’s [36] wave scattering
theory for small scatteres and heuristic “hole” approach [30].

A number of works on multiple scattering of acoustic waves in media with a small
fractional volume were published [15]. The higher order approximation [21] for higher
fractional volume of scatterers resulted in better understanding of scattering phenome-
na. Another approach was presented by ANGELSEN [3] assuming that the backscattered
signal originated from the variations of the local density and compressibility of blood.

However, the existing theoretical descriptions are not complete to incorporate the
effect of multiple scattering for the ultrasonic field parameters. For this reason we have
neglected in this work multiple scattering and the effect of the interaction between the
red cells in blood. The applied model is similar to the one used by Atkinson and
Woobpcock [5], FErRrARA [14] and HorLLanp [16]. We have neglected such factors as
beam sensitivity and attenuation in the tissue.

Let the transmitted signal be of the form

5(t) = Acos(w,t), 1)

where w,, is the radial transmitted frequency.
The ultrasonic signal backscattered from the population of the red cells can be
approximated by

[0 =% Acos(@t+9), 2
i

where A4; and ¢, are respectively amplitudes and phases of the echo backscattered at
i-th scatterer.
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Since the backscattered Doppler echo is a single-sideband like signal (with
suppressed carrier) it is convenient to represent it by analytical signal Z(f) derived from
the real function f{¢) using the Hilbert transform Fg(f).

Function Fg(f) is a quadrature function of f{t) because all of their frequency
components are shifted by IT/2 with respect to f{?).

In polar coordinates Z(f) can be written as

Z() = Z(0) | e***,

1Z(0)] = VA (O)+Fi(1),

Fy(t
w;t+ @, = arctan ( a( )).

f@®

The amplitude of analytical signal determines its instantaneous amplitude or
envelope while time rate of change of its phase is the instantaneous frequency.

Quadrature components f{f) and Fy(¢) are the real and imaginary parts of the input
signal. The frequency of input signal is increased or decreased by a value of Doppler
shift w, originated at moving particles.

After mixing Z(f) with reference signals sin (wf) in one channel and cos (@) in
second channel two base band quadrature signals are obtained

I(?) = f(f)cos(wf) + jFg(?) sin(w i)
(1) = — (D) sin(w,f) + jFg(f) cos(w 1)

Since the position of blood particles is random, I(f) and Q(f) components of the
backscattered signal are random variables. Each particle is an independent source of
echo with random phase @;, Doppler phase w;t and amplitude A;.

For stationary targets the random phase is equal to

where

(€)

@

4nd,
=— 5
rp.i A ( )
where d, is the distance from the transducer to the i-th scatterer and 1 is the wavelength,
A = ¢lf,, c is the speed of sound in blood.
When particles are moving with radial velocity v,; towards (or away) the transducer
then the rate of change of phase, called the Doppler shift, is equal to

d(pi 29 4750" 0
s ok b Wyy- (6)

Both stationary random phase and Doppler phase can be combined together. After
replacing @, in Eq. (2) by ¢,+ w,t. the demodulated analytical signal Z(f) becomes

Z[t) = Z Acos (04t +9) +J Z A;sin (@4t + @). )
i i
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The insonified field or sample volume is much larger than the wavelength (ct > >
A). For large number of scatterers in the sample volume, the probability distribution of
@, is expected to have uniform density function within the range —IT, + IT. In fact,
between the minimum and maximum values of dj, ¢, spans over many intervals of 217,
folding into the — IT and + IT range, justifying even better the assumption of uniform
distribution. !

The central limit theorem states that the distribution of sufficiently large sum of
independent random variables approaches a Gaussian distribution.

Applying this theorem to the Eq. (7) we can conclude that both real I(f) and
imaginary Q(f) components of complex envelope Z(f) are independent random
variables and have Gaussian distribution with zero mean. It yields that the distribution
of amplitude A4 of complex envelope is equal to the joint probability distribution of Xf)
and Q(t)

(0+0%9)
10 STy ®)

pl(®), 20 = pUM]P[C(A] =

2na?

