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A ROLE OF AIR IN COMPLEX ELASTIC MODULUS MEASUREMENTS
OF SOLID SAMPLES BY TRANSMISSIBILITY METHOD
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Anomalous dependence of visco-elastic parameters against frequency for solid polymers
measured both in conditions of surrounding air as well as in vacuum were examined. In
theoretical consideration the single system of one degree of freedom for representing a sample
was assumed together with the presence of friction force introduced by the air. The values of
E and n were measured in the air (10° Pa) and in the vacuum (10? Pa) conditions against
frequency f from 20— 2 x 103 Hz. The results show essential differences for both conditions.
A comparison between numerical and experimental curves are presented. Anomalous
behaviour of E(f) and n(f) against frequency in the air is essential for polymers of small values
of Young modulus up to 106 N/m2 The damping influence of the air having essential
contribution in measurements of complex elastic modulus in light polymers must be taken into
account when using the E, and  in situations the knowledge of exact values of those quantities
is required, for example when mechanisms of internal friction in polymers are evaluated.

1. Introduction

The influence of the damping effect of air on measuring results in transmissibility
method used for determination of visco-elastic properties of solids against frequency
[1]is usually neglected. It is assumed that the formulae derived for the elastic modulus
E and the loss factor # of a material sample treated as a dynamical system of a single
degree of freedom and strictly valid for vacuum, only, are also correct in air
atmosphere conditions. However, many of experimental results for complex elastic
modulus obtained by the transmissibility method [2— 5] show evident anomalies in the
dynamic characteristics of measured materials. T. Pri7z has stated in his paper [3] that
the anomalies come from “the inherent error of the transmissibility method” not
explaining any physical background for them. On the other hand, it might be suspected
from the analysis of measuring data of E and 7 that the reason of appearing of the
anomalies is related to the damping effect of surrounding air on the vibrating sample.
To make sure about the hypothesis we have performed theoretical analysis as well as
experimental verification of the role of the effect in the transmissibility method of
visco-elastic properties measurements. This has been described in that paper.
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Most of the authors [3 — 7] obtained their results by measuring the transmissibility
T and the phase angle ¢ for different materials in the air but applying determination of
them the formulae valid in vacuum, only, so their dynamical characteristics are
significantly charged by the systematic error.

There are, also other sources of systematic errors in the method coming from
damping of the glue used for cementing the specimen to the shaker, of the mass effect of
an accelerometer [3 —8] and of a cable, however these influences were neglected in the
theoretical consideration given below. G.W. Lairp and H.B. KinGssBury [4] described
how these errors can be eliminated. The glue effect may be neglected when its
dynamical characteristics (E, 1) are close to the ones of the polymer specimen being
examined.

2. The complex transmissibility of a linear single degree of freedom system

A linear system of one degree of freedom is characterized by one resonant
frequency and comprises of a single element of mass and one or few elements of
stiffness and damping. Example of such single system may be a sample of a visco-elastic
material of dimensions of much smaller than the corresponding to the vibration
frequency wavelength in the material.

The Fig. 1 presents an element of mass supported by a visco-elastic sample laying
on a foundation which vibrates sinusoidally with the frequency /' = w/2x. It is assumed
that the mass is supported at its center of gravity. The system is situated in the
surrounding air which contributes an extraneous damping in its vibrations movement.
ounding aj~
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Fig. 1. The simple system representing the sample and loading mass.

This additional damping may be avoid by putting the system into the vacuum however
it introduces in practice additional difficulties. Let F, represents the force of the air
friction. For a small displacement of the mass M the force F,may be treated as a linear
function of vibrational velocity, i.e. of the frequency as follows

Fy = —B £(0)=—Po X(1), 6))
where f is the damping factor of the air and #=iwx.
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For greater vibrational velocities (but still less than the velocity of sound in the air) the
force F is a function of X2, however we shall consider only the linear case (1), here.
The equation of motion for the system may be written as

a’% (1)

M
dt?

