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In this paper the effects of nonlinear wave distortion have been described. This problem
is characterized for the nonlinear medium. The experimental investigation results of nonlinear
propagation have been presented. The wave distortion is connected with the harmonic
generation. The measuring set-up used for the investigation of nonlinear wave distortion has
been shown. It allows to measure wave distortion by determining harmonic amplitude and
their numbers as a function of the distance from a wave source. As a primary wave source,
the “sandwich” transducers have been used. The resonance frequencies of these transducers
were 30 kHz and 81 kHz respectively. The recorded wave distortions are shown in diagrams
and photos. Also the spectrum evolution as a function of distance from the wave source is
shown. The investigation results are connected with the weak nonlinear wave distortion.

1. Finite amplitude wave propagation in nonlinear medium

The description of dynamical effects is carried out by means of equations of con-
tinuity, motion and state that characterize this phenomenon. The system of equations of
continuity, motion, entropy and state makes it possible to obtain the nonlinear equation.
This equation describes wave propagation with finite amplitude [2].

The assumption that the acoustic Mach number has small values in hydroacoustics
is correct. This means that relative changes of density and pressure are small. Thanks to
these facts, one can describe the nonlinear equation of acoustics as follows [3]:
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P’ =p - po— acoustic pressure, cp — speed of sound wave, po — medium density ar rest,
b — attenuation factor, { — time, & — nonlinearity parameter factor, v — vibration velocity.
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The solution of Eq. (1) has not been found till now, but a few methods of its
simplification are used. Sometimes the perturbation method is used. It gives good
results in the case when the nonlinear effects are relatively small. This method takes
into account the spare assumptions: the wave is a plane wave and the attentuation fac-
tor is equal to zero.

The other form of the known method which allows to solve Eq. (1) is connected
with the quasi-optical assumption. It is assumed that the wave distortion is very small
on the path equal to the wave length and the form of energy flux can change not only in
the direction of wave propagation but in the transverse one, too. The transverse chan-
ges are larger than the longitudal ones because of the diffraction effect. By fixing a
coordinate system in the zero phase of the wave that propagates with ¢o speed, one can
transform Eq. (1) to the following form [7]:
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where: 7=t - z/co — time in the Lagrange description, z — wave propagation direction,
X, y —axis orthogonal to z. This equation is called the Chochlov-Zabolotska-Kuznetsov
equation. The above presented equation has no solution. When the right side of the
equation equals zero, then one obtains the Burgers equation [7]:
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It is a nonlinear equation that can be solved. The solution of Eq. (3) is very useful
in analizing the nonlinear effects occurring on the energy flux axis. Unfortunately, it
does not take into account the diffraction phenomenon because of one dimension of
Burger’s equation. Its solution describes the plane waves. Another advantage of this
solution is the lack of any limits of acoustic Reynolds number values determined by [5]
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where w = 27xf, f— frequency.

Burgers” equation can be solved for the two main cases, that is for a small Reynolds
number and for a large one. The first case is strictly connected with the large dissipa-
tive effects and the second one when the nonlinear effects are dominating.

The effect of nonlinear distortion in water is similar to the phenomenon which
takes place during shock wave propagation in air. In air the finite amplitude wave dis-
tortion takes place due to the difference of phase velocity. In the compression area the
phase velocity is higher than in the rest area as well as in the expansion one. Finally
this phenomenon causes a wave distortion from sine form to a saw-tooth one. The
wave distortion is strictly connected with harmonic generation whose numbers and
amplitudes are a function of the distortion degree.

The effect of wave shape change can be observed on the basis of Riemman’s solu-
tion of an equation that describes the plane finite amplitude wave in an idealized fluid.
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The Lagrange description is used. The particle velocity v can be described in the form
[4]:

v(z,7) = vosinw(7 - z—j%y) ®)

where 1 — source vibration velocity.
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FIG. 1. Wave distortion calculated as a function of distances for z s zp- .

