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NOISE GENERATED BY A MOVING LINE SOURCE IN A DISSIPATIVE
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It is the purpose of this paper to present the resultant effect of geometrical spreading, air
absorption, Doppler frequency shift and the distortion of the sound field due to the motion of
a line source. It is assumed that the source is moving slowly along a straight line. The results
obtained can be used for prediction of the A~ weighed sound pressure level of railway noise.

Introduction

The sound field of any moving source is affected by the Doppler effect and convec-
tion effect. To give more accurate description, one has to take into account air absorp-
tion as well.

This paper will attempt to describe the combined effect of all these phenomena for
a continuous line of dipole sources.

Well-known relations for a motionless line source have been used as the starting
point (Section 1). Under the assumption of a low Mach number, explicit functions for
mean-square sound pressure and its spectral density have been derived in Section 2, for
both nondissipative and dissipative mediuma.

The results presented in this paper can be employed for railway noise prediction.

1. Source at rest

Some sources of noise, among them train noise, can be modeled by a continuous
line of incoherent dipole sources. Hence the spectral density of the mean square sound
pressure produced by a unit length is

2
PRl i ), 0

where the characteristic impedance of air, pc, equals 415 rayls (speed of sound
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FIG. 1. Geometry of the moving line source with respect to the point of observation 0.

¢ =343 m /s, air density p=1.21kg/ m3). The distance r and the angle ¢ are defined
in Fig. 1.

Spectral characteristic

N(f) in the above equation expresses the spectral characteristic of a source. There
are many real sources for which N(f) has one absolute maximum. Such a spectrum can
be approximated by the function

N(f) =NOf"exp(-pf), m=0. @)
The integration of this equation from f=0 to f=o gives (Ref. [1], integral
FISL):

N=Nmy "+, 3)
The spectrum described by Eq. (2) peaks at fnax = m/u and its maximal value is
(0) ®
N p(m
N () = [e] @

The set of sources of the same value of N and with m = 0, 1, 2, ... can be described
by the following equation, as illustrated in Fig. 2:

N () =25 u™ ' mexp(- uf). %)

For a large value of u low frequencies predominate. If the parameter u decreases,
then N(finsx) (Eq. 4) declines and finax = m/ e shifts toward high frequencies.

The results of measurements of the sound pressure level with banpass filtres can be
converted to the spectrum level. Then, making use of regression analysis, the numerical
values of the parameters N (0), m and u can be found. For example, the A— frequency
weighed railroad noise can be characterized by N Oe107? m=3, u=2" 107*
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FIG. 2. Spectral characteristic of source (Eq. 2).

Atmospheric absorption

The absorption coefficient a(f) (Eq. 1) depends strongly on the frequency (f), and
relative humidity (h,), and less strongly on temperature (7 ). It also depends slightly on
the ambient pressure. The explicit form of the function a(f, h,,t ) is rather complicated
[2]. Under some conditions [3] the absorption coefficient « can be approximated by a
linear function of frequency

a(f, hr, T) = B (h,, T)f, (6)
where

B= a(faax, b7, T)/ faux.

Frequency f* depends on the power spectrum of the source [3]. The numerical

values of a (f, h,, T) are given in international standards such as ANSI $1.26 or ISO
3891-1978 E.

2. Moving source

In this paper we restrict our attention to a line source of length / which moves with
constant speed, V much smaller than the speed of sound ¢ (Mach number
M = V/c << 1), along a straight line at slant distance d >> I/2 (Fig. 1).

Due to the motion of the dipole, its radiation field, i.e., the spectral density p*(f")
and the received frequency, f', become different from that produced when the source is
atrest, p*(f), and f (Eq. 1). The convection and the Doppler effects are given by [4,5]:
p*=p’n’, f'=fn, ©)
where

n(t', &) = (1 + Msing(', §)) (8)



34 R. MAKAREWICZ

denotes the Doppler factor. For an element of a line source we can write (Fig. 1)
sing(t', &) = (V' + &)/r(t', &), 9
where - 1/2<&<1/2, —» <t <, and

23172

r(t, §)=((ve'+ &Y +d ) (10)
is the propagation path which the sound has to follow (d is the slant distance). Cor-
responding to the radiated frequency f and received frequency f’, we have the time of
emission (t') measured in the rest frame of the source and the time of reception (¢) :

t'=t-r(t',&)/c (11)
Vt' is the distance between the center (&= 0) of the moving line and the y — axis (the

line from the observer normal to the rectilinear path of motion).
From Egs. (10) and (11), we get

V' ={Vi- M*E-M[(V))* + (1 - MP)d® + (ct + ME)* - (c1)’]"* ba-M2). (12)

2.A. Nondissipative medium

A.1. Spectral density of mean square sound pressure. For a nondissipative medium
we set a=0 and Egs. (1,7) yield the spectral density of mean square sound pressure

produced by a unit length:
N(f'/n(E)d’pe ,
P, &)= 3 n (&) (13)
r(§)