= KE‘(x"l—f,)—ﬁ(Jfl—fz) =

= KE*%,— KE*3,+ p3,— B%,,
where the constant K is determined by the formula [6]:
K = (34/L) (1+bs?, 3

bis a numerical constant and for a rubber-like samples is equal 2, S is equal to the ratio
of the loaded surface to the total force-free area. This is so called a shape factor and for
rubber-like materials, for example for a cylinder of the diameter D and the height L the
S is equal to D/4L.

The complex modulus of elasticity E* is defined by

E* = E(1+in), @

where E is the dynamical Young modulus and 7 is the loss factor of the material.
For the sinusoidal displacement of the foundation

20 = e = x el ©)

@

the resulting displacement of the mass M is equal
£ () = x;e'®= x, !+ (6)

x, and x, are amplitudes of the displacements,
¢=¢,— ¢, — the phase shift between them, respectively.
From the equations (2), (5) and (6) one gets

l+i(q——ﬁ—w)

A= KE*—iof o KE

%,  —Mo*+KE*—iof /1 _@)H( _w_p) M
\# w2

and after some calculations one can derive for the transmissibility 7’ and the phase

angle ¢, respectively
ﬁ 2 |1/2
[1+(1-#e) ]
&% , ®)

and
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_Mo?l o
KE KE
tg¢ = M pTAY ©)
(“ KE)+("‘K—E)

3. Determination of E and f

For the resonance of the simple system in vacuum the angular frequency w = w,and
it is given by the relation

KE
w3 = _M_g (10)

where E is the Young modulus of the sample.
Introducing (10) into the equation (2) and (8) one gets

ﬁ 2
-2
T? = ne

= oy (a1
(1~ x5, )
and after the transformation
2KEn n*K2E2 KE2
7 g R =
S~ R S ) a2

This square equation for § may be easily solved. On the other hand when the
measurement of T'and w, are performed in vacuum f= 0 and then nand E may be easy
calculated for the resonance frequency w, Next the f value is determined using (12).
The evaluated value for the case in the air was obtained as f= 1800 g/s and this value
will be used to the numerical calculations described in the chapter 5.

4. Data for the numerical analyses

The formulae (8) and (9) were used for the numerical calculations of the
transmissibility and the phase, respectively of a sample presenting the system of the
single degree of freedom.

Different samples of polyurethane material were taken for measurements and for
numerical analyses. The samples had the following geometry: the heights were h=0.01
m or 0.02 m and the square cross-section of 42=10"*m?2

The preliminary values of the Young modulus E, and the loss factor # for the
samples were determined in vacuum (8 =0, according to (10) and (11)) at resonances
assuming they have presented single degree of freedom systems.
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The samples were numbered from 1—4 and all data for them are collected in the
Table 1.

Table 1. The data of the samples

Young’s Mass on
Height modulus Loss Mass the sample

Number h Ex1077 factor mx10° Mx10®
[m] [N/m? n kgl kgl
1 0.019 1 0.35 1.14 22
2 0.02 0.133 0.6 1.05 22
3 0.01 0.154 0.59 0.56 45
4 0.01 0.197 0.78 0.56 22

5. Numerical results

The results of calculations are presented in the following Figures from
2ab—5ab. In every Figure two curves are presented one for the vacuum
(B=0) and the other for the air (8=1800 g/s) conditions; Figures (a) correspond
to characteristics of the transmissibility T and (b) to characteristics of the phase.

In Fig. 2a the results of T for the sample 1 are given. It can be seen that the ratio
AT/T(B=0) where

AT = T(8=1800)— T(8=0),

has its maximum value at the resonance frequency. Also, one can deduce that in the
case the loss factor 7 would be calculated from the formula (11) for §=0 and in air,
then the value of  had been smaller than the real one.

The Fig. 2 b presents the dependence of the phase angle ¢ against frequency
for f=0 and B=1800 g/s (according to Eq. (9)). The influence of f on ¢ is
evident when one have compared the two curves: ¢(f=0) and ¢(f=1800). The
phase difference A¢=¢@(f=1800)—¢(B=0) increases against the frequency to
achieve a maximum just before the resonance frequency. After a rapid drop of the
phase difference down to the opposite sign in the region of the resonant
frequency, the other extremum is achieved and next the gradual (decrease of the
curve in the Figure) increase of the absolute value of the phase difference takes
place.

