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ULTRASONIC WAVES IN SOME BIOLOGICAL SUSPENSIONS AND EMULSIONS
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The frequency dependence is established for the propagation velocity and attenuation
coefficient of ultrasonic waves in dilute suspensions and emulsions and digital computa-
tions are performed for the aqueous emulsion of sunflower oil. The results show that the
measurements of the propagation velocity of ultrasonic waves enable us to estimate the vo-
lume fraction of the suspended particles of both dilute and highly concentrated suspensions
and emulsions.
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1. Introduction

In many areas of research such as cloud physics, underwater acoustics, medicine
and in engineering application such as rocket propulsion, lubrication and so on are of
interest the effective dynamic properties of some types of suspensions and emulsions.
These properties are related to the acoustic wave velocities in the materials under study
and their structure. Therefore some properties and structure parameters of suspensions
and emulsions can be estimated on the basis of ultrasonic measurements.

In this paper, the two-component media are described using Truesdell’s concept of
replacing the noncontinuous components by fictitious continuous constituents [1]. The
basic phenomenon responsible for attenuation and dispersion is, in the approach pre-
sented, relaxation of the phases (components) due to the velocity difference between
them. In other words, attenuation and dispersion are caused by the inability of the
phases to follow each other in the changes of the mechanical state, the changes being
induced by the ultrasonic waves. The frequency dependence of the wave velocity and
attenuation is evaluated by using a secular equation which, in turn, is obtained from
hydrodynamic considerations.
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2. Equations of continuity and balance of linear momentum

As previously mentioned we consider a two-component medium with a Newtonian
fluid as one of the components (phases). Throughout the paper this fluid is called the f
— phase and all the quantities concerning this phase are denoted by abbreviations with
the subscript or superscript f. The other phase is called the s — phase and is taken to
have the form of an elastic skeleton with a statistical distribution of interconnected
pores or a set of particles with arbitrary shape and size. The particles are assumed to be
made up of a solid material or of another Newtonian fluid which is immiscible in the
first one ( f— phase) and chemically non-reacting with that. Throughout the paper every
abbreviation with the subscript or superscript s denotes a quantity referred to the s —
phase.

If p(a) denotes the density of the phase component occupying the set of disjoint
domains V, of the Lebesgue measure m[V,] and b, is its volume fraction, then p,
defined as

m[Ve]
Pa=bap(a), ba= ;;lv—], a=s,f (2.1)
represents the mass of the a-th component per unit volume, and the formula
p= Pa (22)

defines the density of the medium occupying the domain V of the Lebesgue measure
(volume) m[V']. The formulae (2.1) can be regarded as the definitions of the density p.
of the a-th fictitious constituent and its volume fraction with the constituent considered
to be present in every point of the domain V.

Such a concept of treating an n — phase medium (n = 2, 3, 4...) as a mixture of n
fictitious continuous constituents was proposed by TRUESDELL [1] and is employed
throughout the paper. Equations (2.1) define the volume fraction of the a-th constituent
and density to be set functions b.(V') and p.(V'), respectively. However, for making the
mathematical analysis methods suitable, all the scalar, vector and tensor fields con-
sidered in this paper are required to be point functions of the vector r = (x, x2, x3) of
the position in the heterogeneous medium under consideration. The Radon-Nikodym
theorem enables a wide class of set functions, F(V'), to be converted into point func-
tions, as it was explained in the paper [2] by converting b.(V') in the form given by the
formula (2.1) into b.(r). Use was made of the fact that m[V,] = 0 whenever m[V'] = 0,
where one can conclude that the additive set function m[V,] is absolutely continuous
with respect to Lebesgue measure. Hence, on the strength of the Radon-Nikodym
theorem, there exists a point function b(r) such that [2]

m[Va] = ba(V)m[V] = [bu(r) dF, rEV (2.3)

or, equivalently
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bu(r)= lim ﬂi’l
mvi—o m[V]
Now consider the ith, i = 1, 2, 3, component of the displacement on the a-th com-
ponent during the unit time. Let Q{(V') and g (V') denote the volumes sweeped out due
to this movement by the a-th component contained in the whole volume of the domain
Vand in its unit volume element, respectively. Therefore we can write

Qi (V)=q(V)m[V],i=1,2,3. (2.5)

In such a way we define the volume flux gi(V) to be a set function. It can be con-
verted to a point function, g{(r), r € V, by employing the fact that Qf(V) = 0 whevener
m[V] = 0. Hence we conclude that the additive set function Qi'(V') is absolutely con-
tinuous with respect to Lebesgue measure. Thus, by the Radon-Nikodym theorem,
there exists a function g{(r) such that

(2.4)

Qi(V)=q(V)m[V] wqu(r) dr, re€V (2.6)
v
Equivalently, one may write
iV
gf(r) = lim i1 ). 2.7
mv) -0 M[V]

On defining the volume flux as a point function g/(r), we can write
gé(r) = sov(r); vf(r) = ba (DU r), i=1,2,3. (2.8)

so denotes the unit surface. Equations (2.6) and (2.8) or, equivalently (2.7) and (2.8)
define the velocities v“(r) and v (r) of the a-th component and fictitious continuous
constituent, respectively, as point functions.