According to Eq. (5), the waveform changes the shape (see Fig. 1) step by step up
to the point where it reaches the range z = zy, The value zy is a boundary value of a
coordinate z for which the functional described by the relation (5) is single-valued
function. This value can be determined by means of the following formula [4]:
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At the range from the source z > zy, the solution of Eq. (5) is not a single-valued
function. This range is sometimes called the distance of loss of solution continuity or
simply the discontinuity distance. The loss of a continuity of waveform description
takes place only in mathematical formalism because it takes into account the wave
propagation in the idealized fluid. In the case of sound propagation in the real medium,
that is water, with the increase of distortion the loss of wave energy increases, 100. As a
result of these interactions, the harmonic wave becomes saw-tooth shaped at some dis-
tance from the source. This distance is called the critical distance. This distance can be
determined on the basis of the following approach. The finite amplitude were speed can
be taken apart as the sum of two components of speed. The first one is a sound speed in
the rest medium and the second component is connected with the rise of the total speed
as a result of the medium nonlinearity [5]:
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c=co+ ev(z, 7). @)

To create the saw-tooth wave, the top of the wave must overcome the way A/4 (A -
wavelength) with the speed £vo at the same time as the distance z = z, is overcome
with co speed. Assuming that these times are equal, one can obtain the following rela-
tion [5]:
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Figure 2 shows the relation zy and z, as a function of frequency for different values
of pressure generated by a source of wave. :

The distortion of waveform arises on the way from the source to the critical dis-
tance (z;) where the saw-tooth wave criterion occurs. In the next propagation region
the wave keeps the form, however, the magnitude goes down because of the nonlinear
damping (Fig. 3).

This area is called the shape stabilization of the waveform. The relation describing
the motion of the stable saw-tooth wave can be obtained on the assumption that the dis-
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tance where the pressure shock occurs is small. Taking into account that 7= t_F .
0

k = w/co , the relation (6) and Eq. (5), one can present it in the form
v(z, t) = vosin(wt - kz + L2 )- 9
Vo 2y

The plane where the pressure shock occurs moves in the space with phase speed ¢
and during time ¢ it overcomes the way from a transmitter equal to z = ¢of. The position
of this plane is described by means of the phase equation wt - kz = 0. The condition of
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FIG. 2. The dependence of the distances zy and zk- on the frequency calculated for different values of
pressure generated by the wave source.
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FIG. 3. Wave distortion calculated as a function of distance for z > zg-

occurrence on this plane of the shock pressure with respect to changes of particle
velocity is connected with equation (9):
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where z> 2z, and v is the magnitude of the saw-tooth wave. In the distance of
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z/zy >> 1, the expression sm(? : z_) can be represented by a Taylors’ series expansion
0 <N

close to point 7, allowing the formula (10) to show in the simpler form
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that describing the decrease of the wave magnitude.
At the large distance from the transmitter, as a result of dissipation of wave energy,
the nonlinear distortion falls down and the wave-front changes. The shape of the wave

goes to the harmonic wave.

2. Finite amplitude plane wave spectrum

The change of the shape of the finite amplitude harmonic wave during propagation
in nonlinear medium is connected at the same time with a change of wave spectrum.

The evolution of the wave spectrum can be shown using the Fourier series of the
solution of Burgers’ equation for large Reynolds numbers [1]:
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U(z,t) = vg E B,cosn(wt - kz). . (12)

n=1

For the discontinuity distance, the composition of harmonics can be shown in the
form that is called the Bessel-Fubini solution:
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where J,( - ) — Bessel function. For the distance called the area of waveform stabiliza-
tion, the formula (10) can be described by means of Fourier series in the following
form:

By=————, z>>2y (14)

Distortion of the harmonic wave is connected with the phenomenon of pumping of
the primary wave energy to harmonics. The nonlinear distortion can be characterized
by a change of the wave spectrum. The spectrum of a radiated wave at the transmitter
(z=10) has only spike whose value equals v, In the area 0 <z < 2z, the number of
spectrum spikes related to higher harmonics increases and their amplitudes increase
too, but the amplitude of primary wave decreases. In the distance of the stabilizing
waveform, the loss of energy is due to nonlinear attenuation. The value of the differen-
tial attenuation coefficient is not a function of frequency. With regard to this fact, the
number of harmonics is constant but the values of their amplitudes decrease. At a large
distance from the transmitter z >> z,, the spectral spikes related to higher harmonics
slowly decay. Taking into account the above data one can notice that for investigation
of large intensity waveform distortion the method of measuring harmonics amplitudes
is very useful.