It means that the Young modulus E as well as the loss factor n will be influenced by
the air conditions when they are determined using Eqgs. (8) and (9) valid for vacuum.
So, in practice the error due to the neglecting of the air influence increases against the
frequency, too.
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Fig. 2. Frequency dependence of (a) the transmissibility and (b) the phase angle for the sample 1.
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Fig. 3. Frequency dependence of (a) the transmissibility and (b) the phase angle for the sample 2.
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Fig. 4. Frequency dependence of (a) the transmissibility and (b) the phase angle for the sample 3.
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The curves in the Figs 3a,b have been obtained for the sample 2. It is evidently
seen in the Fig. 3a that the maximum value for 7(f=0) had a smaller value than
the one for T(f=1800) though the resonant frequencies were the same. The both
curves intersect at f=f; above the resonant frequency and the curve for T(f=0)
lies over the one of T(f=1800) for the greater frequencies i.e. the values of
T(p=0)>T(=1800) for /> f,.

The phase ¢ and the phase difference A¢ in the Fig. 3b, show that
¢(B=0)>¢(f=1800) for frequencies above the resonant frequency. Above the
resonance region A¢ after a small increase gradually decreases up to the frequency f;.

The results for the sample 3 (which was twice shorter than the sample 2 but with the
some material) are presented in the Fig. 4a for Tand AT/T(f =0) and in the Fig. 4b for
¢ and A¢.

In the Fig. 5 the results for the sample 4 (which was the same as the sample 3,
however loaded with the other mass M (which was 0.022 kg instead of the 0.045 kg
— see Tab. 1). Comparing the Figs. 4 and 5 one can observe a shift of the resonant
frequency to the higher frequency for the lower mass.

6. Experimental results

The scheme of the measuring arrangement is presented in the Fig. 6. The samples
were harmonically excited with a constant acceleration level at the shaking table (2)
driven by the shaker (7). The acceleration level was controled by the accelerometer (5)
and kept constant electronically by the compresion circuit of the generator (11). The
response of the mass (4) was measured with the pickup accelerometer (6).

~ ™

vacuum

l

SHAKER ——]

®@

Fig. 6. Measuring arrangement /. shaker; 2. table; 3. specimen; 4. loading mass; 5. control accelerometer; 6.
pickup accelerometer analyzer; 9. phase meter; 10. level recorder; 1]. sinusoidal generator; /2. power
amplifier; /3. mechanical linkage.
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The output acceleration a, of the mass M was automatically registed with the level
recorder (10) mechanically coupled with the acoustical generator (11).

The polyurethane specimens (see Tab. 1) were measured and the transmissibilities
were registed with the level recorder. All measurements were performed at the room
temperature. The constant value of the vibrational acceleration amplitude of the
shaking table a,=1 g.

The results of measurements for the sample 2 of T for vacuum T(f=0)
and in the air T{f=1800), respectively, are presented in the Fig. 7. One
can see, that T(8=1800)>T(f=0) in the region of the resonant frequency
f.. There was a shift of the resonant frequency of about 12 Hz between
the vacuum case and the air one. Above the frequency f; at which the both
curves intersect the values for vacuum T(f=0) are greater than for the air
T(f=1800) conditions. Comparing the Figs. 3a and 7 one can say that the
curves have the same character. In the numerical calculations, there were
assumed the loss factor n and the Young modulus being constant, however
the real values depend on the frequency.
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Fig. 7. Experimental plot of the transmissibility against frequency for the sample 2.

Also, in the experiment some influence of additional damping of the glue joining
the specimen and the testing device was observed, however it was neglected in the
theoretical considerations.