Replacing the variables I(f) and Q(¢) by their equivalents in the polar coordinates,
A = \/(’+Q? and @ = arctan (I/4), the joint density function becomes
Al
G g ik
pld.o] = i & e ®
The distribution of ¢, alone is uniform and equal to 1/(2IT) over {—II..IT).
The distribution of 4 alone is given by

A2

pldl = aﬁz > (10)

for A>0.

The simulated Doppler signal should have the statistical properties identical or at
least similar to that of the backscattered ultrasonic signal from the blood. The time
averaged spectral density of C.W. Doppler (continuous wave Doppler) signal for
parabolic blood velocity profile is uniform within the range from f_,. up to f ..
corresponding to the minimum and maximum velocity of blood [7]. For pulse Doppler,
the backscattered energy returns from a small sample volume and the time averaged
spectrum is considerably narrowed. Also for C.-W. Doppler, combination of narrow
ultrasonic beam and flat blood velocity profile result in narrow Doppler spectrum.
Without introducing a substantial error the envelopes of those spectra can be
approximated by the Gaussian functions. The similar approach was used in modelling
of radar precipitation signals [13, 31].

The resulting spectral envelope becomes

¢ -mr

1 n

Tds 11

G, =
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where G, is the discrete spectral coefficient at frequency f,, y is a power weighted mean
frequency and o is the standard deviation of the spectrum.

This approach facilitates control over the simulated mean frequency and the
bandwith 2¢ of the Doppler spectrum.

The noise present in the Doppler signal is assumed to be a white one. The amplitude
of the backscattered ultrasound has Rayleigh distribution (see Eq. (10)). It was shown
[31, 32] that the amplitude of sum of the signal and noise must have Rayleigh
distribution function and its power P, must be exponentialy distributed

p[P] = %e— (12)

where o2 equals to the average power of the signal.

The generation of random variable having a particular distribution is accomplis-
hed using an inverse cumulative distribution function (CDF) transformation [22, 26].
If a source of uniformly distributed random variables x,, is presupposed then a random
variable P, are obtained according to

P, = o2 In(x,). (13)
The proper scaling of signal and noise depends on SNR value defined as

2.G,
SNR = 10log,, (T) 14)

where ZG, is the power of the signal and a7, is noise power.
Now, we may replace average power ¢2 in (13) by an expression including the
spectral envelope G, and SNR [31].
SNR
o = 02,10 a2,

G, + ~ (15)
Y.G,

and finally we arrive at the expression describing the composite spectral density
outlined by Gaussian envelope G,
SNR
a2,10 o2
P, = G, + 7 | InGey), 16)

2G,

The next step is to obtain the real 4, and imaginary B, components of the
composite spectrum. The amplitudes of real part 4, and imaginary part B, of the
composite spectrum are Gaussian distributed
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P, cos(2nx,)

B, = /P, sin(2nx,). 7

The properties of CDF transformation were applied here again; the products of

Rayleigh distributed /P, and cos (2[x,) or sin (2IIx,) where x, is uniformly

distributed over the range {0,1}, generate two independent Gaussian distributed
processes.

Finally, the quadrature time s1gna.ls are obtained by inverse Fourier transform of
the composite spectrum

a7

FH{4,+jB,} = I+jQ0). (18)

The variable parameters of simulated Doppler spectra were: mean frequency,
maximum frequency, bandwith and signal to noise ratio SNR, varied from 0 to 20 dB
(0, 3, 6, 10, 20 dB). The sampling rate was set to 20 kHz. The signal was generated
according to (17) using a 1024 points FFT, and only the real part of the signal was
considered in further analysis. Every rcahzatlon of such random processes was
simulated by a block of 3072 adjacent samples. Those time series were observed using
a 128 pts. Hamming window in order to achieve local stationarity of the signal and to
reduce Gibbs phenomena.