3. The Measuring system

The observation of nonlinear distortion of waveform during its propagation in
water was carried out by measuring the harmonic amplitudes. The measure were car-
ried out by means of a set up that is shown in Fig. 4.

Piezoelectric transducers in “sandwich” form are used as transmitters with the fre-
quency 30 kHz and 81 kHz, respectively. In both cases the wave intensity was limited
by cavitation phenomena [6].

The measurements of harmonic amplitudes were carried out on the axis of the
transmitters’ beams. The receiving signal from the receiving transducers was amplifield
by means of a measuring amplifier with a set of band pass filters allowing to measure
and register the value of harmonic amplitudes.
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FIG. 4. The scheme of measuring set up of investigations of nonlinear waveform distortions.

4. Investigation results

Our investigations consisted in observing primary wave distortion and the creation
of harmonics. In Fig. 6 the change of primary waveform shape (frequency 30 kHz and
value of Reynolds number Re, = 8.5 ) in water at the distance of 12 Ry is shown. Ry is
the Rayleigh length Ro = S/A, S — area of transmitter. Figure 7 shows the primary wave
shape, the first harmonic and the second one at the distance of 6 Ry from the transmit-
ter. The primary wave distortion (f = 81 kHz, Re, = 14.2) is shown in Fig. 8. During in-
vestigation, time histories are recorded by means of a digital oscilloscope. One can
notice the distortion of waveform shape and the first harmonic. On the second line of
the oscilloscope view, the reference signal that is put into the transmitter is shown.

The distortion of wave shapes shown in the figures and photos are not too large.
However, one can notice the differences between the length of the increase and
decrease slopes.

The study carried out allows to observe the changes of wave spectrums during pro-
pagation in water. The wave’s spectrum of the primary wave with frequency equal to
81 kHz (Re, = 14.2) at the range 15 R from the transmitter (Fig. 8) is shown in Fig. 9.

The measuring results of the harmonic components of the 30 kHz primary wave
(Re, = 8.5) as a function of the range from the transmitter is presented in Fig. 10. The
correction factor connected with the spherical spreading of the waveform outside the
Rayleighs area (z > Ro) is taken into account.

The registered nonlinear distortion are relatively small as a result of the limitation
of the wave intensity due to the occurrence of a cavitation in both cases. The increase
of the cavitation threshold for the same frequency can be obtained following the incre-
ase of the static pressures or by increasing the localization of the depth of the transmit-
ting transducer. A similar result can be achieved by using cleaned and degased water.
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FIG. 5. The dependence of the cavitation threshold on the frequency [6].
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FIG. 6. The shape of the wave (frequency 30 kHz) measured at the distance of 12 Ro from the transmitter.

FIG. 7. The shape of the wave frequency 30 kHz and the first and the second harmonics measured at the
distance of 6 Rp from the transmitter; Req = 8.5.
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F1G. 8. The distortion of the wave shape (frequency 81 kHz) (a), the
second harmonic (b) and the fifth one (c).

(85]
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FIG. 9. Spectrum of wave frequency f = 81 kHz, Re, = 14.2 at the distance of 15 Ro from the transmitting
transducer.
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FIG. 10. The first and the second harmonic measurements as a function of the range from the primary wave
transmitter f = 30 kHz .

5. Conclusions

The results of the experimental investigation of the nonlinear wave propagation
presented above allows to determine the wave distortion. The method based on meas-
urements of harmonics amplitudes and their numbers as a function of the range from
the wave source is effective in the case of a weak nonlinear interaction, too.

In particular, changes of the second harmonic amplitude can be used to determine
the nonlinearity parameter B/A.
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