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REFLECTION COEFFICIENT FOR TWO ELASTIC LAYERS JOINING
TWO HOMOGENEOUS MATERIALS
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Two homogeneous elastic layers are situated between two homogeneous elastic
materials. The reflection coefficient for the harmonic wave depends on the elastic constants of
the layers and the frequency. The formula is too complex for an analytical treatment. Two
situations were analysed numerically. In the first one, thicknesses of the layers were kept
constant, and the speeds leading to constant reflection coefficient were calculated. In this case
the reflection coefficient either has no minimum, or its minimum equals zero. In the second
situation, propagation speeds were constant, and the thickness leading to constant reflection
coefficient were calculated. There exist minima equal to zero, and maxima equal to the
reflection coefficient for the long-wave limit.

1. Introduction

Between two adjoining homogeneous materials usually there exists a transition
zone. The incident harmonic wave arriving at the transition zone splits into the
reflected and the transmitted wave. The ratio of the energy flux of the reflected wave to
the energy flux of incident wave is the reflection coefficient. There exists no tool for
analytic optimisation of the general continuous transition from one to the other
propagation speed. In this paper the transition region is approximated by two
homogeneous elastic layers. The analysis of the reflection coefficient for this situation
is given. One interesting qualitative result is obtained.

2. Jump discontinuities
In general, the transition zone between two adjoining materials, due to technology
(e.g. welding, glueing) is inhomogeneous. The reflection coefficient A for such situation
is a functional of the function c(x), where c is the wave speed and x the distance. It is
easy to write the corresponding equations, and calculate A for a ¢(x) given in advance.
In numerous situations the analytical formula may be obtained, cf. e.g. [1]. The only
difficulty is connected with finding the solutions of an ordinary differential equation
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with variable coefficients. For A given in advance many different c(x) may be calculated. It
isimpossible, however, to find ¢(x) leading to minimum of 4, since it is impossible to write
Aas the functional of ¢(x). This is due to the fact, that it is impossible to write explicitly the
solutions of the ordinary differential equation as the function of its coefficients.
Because of this difficulty, the inhomogeneous transition zone in this paper is
approximated by two homogeneous layers. Already for this very simple model
interesting qualitative results are obtained. Each of the four materials considered
(two fixed half-space and two layers) is identified by the subscripts 0, 1, 2, 3 (Fig. 1).

Fig. 1

The harmonic waves propagate in the direction perpendicular to the layer and the
displacement u in the k-th material consists of two sinusoidal waves, the first running to
the right and the second running to the left,

u=A.exp iw [t - x,} + Biexp iw [t + x—x{l. (1.1)
Cy Cx

At the boundaries between the layers both the displacement and stress are continuous.
It follows that the amplitudes A4,, B, are connected by the matrix relations (cf. e.g. [2])

A Ay
(] -2 la) 4

where
_ | A +x)exp(—iy) (1—2,)exp(in,)
M, = [(l—x,)cxp(—ia,) (1+?¢g)exp(iak):|' (1.3)
= Pr—15- B S
SHac Ptc: l’ T svooe Cr—1q i (1-4)

and p, is the density. The transition matrix M, is non-singular, therefore always its
inverse M ;! exists. Chaining the formulae (1.2) for subsequent X = 1, 2, 3, the
amplitudes 4,, B, may be expressed by 4, B,, and vice versa,
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4, 4] [4e (D) (x—1F 4
S - M| %2 1.
(] e[ [3] - s ). 0

It is seen that two amplitudes may be taken at will. If we take B,=0 and prescribe
the value of 4, then 4,, 4,, B, represent the amplitudes of the incident wave, the
transmitted wave (both running to the right), and the reflected wave (running to the
left). If we take 4,=0, then B,, B, 4, represent the amplitudes of the incident an the
reflected waves both running to the left and the reflected wave running to the right.

In our problem the speeds c,, c, are given in advance and the speeds c,, ¢, are free
parameters. The densities p, are assumed to be equal to each other. No difficulty is
connected with taking into account different densities. The positions x; will be defined
when performing the numerical calculations.

Now we take 4,=0 and consider the term proportional to B, as the incident wave,
and the terms proportional to A4, B, as the reflected and transmitted waves,
respectively. The other possible choice B, =0 leads to the same reflection coefficient [1],
since the system of layers has no directional properties.