The mean frequency of the Gaussian enveloped spectrum was changed from 1250
Hz to 7000 Hz. Different spectra widths were controlled by setting standard deviation
o (Eq. (14)) equal to 16, 32 and 64 points or, in frequency units, 320 Hz, 640 Hz and
1280 Hz.

Along with the Gaussian enveloped spectra the rectangular spectra of 320 Hz and
1280 Hz bandwidth were generated in order to simulate the parabolic flow insonified
uniformly by C.W. Doppler.

3. Estimation of PSD

3.1. Periodogram

The periodogram was chosen as the reference method. The power spectral density
function (PSD) was estimated as:

Pea() = 1 19)

N-1 ’)
2, x(n)e~ 20

In spite of well known advantages of the periodogram (known statistics, medium
computational cost, good performance for noisy signals), this PSD estimator
performance suffers from both an increased variance (regardless of the observation
time window), as well as spectral leakage due to the implicit windowing of the data. In
analysis of the Doppler signals it causes an unreliable f,,.,, and f,, estimation for low
SNRs. Reduction of the estimator’s variance, through averaging of succeeding or
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overlapping data segments is one of the remedy, however limited for real-time signal
processing.

3.2. Periodogram via Arithmetic Fourier Transform (AFT)

REED et al. [27] proposed an algorithm of Fourier coefficients determination with
linear computational cost (only one multiplication per Fourier coefficient with number
of addition comparable to FFT). This very efficient method is based on inverse Mobius
theorem. According to this theorem, every function f{n), not vanishingin <1, N> and
vanishing outside <1,N> (f{n) = 0, for n> N) may be expressed as

trunc(N/n)
fn) = Z p(m) g(mn),
whisi'e po (20)
trunc(N/n)
g =3 Sl

with u(m) denoting Mobius function and trunc(x) denoting integer part of real
number x.

Then the real continuous signal A(¢f) with zero mean, has n-th average shifted by
o defined as

N-1
Stna) = =3 A("‘—T + rxT). @1)
B2y AP
The real and imaginary parts of Fourier coefficients may be expressed as
RE{F} = c_,,(io_) for n=1..N 22)
and
7 ( 1
(_ 1) Cn F)
IM{F} = — 5 , for k=0,....trunc(log,N)—2, n=2*2m+1),23)
where
trunc{N/n)
@)= 3 wlSing). 24)
i=1

The summation in (21) is performed for continuous indices, so in the case of sampled
signals the interpolation of values for time instants between samples is necessary. As it
was shown in [35], in order to get N spectral coefficients a set of Dy samples is needed

Dy=3 (g)z + O(NIn N). 25)
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For example, over 1500 samples of time signal should be taken to obtain exact 64
complex Fourier coefficients. This rather large number of samples can be reduced by
interpolation of analyzed signal, although it creates some distortion of the results.

The interpolation may be done simply by taking nearest neighbouring samples, i.e.
zero-order interpolation. For 128-points segment of a sinusoidal signal the maximum
error caused by zero-order interpolation is less than 1%. For realization of random
Gaussian process the mean square error depends on autocorrelation function (ACF)
and number of coefficients [27]. For signals with Gaussian envelope those errors vary
from 0.013 to 0.201 of signal power depending on signal bandwidth. For linear
interpolation those errors are neglible, but the computing time increases considerably.

The AFT method is well suited for real-time application, especially in parallel
structures.

3.3. Autoregressive modelling (AR)

The PSD of an autoregressive model of analysed signals (PSD-AR) was calculated
according to
SZ
PalB=n % y (26)
1+ Y a(k)e 2%

k=1

where a(k) are model coefficients, p —model order and s? — total squared error of the
model.

The spectral envelope of the AR model is smooth. This estimator is asymptotically
unbiased and for large n (and N>2p) its variance is smaller than for the
periodogram [19].