10

transmissibility T

1 1 L 1 A
0'0550 100 200 500 1000 2000
frequency [Hzl

Fig. 8. Experimental plot of the transmissibility against frequency for the sample 1.
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Fig. 9. Experimental plot of the transmissibility against frequency for the sample 4.
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Fig. 11. Dynamic Young’'s modulus and loss factor of the soft polyurethane from (the same material as the
sample 2) plotted against frequency.
[599)



600 W. ZIOLKOWSKI and A. SLIWINSKI

Ex10” T T - 10
IN/m?] n
500 - “ . 00009°™ 85 %, 4as
e °© o°
o
o
o
200 402
o
[ ]
..
100F eE, oh -28°C .o'. H1ar
[ ]
.
. oet®
50 eeo® *® 41005
..
e« o °
201 1002
m 1 1 1
200 500 1000 2000 flHz] 5000

Fig. 12. Measured values of E and h for the sample 2 in the vacuum.

The Fig. 8 shows the result for the sample 1. For this sample the Young modulus
was greater than for the sample 2 though the masses were approximatelly equal.
Now, the resonant frequency is greater but the difference AT= T(B=1800)—T(B=0)
is practically zero which is also implied by Eq. (8). In general, when the Young
modulus E increases, the component fw/KE decreases and also the difference AT
decreases.

The results for the sample 4 are presented in the Fig. 9. In this case the mass
M=0.022 kg was used. The influence of the mass on the difference AT is shown
in the Fig. 10 for the sample 3 (of the mass M=0.045 kg). The calculated values
for n and E (in the vacuum) for the resonant frequency in the both samples 3 and
4 are different between each other. Probably, the greater mass introduced some
changes in the structure of the sample. Typical experimental results E and n for
the analysed samples obtained by the method are described here. It was used the
sample of the soft polyurethane foam; the same material what the specimens 1,
3 and 4 was made.

The dynamic Young’s modulus E and the loss factor n were calculated from the
system of the equations (8) and (9). In calculations f were neglected, whereas the values
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Fig. 13. Measured values of E and n for the sample 1 in the air.

T and ¢ were measured in the air. These results are shown in Fig. 11 for temperature
T,=28°C. We see very great decrease and next increase of the value E and the
maximum value in the range of the jumb of E. Dependence of E has the same character
as have been seen in Fig. 2a for AT/ T(8=0). Figure 12 presents E and n values obtained
by measurements, which were made in the vacuum (10 Pa). Here the plot of the
Youngs modulus is different. There is no discontinuity in E, too. Also, the values E and
n are smaller.

At Figs. 13 and 14 the Young’s modulus and the loss factor in the air and the
vacuum, are plotted respectively. This sample is of the same material as used to the plot
of T at Fig. 8 (the sample No 1). The experimental results are correct up to about 2000

E
Hz: this agrees with a condition that a longitudinal wave 1, = \/% / fislessthan h/8.1t

is equivalent that errors in calculations of E and 7 are less than 10%. Above this
longitudinal wave a formula for a transmissibility of a rod [6] must be used to calculate
Young’s modulus and loss factor.
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Fig. 14. Frequency dependence of E and h for the vacuum for the sample 1.

7. Conclusions

Theoretical considerations, numerical analysis and some experimental examina-
tion leads to the following conclusions:

1. The equations (8) and (9) show that for the determined values of 5, E and
o characterizing the visco-elastic properties, the influence of the air damping can be
essential or nonessential contribution to the calculation of complex transmissiblity; the
situation depends on those values.

2. The essential influence of the air damping on the measuring of the complex
transmissibility is observed for samples of small densities, p<6 10? kg/m3, Young
modulus 10° N/m? and loss factor equal 0.6. It is seen from the Figs 3a—5a
presenting numerical curves as well as from experimental transmittance dependen-
ces for normal conditions and for vacuum (10? Pa) that the measured values of
Young modulus and loss factor are different for this different conditions (see Figs.
11—14).
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3. In case the values of E are greater than 10° N/m? and #>0.1 the contribution
from losses of air environment can be neglected (see Figs. 2—8).

4. In case the visco-elastic parameters are used for identification of relaxation
processes in polymers their values should be calculated with formulae (8) and (9). In
practice the errors of E and n resulting from neglecting the errors of air friction should
be determined.
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