The total spectral density of mean square sound pressure is obtained by integration
over the length of the line source (Eq 13):

o fN(f /n(t, )’ (t',8)
™t
-2
where 7 (¢', x) and r (t', £) are defined as above (Eqs. 8-10).
To get some insight into the physics of sound generation and propagation, we ap-

proximate the integral (14) under the assumption of a low Mach number: M << 1 and
1/2 << d. Thus we can write (Egs. 8-10, 12).

p’(f)=d ds§. (14)

Vt'=Vt-Mr(1,0), (15)
r(t', &) =r(t,&[1-Msing(t {.’)ﬂ(%] (16)
7?(",5) =1-Msin ¢(I’ 5)9 (17)

where

sin gli 2y% :/(t:; and r(hE)={(Vi+ 8+ ] (18)



NOISE GENERATED BY LINE SOURCE 35

represent, respectively, the angle of sound reception and the distance between the
source element of the coordinate (V' ¢ + &) and the receiver 0.

For a low Mach number, the radiated frequency, f=f'/n, differs only slightly from
the received frequency, f (Eqs. 7.17):

f=f +4f, (19)
where
Af=[f"Msin ¢, §)
is the Doppler frequency shift.
Making use of the Taylor series, we obtain

N[f'/n]=NIf +Af] =N(f)+ df’ (f)f'Ms:n¢(r §). (20)

Finally the expressions (14-17, 20) give the total spectral density of mean square
sound pressure:

P10 =ps(f0 +po (f20) + pE (f50), (1)
where
12
P 0) = d*peN(f) [ ( . g) (22)
-1/2
corresponds to a “quasi-stationary” source,
dN ’sin #(1, &)
Md ; d 23
Pb (f>0)= pcdf(f)fuj; on (23)
describes the influence of the Doppler effect, and
< or0) . sing(t,E)
2 f 2 2 ' r\i, i ’
pé (f,t)-4Mdch(fl£[r(t,§) U s dg, (24)

can be related to the convection effect.
The influence of both effects (p5,pé ) is proportional to the Mach number. How-

ever, we have assumed M << 1; therefore the quasi-stationary source (psz) tends to
dominate.
Making use of a table of integrals [1], we get the formulas (Egs. 18, 22-24):

A= %N(f')mr), (25)
i B o C
po(fi) =3 M df T ol (26)

PR(Ts0) = 3 MEE N Fe(o), @7
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with the time functions

Fs(1) = sin ¢>cos ¢ — sin ¢ cos ¢ + ¢2 — ¢y, (28)
Fp(t) = cos’ ¢ - cos’ ¢, (29)
Fe(f) = 3[1 + (Vt/d)*]*(cos*¢1 - cos*¢z) - 4(cos® ¢y - cos®¢,), (30)

where the angles ¢, and ¢; are associated with the leading and trailing edge of the line
source:

; Vi+l/2 g Vi-1/2
sing; = 2 75, Singy= v (31)
((Vt #13 dz) ((Vt 224 dz)
d d
cos ¢y = T2, COS@y= 2
((w +1/2)% + d2) ((v: -1/2)%+ dz)

At t = 0, when the center of the line source (£ = 0) is opposite to the point of obser-
vation, the above expressions yield: p (f, 0) = 0 and pz(f, 0) = 0. Hence the contribu-
tions of the Doppler and convection effects vanish at the moment of passing by.

A.2. Time history of mean square sound pressure. The relation between the mean
square sound pressure and its spectral density is

PO =[P (04, (32)
0
where f' is the observed frequency.
Thus (Egs. 21, 25-27, 32)

P(0) = () + pb (1) + pe (1), (33)
where the contributions of the “quasi-stationary” source, Doppler effects, and the con-

vection effect are given by
NpcFs(1)

ps(t) s e (34)
PpcFplt

p%(t)==M—£;d—D(), (35)

p%(r)=MN%§"('). (36)

Here, parameters N and P are related to the power spectral density of a line source:
N mN’d’P m’dN”d' 3
f AL —def,(f)f f' (37)

Assuming that N(f') has the form given by Eq. (2), we obtain N from Eq. (3) and
P = - N [1]. Thus Egs. (33-36) combine to yield
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Npc 2
P-4 | F0=3M1Ro0 - Fetl, G9)
with Fs(f), Fp(t), and Fe(t) defined by Egs. (28-31).

Equation (38) described the time variations of the mean-square sound pressure for
a line source in motion.

Expression (28) shows that the function Fs(?) is even: Fs(—-t) = Fs(¢). In contrast
Fp(=t) = -Fp(f) and Fc(-t) = - Fe(t), i.e., both functions are odd. Thus, introducing
the measure of p*(f) asymmetry (Fig. 3)

ap*=p*(f) - p*(-1),
one gets (Eq. 38):

28 2Npc . .
Ap(0) = - ZEE M () - Fel)) (39)

It follows that the asymmetry of the mean square sound pressure is proportional to
the Mach number and decreases with the slant distance (d),

2B. Dissipative medium.