The accuracy of such PSD estimation is limited, due to the limited ability of proper
modelling of time series as the autoregressive process. Thus, the PSD-AR of the signal
with wideband Gaussian spectral envelope will be biased, also the PSD of noisy signal
will be distorted. For narrowband process with a Gaussian spectral envelope the bias is
small. In spite of these, AR modelling is widely used in analysis of Doppler signals [18,
37], primary merited by its excellent resolution and good spectral match. It should be
noted however, that for low SNR the resolution of the AR spectral estimator is no
better than that of the periodogram. Kay [20] concluded, that the effect of injected
white noise is to produce a flattened PSD-AR estimate, regardless of the nature of the
observed process. In our modelling scheme we have found however, that for Doppler
signals (with Gaussian spectral envelope) the prediction error was proportional to
SNR, if the model order was optimal (PSD-AR close to true PSD).

We have tested two model identification procedures. First, the model order was
determined due to the Akaike Information Criterion (AIC) [2]

AIC(p) =Nlns+2p @7
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The common method of autoregressive coefficients determination.is to estimate
autocorelation lags of considered signal and then to solve a set of linear equations
called Yule-Walker equations (YWE) [20]. Since the solution of the YWE introduces
the smallest amount of peaking in the spectrum of the ‘colored noise’ [19], therefore we
postulate the use of YWE for model order identification of the Doppler signals.

The Singular Value Decomposition (SVD) of the overdetemined YWE (primary
selection of model order is greater than expected) may be used for construction of the
normalized matrix approximation ratio [11]

(k) 24 g2
o) = IIHRR”H v \/(rrl+az+...+a§) 8)

o2+ 0%+...+0?

where R — autocorrelation matrix with rank r, R® — submatrix with rank k and g;
— singular values of R. The ratio v(k) approaches 1, if k equations completely describes
AR model of signal, e.g. for signals without noise. For noisy signals, the construction
of overdetermined YWE is rather impossible and the ratio v(k) doesn’t reach unity till
r=k. Capzow [11] proved however, that for v(k) close to unity, R® is the best
approximation of R in the least square sense. Consequently, the selection of the model
order was done observing the progression of v(k) with increasing k. The value of k for
which the ratio v(k) was reaching “plateau” (typically for v(k) equal to 0.999) was
chosen as the AR model order.

Usually, the model order described by SVD was greater than the one obtained by
AIC and was used here for model identification only. The difference was observed
especially for signals with low SNR and larger bandwidth.

3.4. ARMA modelling

The signal described as concatenation of AR and MA processes has the PSD
expressed as

q
Z b(k)e_jmﬂ‘
Pamaslf): = 5 +5—mmom| - (29)
Y a(k)e217*
k=1
The ARMA model often provides better spectral estimates than either AR or MA
models. Simultaneous evaluation of both a and b parameters in Eq. (29) is
computationally ineffective, so the suboptimal solutions should be rather used. We
applied the least square solution, based on the Capzow’s [10] least square method
(LSMYWE) to tune between better statistical properties and computational cost [20].
The MA coefficients were computed according to Durbin’s method [19].
The theroretical considerations concerning variance of the estimator [33] leads to
the conclusion, that LSMYWE give asymptotically unbiased estimator with variance
monotonically decreasing with increasing number of equations (N> >p).
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Although numerous techniques were developed, the common solution is to
estimate the order of AR process and next to select g=p in (29). This is based on
observation of small sensivity of overall ARMA model to inaccuracies in MA
identification'. The SVD method (applied to the modified YWE) was used for
determination of the number of poles p and next the order of MA process was assumed
to be equal to the AR order.

4. Mean frequency estimation
The mean frequency was estimated as a first spectral moment of the simulated
signal (F1 method):
o
LIPNO TSP
Kvmﬂn =/, mean }J =

| P(hdf ;HD

(30)

Since Eq. (30) estimates the mean of the composite Doppler signal plus noise, so it
includes additional bias due to the noise.