In accord with the above relations, the following expressions for A4, B, are
obtained

84, = B,exp(—a,) X (1.6)

x [(1=2,) (1+3,) (1+x,) exp(+a,+a)+(1—x,) (1—x,) (1—2x;) exp(+ o, —0y)+
+(1+2,) (1—2,) (14+2%;) exp(—a,+a)+(1 +3,) (14x,) (1—x;) exp(—a,—a,)].
8B, = B, exp(—ua,)X (1.7)
x[(1=x,) (14x,) (1—2x,) exp(+a,+a)+(1—x,) (1—2x;) (142,) exp(+a,—a)+
+(1+x,) (1—3,) (1—x,) exp(—a,+a)+(1+x,) (1+x,) (1+x,) exp(—a,—a))].
Without restricting the generality in further calculations we assume a,=0.

The right-hand sides of (1.6), (1.7) are complex numbers. Their squared moduli are
given by the formulae

644,4, = BB, [D3+D%+D%+D2+2 (D,D,+D,D,) cos 20,4+ (1.8)
+ 2 (D,D,+D,D) cos 22,+2 D,D, cos (20, +2%))+
+ 2 DD, cos (2a,—2a,)],
64B.B, = BB, [D%+ D2+ D3+ D3+2 (DD, +DgDy) cos 2a,+  (1.9)
+ 2 (DDg+D,Dy) cos 2a,+2 DD, cos (20,420 +
+ 2 DD, cos (2x,—2a,)],
where the coefficients D, depend only on the speed ratios .
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D, = (1—-2) (I+x) (14+x%), D,=(1-x)(1-x,) (1-=x,),
Dy = (I+x%) (1-%) (14%), D, = (1+x,)(1+x,)(1-x), (1.10)
Dy = (1-x,) (1+x) 1-x), Dg= (1-x)(1—x,) (1+x,),
D, = (I+x) (1-x,) (1-x), Dg= (1+x)(1+x,) (1+x,),

_Energy flux corresponding to the wave of amplitude A, and speed c, equals

A A Je,. Analogous relations hold for the remaining waves. Thc reflection coeﬂiclent
A equals the ratio of the reflected energy flux to the incident energy flux. Therefore

_Ady
3333 (1.11)

Obviously 0 <A <1. The first inequality follows from (1.11), since both the nominator
and denominator are positive, and the second follows from the energy conservation law.,

We write explicity the complete formula for resulting from substitution of
(1.7)—(1.9) into (1.10). We obtain

A = [D}+ D3+ D3+ D3+2 (D,D,+D,D,) cos 2a,+ (1.12)
+ 2(D,D,+D,D,) cos 2a,+2 D D, cos (2a,+2a.)+
+ 2 D,D, cos (20.,—2a,)] x
X [D3+ D%+ D3+ D3+2 (DD,+DD,) cos 2x,+
+ 2 (DDg+D,D,) cos 20,42 D D, cos (2a,+2a)+
+ 2 DD, cos (2a,—2a)] ",

where Dy are defined by (1.10).

In order to find the extremum value of A, the derivatives of the function (1.11) with
respect to ¢, and ¢, must be calculated and put equal to zero. Note that Dy are functions
of c,, c,, and therefore the corresponding system of trigonometric equations is very
complex and no satisfactory analytic treatment of the equations may be expected.
Therefore, we are forced to base on the numerical approach.

2. Fixed thickness, variable speeds

We intend to analyse in this chapter the value of the reflection coefficient, as
a function of the two propagation speeds in the layers. Thickness of the layers are kept
constant.

Assume p, = const., x,=x,=0, x,=d, x,=2d. The speed ratio for the homo-
geneous materials is assumed to be equal two, ¢;=2¢,. The ratios ¢,/c and c,/c, are the
two independent variables. Figure 2 gives the curves of constant A for fixed md/c =2/3.
It is seen that no minimum exists for c,/c,, c,/c,<4. Numerical analysis for larger
speeds c,, ¢, proves that also in other intervals there exists no minimum. Note that only
the minimum value is interestings. The maximum value 1=1 may be reached in the
trivial reflection from the free end of from the rigid support.
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For a given set of speed ¢, c,, c,, c, the reflection coefficient 1 is a function of the
frequency w. Figure 3 gives 1 for fixed speed ratios ¢,/c,=3, c,/c,=1, ¢,/c,=2 as the
function of w. Note that the minima are equal to each other. This, however, is not
a general result. For ¢,/c,=4/3, c,/c,=5/3, c,/c,=2 the function A is shown at Fig. 4.
The minima are of different values. For ¢,/c,=1, ¢,/c,=1, and for ¢ /ec,=2, c,/c,=2
the system is non-dispersive and the reflection coefficient does not depend on w and
A=1/9.

A

FiG. 4

An entirely other situation that shown at Fig. 2 is obtained for frequency
o defined by the relation wd/c,=4/3, Fig. 5. There exists a minimum, at
approximately

c,lco=1323, ¢,[c,=1.545. (2.1)

The value of the minimum was calculated to be smaller than 10~ 7. Note that 1=0
would mean that the structure for the assumed frequency w is perfectly transparent.
Because of this important qualitative result we would like to know whether the
minimum value of A is exactly equal zero.