B.1. Spectral density of mean square sound pressure. Including air absorption, one
obtains more general expressions for the mean square sound pressure, pz, and its

spectral density, p*(f).
From Eqgs. (1,14) and Fig. 1, we get
172 4
1 f'/?? n y r
)= dpe WL o oot yr (e, 8)) de, (40)
. T,E)

where r(t', £) and (', &) are determined by Eqs. (8-10).

pA(t)

¢ - t

FIG. 3. Measure of pz(t) asymmetry, Apz(t') (Eq. 39).
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To evaluate the above integral, the analysis can be carried out (with M << 1) in a
manner quite parallel to that in Section A2. The final result is

P(f,0) = p3(f', 1) + po(f', 1) + pE(f', 1) + pA(f', 1), (41)
where
, “exp(- 2ar(1,£))
e g A “2)
R s;n¢exp(—2ar(t,§))
Po(f10) = Md’pef G f e dg, (43)
o r(40) sin¢exp(— 2ar(t, §))
vEr A A Nf [ &8 R
and

2 .

pA(f ) = 2Md’peNar(0) [ THEOEE 205
=1 r (t$ g)
where the absorption coefficient « and the characteristic N depend on the observed fre-
quency f’ (Egs. 2,6). The distance r(¢,0) and r(t,§) are determined by Eq. 18. When
/2 << d, then the distances between the point of observation and both edges of a line
source, r(t,- 1/2), r(t,1/2), are almost the same as the distance between the point of
observation and the center of a line source, r(t,0), (see Fig. 4), i.e.,

rol/2)-r0) _ - r(t-1/2)-r(s0)

ds, (45)

(L0) <<1, 7 (L0) << 1, (46)
Thus Eqgs. (42-45) can be approximated by
pi(f,0 = N(f Jexp{-2a(f')r(t0)} Fs(t), (47)
po(f',0) = df (; )exp{ 2a(f')r(1,0)} Fo (1), (48)
PR 1) = %Mf’fw(f' )exp - 2a(f")r (6, 0)} Fe ), (49)
and
A0 = 2MEEN( Y exp (- 2a(f ) (6O} U PO Fo (). (50)

The time functions Fs, Fp and Fc are defined by Eqgs. (28-30) and
r(t,0) = {(Ve)* +d*}'? (Eq. 18).

Expressions (48) and (49) describe the Doppler effect and convection effect modi-
fied by air absorption. To find the physical meaning of Eq. (50), let us note that Fp(t) is



NOISE GENERATED BY LINE SOURCE 39

FIG. 4. Definition of the distances r(t, - %2), r(t, ¥2), and r(t, 0) (Egs. 46).

negative for ¢ < 0 and positive for ¢ > 0 (Egs. 29,31). Thus, we have ps* < 0 and ps*> 0
for t < 0 and ¢ > O respectively. Such an increase of the mean square sound pressure can
be explained by the decrease of air absorption caused by the Doppler frequency shift.

B.2. Time history of mean square sound pressure. From Eqgs. (32, 47-50) we can
obtain the mean square sound pressure as follows:

P(t) = Ps(t) + pb(e) + pe(t) + PA(Y), (51)
where
P =5 5 NOFs(0), (52
P30 =3 M POF (), (53)
P =3 ML NOFC(), (54
pi0) = 5 MEF QWOFo 1), (55)
with L
1 ’ 2 2
N()=N{1 +—(—V%i l 5 (56)
-(m+2)
Vvoi+d® V(vn?i+d?
P(t)y= -N 1+—-R— s 1—~m—R-—, (57)
and o
‘V 2 2 2 2
O(t)=(m+1)N{1+ (V'L .4 } oL (V‘L 4L (58)
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N is the parameter characterizing the source, i.e., the process of generation (Eq. 3)
and R is the “critical distance” which can be ascribed to the process of propagation, i.e.,
air absorption [6]:

R =pu/2B(h,t). (59)
Its numerical value depends on the nature of the source (parameter u , see Eq. 2) and
the weather conditions (h,,T). R tends to infinity for =0 (Eq. 6), i.e., for a nondis-
sipative medium. In such a case (Egs. 56-58)

N() =N,
P(f)= -N, (60)

Q(t) - O,
and the expression (52-54) simplifies to the form given by Egs. (34-36) with P = - N.

3. Conclusions

The final result of geometrical spreading, air absorption, Doppler, and convection
effects due to the motion of a line source have been described in terms of means square
sound pressure (p”). Making use of the definition, L, = 10 1g (p*/pj) one can predict
the sound pressure (po=2x 10~°> N/m?). The spectrum of a line source, frequency-
weighed or not, is characterized by the function N(f) (Eq. 2). In the case of A-frequen-
cy weighing, N = Ny(f) we are able to calculate the A-weighed sound pressure level,
Ly = 101g (pi/pd), of noise generated, e.g., by a train.

The formulae have been derived under the assumption that the noise is generated
by a continuous line of dipole sources.

The most general expressions (Egs. 51-55) hold true for M << 1, linear dependence
of the absorption coefficient on frequency (Section 1.B), and the condition determined
by the inequality //2 << d.

Air absorption can be neglected and one can use a simpler expression (38), when
r(t,0) << R, i.e. (Egs. 51-59)

| ] << ‘l/\/ [(1/2Bh,T)) - d*. (61)
Numerical values of £ can be found for any relative humidity (4,) and air tempera-
ture (7) (Eq. 6).
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