One of the simplest method of noise suppression is to subtract the noise spectral
density (N(f)) from the derived spectrum and then to calculate the mean (F1-NS
method):

N-1
2 PN
fmmn(NS)= i:_nl 4 (31
T 200~ N

The noise spectral density N(f) was estimated from the tail of the spectrum, beyond
maximum frequency od Doppler signal. SirmaNs and BumcARNER [31] concluded, that
the F1-NS method provided the unbiased estimation of f,,, even for low SNRs and
that the standard deviation of this estimator was small.

In our study, both, first moment (F1) and first moment with noise suppression
(F1-NS) methods were used for mean frequency estimation of all spectral estimators.

5. Maximum frequency estimation

The estimation of f,,. is a rather complicated task, resulting from the random
nature of Doppler signal and the presence of noise. The misrepresention may occur
during the observation of low-level signal in noisy environment.

Since the PSD of the random signal with Gaussian spectral envelope is unbounded,
80 f . Was defined as the frequency at which spectral power decreased down to 0.1 of its

! The pure MA model was rejected after primary analysis due to its poor performance.
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maximum value (method 0.1lmax), although it was realiable only for smoothed PSD
(AR, ARMA).

Along with 0.1max two other f,,, estimators — d’Alessio percentile and modified
threshold crossing (MTCM) [23] were examined. It was confirmed, that their behavior
strongly depend on SNR, noise level N(f) and the shape of time windowind functoin of
the analysed signal.

The novel geometrical method is simpler, being sufficiently precise and com-
putational effective. The integrated power spectrum [23] is equal to

!
() = }[ P(f)df. (32)

The basic idea of our method is as follows. First the power spectral integral &(/) is
computed. Next the straight line connecting two points on &(/) corresponding: 1. to the
maximum analysed frequency (®(f,)) and 2. to the value of f;,q for which the peak
spectral power is maximum ((f,,.q.)) is constructed. Then the distance from this line to
&(f) is computed for all frequencies greater than f... Finally, the frequency at which
the distance is maximum is assumed to be the maximum frequency of the signal. On the
Fig. 3 an example of ®(f) is presented; f;,q, denotes the frequency where P(f) reaches
maximum value, f, is maximum analysed frequency.

1 T ] '
i O s i

-1004

0 time 10 ms

Fig. 1. Simulated spectra, SNR = 20 dB; a) Gaussian envelope, b) rectangular envelope, c) time signal for
Gaussian envelope.
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AR Orders gaussian narrow

SNR=10dB i Gaussign wide
" f recta ngqu: narrow
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AR Model Order
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" \3 i
Stgria, ;\\

Frhre

Fig. 2. Examples of AR models orders obtained by AIC and SVD for realizations of the identical processes a)
narrow band Gaussian envelope, b) wide band Gaussian envelope, c) rectangular spectrum.

A (D L T

mode max max frequency
Fig. 3. Principle of the geometrical method used for calculation of £,

Let idealized P(f) is continuous, smooth function in frequency domain, with
a single maximum for f, ;.. Assuming that no noise is present, P(f)=0, for f>f,.2. Let

% For averaged spectrum, we can assume that additional noise causes rotation of ®() relative to axes
over the arc of arctan (N(f)) radian.
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&(f) denotes integral of P(f) according to (32). Then, begining at f,,,, &(f) becomes
parallel to f axis and the slope « of the straight line ®(f,.q.) P(f3) is equal to

_ () — P(finoae)
i j;l_fmode (33)

The distance d is maximum for f € <f....f,> and such estimation of f,, has no
positive bias. For frequencies within < f},../ s> the error of the method depends on
proportions between slope of ®(f) and slope of the ®(f,04.) $(f;) line. D(f)ismaximum at
point f=£, __if, and only, if the slope of the line ®(f)P(/,.,) is greater then the slope of the

line @(fouoae)®(f3)

e N fa2T el

According to (34): 1. the error is maximum, when /.., =/, 2. the underestimation of
foaeis decreasing, when P(f) is slowly decreasing for increasing frequency.