In order to decide whether 4,;,=0, let’s instead of 1 consider the values of A, near
the point ¢,/c,=1.323, c,/c,=1.545. In accord with (1.6) there is

8 Re A, = [(1—%,) (14+%;) (14 %) +(1+%,) (1+%x,) (1—x,)] cos(@,+u)+(2.2)
+ [(1=2)) (1=2;) (1 —x)+(1+%,) (1 —x;) (1+2x,)] cos(e,—a,).

8Im A4, = [(1—x) (1+x,) (I +x)—(1+2) (1+3x,) (1—x,)] sin(or,+ o)+
(2.3)
+ [(1=%,) (1—=x,) 1—3x)—(1 +2,) (1—=x,) (1+x,)] sin(o, —a,).
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Consider the values of the complex amplitude 4, on a circle surrounding the above
calculated point ¢ /c,=1.323, c,/c,=1.545, cf. (2.1). Take

c,Je,=1323+Rcosy, c,jc,=1.545+Rsiny, 0< ¥ <2m. (24)

where the radius R = const and y is a variable parameter, and calculate Re 4, and Im
A, asafunction of . At the Fig. 6 are given the values of Re 4,and Im 4, for R=1as
the function of Y. For <y, and y >, there is Re 4,>0, and for y, <y <y, there is
Im 4,>0.In the remaining intervals they are negative or zero. Evidently Re 4, and Im
A, are continuous functions of ¢, ¢,. Fig. 6 proves that on the plane ¢ , c, there are four
regions where Re 4, and Im A, are i) both positive, ii) positive ‘and negative, iii)
negative and positive, and finally iv) both negative, Fig. 7. It follows that inside the
considered circle there exists a point K, for which there is

Re A, =Im A, = 0, Ay, = 0. (2.5)

For completeness the function A(w) for the values (2.1) was calculated and sketched
at Fig. 8. The minimum value @ = 0 is reached for w=4/3.

For wd/c,=8/3 the minimum corresponds to ¢,/c,=1.594, ¢,/c,=2.290 and equals
zero, too. For other dimensions, materials and frequencies the obtained figures were
always similar either to Fig. 2 or similar to Fig. 3. If a map similar to that given at Fig.
3 was obtained, then the minimum would be equal to zero.
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For two transition layers we face therefore the following important qualitative
result for a given in advance and fixed frequency w and thickness: the reflection
coefficient 1 either has no minimum for finite c,, c, or has a minimum equal to zero.
Since the result was obtained numerically, its generality may be restricted. No
satisfactory physical explanation of the fact that the minimum equals zero is known to
the author.

Fig. 7

For larger number of layers the above qualitative result was numerically checked in
few numerical examples. It seems that the following qualitative result holds; either
there exist no minimum for finite speeds, ot there exists the minimum equal to zero.
This result demands further analysis. It is not known, if it is general.
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3. Constant propagation speed, variable thickness

In general it is impossible to manufacture the material of a propagation speed given
in advance. The examples analysed in the previous chapter possess therefore very small
value for technical applications. They are interesting only from the scientific point of
view. More valuable for technical applications are the results for the case when
material of the layers is fixed, and their thickness vary.

This situation is considered in the present chapter. The same reasons as above force
us to confine our considerations to numerical analysis. Denote the thicknesses of the
first and second layers by d,, d,, respectively. The propagation speeds are denoted as
above by ¢,, ¢,, ¢, ¢, Formulae quoted in the first chapter allow to calculate the
reflection coefficient 1. In this chapter all speeds are kept constant, and the reflection
coefficient is a function of d,, d,. Large number of existing parameters makes it difficult
to exhaust all possibilities. Here we consider one example only.

Takec,=1,¢,=14,¢,=1.6,c,=2,w=1insome length and time units. It is easy to
introduce the dimensionless variables, but because we intend to give only illustrative
examples, we prefer to leave the data in the form as above. Figure 8 gives the curves of
constant reflection coefficient for d,<3, d,<2. In this interval there exists no

extremum.
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For large thicknesses the picture is very irregular, since for large thickness the
motion of the transition region dominates the behaviour of the system. Figure 9 gives
some curves of the constant reflection coefficient 1. There are minima equal to zero,

d,

14

12

LN}
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and maxima equal to 1111. No extremum of other value was found. The author is not
aware of any physical explanation of this fact. Since the analysis was numerical such
extrema may exist. In author’s opinion the more detailed qualitative analysis aimed at
proving the existence or non-existence of extrema of other value would be of large
importance for understanding the dynamics of the transition region.
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