Let consider the case of the signal with a Gaussian spectral envelope (Eq. (11)). Its
maximum frequency was defined as the frequency at which the spectral envelope
decreased to 0.1 of its maximum value. For Gaussian spectral envelope
Sinax™ funote+2.10. Practically, the examined Doppler signals extended only to f_,, less
than 0.8 f,. Assuming f;,,.=0.8} the plot of the £, error in function of & is given on
Fig. 4. The maximum error of f,,,, estimation when geometrical method was used for
signal with Gaussian spectral envelope was found to be less than 11%.

V (frnode </ </ max)

/A
oy Fmeyetror - suwoonmet .

8
6 s 1 . :
2
0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
signal bandwidth/fs

Fig. 4. The error of f,, estimation for signal with Gaussian spectral envelope in function of bandwidth o.

According to Eq. (34) the maximum frequency of signals with rectangular spectral
envelope was estimated with no errors.
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6. Results and discussion

FFT, AFT, AR Burg and ARMA were tested for PSD estimation of all
simulated random processes. F,,, was computed using PSD’s first moment with
and without noise substraction. Finally, f,, was computed using 0.1 max method,
d’Alessio, threshold crossing method and novel geometrical method. The results
were compared to the reference f,, selected during simulation at the level of
10% of the peak spectral power. The bias and standard deviation of estimators
were computed and compared for every data file (24 data blocks of 128 samples
length) for varying SNR (0, 3, 6, 10, 20 dB).

fmax fmean ! fmax fmean . ;
e el o Ao Tt
1 FEL\ FE D ARNNe i
5F ] e S W 4D LN e isesy 4

el od _

A tmesn0dn.

i —s=— fmean 10 dB
:......---i:-"“—-.— fmax 0 dB

fmean 0 dB
;. —%— fmean 10 dB i
—e— fmax0dB | 2FH%

—o— fmax 10dB | —e— fmax 10dB

i L : - i T ..: . : l j.........I........]_.....__.:l........,;.........i. ....... .i

: 23 4fmestm i lchz7 b odts it © fm'?ean 6 kHZ
fax ',fmean ; : i .
(e

e P' --0— fmean 0 dB
i 3 : ; —e— fmean 10dB
RIg A i—e— fmax0dB

—e— fmax 10 dB :

Fig.5. F _ and f_,.in function of truef,__ for narrow band Gaussian spectrum signal; a) FFT b) ARMA c)
AFT for different SNRs (0 dB and 10 dB).
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The comparison of different PSD estimations for signal with a narrow-band
Gaussian spectral envelope is presented on Fig. 5.

lfliz Bias of fmean

(oA R IO
Lot N dndae. SFFRRLBS
o 1 01" 'mARMAF1
0.4} &
0.2 B~ 8> A E
0.0 ot R e
0 4 8 12 16 20

kHz StDev of fmean

............... )
o3| Wy eARVAFLNS
0.2}

¥ W :
1 s X T .. F=1.. N v
- H s I v
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N : \ W
i N
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Fig. 6. Bias and standard deviation of f__ for narrow band signal with Gaussian spectrum envelope
computed using first moment F1 with and without noise suppression NS, SNR changes from 0 to 20 dB.

The bias of the mean frequency estimation for variable SNRs was lower for the
F1-NS method than for F1 method. The standard deviation remained almost
unchanged for both, FFT and ARMA methods, (Fig. 6, 7 and 8).
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k(})lz1 Bias of fmean
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Fig. 7. Bias and standard deviation of f___for signals with rectangular spectrum envelope computed using
first moment F1 with and without noise suppression NS, SNR changes from 0 to 20 dB.

The comparison of f, . estimators proved the advantages of the geometrical
approach (Fig. 9, 10 and 11) over other tested methods. The bias was significantly
reduced, especially for very low SNR’s. A reduction in standard deviation was
observed showing a significant improvement in performance. Considering the PSD
estimation, ARMA modelling was found superior for f,,, and f, estimation, while
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kHz Bias of fmean
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Fig. 8. Bias and standard deviation of f.. o for wide-band signal with Gaussian envelope spectrum computed
using first moment F1 with and without noise suppression NS, SNR changes from 0 to 20 dB.

the AFT method was apparent worse, especially for low SNR’s. The AR model of PSD
with order selection after Akaike criterion was found to produce the mean frequency
estimation comparable to the one achieved with AR model when order selection was
calculated using SVD. The SVD AR performed better for f,.,estimation.
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Fig. 9. Bias and standard deviation of f,_ for narrow band signal with Gaussian envelope spectrum
computed using 0.1max, MTCM and geometrical methods, SNR changes from 0 to 20 dB.

The overall performances of both: PSD estimation methods and f, and ¥ &
computations, proved to be similar also for signals with medium and wide band
Gaussian envelope, although the bias and standard deviation grew with growing signal
bandwidth.
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0.1lmax, MTCM and geometrical methods, SNR changes from 0 to 20 dB.

For rectangular spectra the differences between the efficiency of estimation of £,
and f,, were smaller than for signals with a Gaussian spectral envelope due to more
distinct modelling of examined quantities (Fig. 10). The PSDs evaluation has given no
unique differences for all methods except AFT. Fp,,, was still better approximated by
F1-NS method. The smallest bias and standard deviation of f,,,, were found using the
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Fig. 11. Bias and standard deviation of f,, for the signals with wide-band Gaussian spectrum envelope
computed using 0.1lmax, MTCM and geometrical methods, SNR changes from 0 to 20 dB.

geometrical method. From all other methods of f,,, estimation the MTCM performed
the best, but was comparable to geometrical one only for SNRs> 6 dB. The location of
Jaode didn’t affect the results. Generally, the bias and standard deviation of the results
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were increasing for wider spectra (Fig. 9 and 11).
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7. Conclusions

The performance of four digital power spectrum density estimators and their
influence on f,,.,, and f, determination have been investigated. The mean frequency
was determined using F1 and F1-NS method. The maximum frequencies of the
Doppler spectra were computed by a novel geometrical method and compared to the
other techniques. In order to make an unbiased comparison of different estimators the
computer simulated signals, modeled as realizations of random processes equivalent to
real Doppler flow signals were examined. Spectra with different envelopes were used to
simulate signals corresponding to normal, accelerated and stenotic blood flows.

It was found that the performance of various estimators depended on SNRs, signal
bandwidth and shape of spectra, but the reliable £, and f,,.estimation were obtained
also for low SNRs (> 3 dB). Regardless of the shape of the spectrum and the PSD
estimator, the signals with narrow bandwidth were better estimated than the wideband
signals.

ARMA model displayed the smallest bias and standard deviation of mean and
maximum frequency estimates. Also autoregressive models (especially with the model
order predicted by SVD) performed better than FFT. In general, exact model
identification influenced mor the £, estimation rather than f.,,, confirming the recent
results of Ann and Park [1]. Further, the exact estimation of f,,,, needs model order
identification for all analyzed signal segments, although the error introduced using the
model with constant but rather high order is acceptable. The adequate estimation of the
mean frequency may be obtained even when a model with small, constant order is used.

AFT estimation with zero-order interpolation performed the worse, especially for
signals with very low SNR. That computational effective method should be used only
for “strong” signals or for longer observation periods. We found, that the use of
“sliding window” technique could improve the statistical properties of AFT.

Mean and maximum frequency estimation worked satisfactory only for signals
with SNR > 3 dB. Of both F1 and F1-NS techniques the second one was giving usually
better results, whereas accuracy of the noise power density N(f) estimation was limited
[Mo et al., 1988]. Generally, the geometrical method performed the best for all
analyzed signals, what entitle us to conclusion, that it is particularly suitable for
real-time computations.
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