After defining the point functions b (r) and, consequently, pe(r), and v*(r), the
equations of continuity and balance of linear momentum can be derived in the usual
way (see, e.g. [2]) for the two-component medium under consideration. In this way we
arrive at the following continuity equations:

6 ;-

—(,% +div(p@Va) =0, a=s,f (2.9)
which express the laws of mass conservation on the a-th continuous constituent,
a=s, f. If we add Eqgs. (2.9) to each other and next if we add and subtract the expres-
sion div (p;v®) to and from the resulting equation then we arrive at the following equa-
tion, after some manipulation:

%‘;’ +div (o v - pru) =0 (2.10)
) _ .

where the so-called diffusion velocity, u, is defined as follows u =v*™" —v
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To obtain Egs. (2.9) and, consequently, Eq. (2.10) by following [2], a volume V(¢)
has been considered which is allowed to change with increasing time, ¢, due to progres-
sing flow so that the mass, m, of the mixture contained remains constant. Then the
changes in the momentum of the mass m can be equated to the sum of the forces acting
on the medium occupying the volume V(). These forces can be divided into forces Fs
acting on the surface S(¢) of V(f), and body forces Fy which act upon the heterogeneous
medium occupying every infinitesimal element dV(f) of the volume V(t). Moreover, the
phases s and f act on each other but the forces of the phase interaction cancel out each
other during summation over a = s, f. Therefore, if we neglect the body forces the exte-
rior forces due to gravity, etc. and represent the forces acting on the surface dS(f) of the
volume dV(f) by the so-called effective stress tensor, o, then, following [2, 3] we arrive
at the equations

av(f) av(S) o

e il oo B f)
Pr—a; *P g + pr(u

©. grad)v¥ = divo (2.11)

grad) v’ + ps(v

o denotes the stress acting in the medium as a whole.
In the remainder of this paper, we confine ourselves to flows in which the momen-
tum transferred from the continuum f to the continuum s depends linearly on the veloci-

ties v/ ), u, and the pressure pyin the continuum f. Accordingly, we can write
dv®

Ps s =ﬁ’u+év(”+3‘pf (2.12)

IA’, Q and § denote operators which should be determined for every particular model of
the medium and flow under study.

To define the pressure p in the medium as a whole, consider the mean internal com-
pression 8F exerted by the surrounding medium on the surface 6S of a small volume
&V. If &V can be treated as a good approximation of an infinitesimal volume element
dV, then p is to be thought as the ratio of dF¢ to 4S and its value is supposed to be
equal approximately to the mean value between the pressures inside the components
occupying the volume &V i.e.,

P=bp(s)+ bspis)=pr+ps (2.13)
where p(a), @ = 5, f, stands for the pressure inside the a-th component.

In a similar way, if the s — component is also a Newtonian fluid, we define the dy-
namic viscosity 7, and the second viscosity £ of the medium as

n=>bsny +bsny, E=brli)+ bs &) (2.14)

N and () denote the dynamic and the second viscosity of the a-th component,
respectively.

3. Linearized acoustic equations of the solid-fluid heterogeneous media

The scalar, vector and tensor quantities which are involved in the system of Egs.
(2.9) — (2.12) as unknown functions, F(r, t) are assumed to be of the form
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F(r,t)= F + AF(r,t), F=const. (3.1)

AF(r, t) denotes the local and instant fluctuation in a quantity F(r, f) about its equi-
librium value which is denoted by the overbar. It is assumed that

AF(r, t)

E

Henceforth the fluctuations AF(r, ¢) only in the form of acoustic ultrasonic distur-
bances are of interest to us, simple harmonic time and position dependence being as-
sumed, i.e.,

<< 1.

AF(r, 1) = AFoexp [-i(wt-k-1)], k-(%ﬂ',u)ek, i=(-1)",e&=1. (3.3)

The expressions (3.3) describe an attenuated plane wave propagating in the direc-
tion e; and with the velocity ¢ through a medium with the attenuation coefficient x. The
abbreviation AF, stands for the amplitude of the fluctuation AF(r, ). Therefore the
acoustic disturbances under consideration are assumed to be the periodic fluctuations
(3.3) in the density Apq(r, f), pressure Apq(r, t), and the velocity v“(r, f) about the
respective equilibrium values

Pa(r, [) = po = const, pa(r, t) = po= const,
vr, ) =0, pa=bapa, a=s,f. (3.9)
The acoustic disturbances are assumed to be adiabatic. Among others, this assump-
tion implies the validity of the following equation:
dpyyr, ) clpdpipfn, ), Apy
= = CU') = .
dt dt Ap)

c(sy denotes the velocity of the propagation of the wave given by the formulae (3.3)
through the fluid f. If the following inequalities are assumed to be valid:

d(brq(n) dby
g Rk 1 T brgiy » 9=p,p (3.6)

(3.5)

then
gy _dGr/by) 1 dqs 3.7
dt dt by dt’ ;
On substituting the relations (3.7) into Egs. (3.5), we obtain
dpr, ) , dpfr0) _ o Ay _Ap_ o

ety

dt dt .y Ap(f) 5 Apf_ /

Thus, if the inequalities (3.6) are fulfilled, the velocities of the adiabatic propaga-
tion of the wave considered through both the component (fluid) f and f-th continuous

(3.8)
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constituent are equal to each other. Further in this paper, we will be interested only in
this case.

Now the unknown functions P, pe, v'?, @ = s, f involved in Egs. (2.9)2.12) are
taken to be of the form given by the formulae (3.1). After such a substitution, only
terms up to those linear in the acoustic disturbances AF(r, t) are kept in these equa-
tions. This acoustic linearization of the flow equations yields, after some manipulation,

a(‘:)t 2, 5.divy®@ =0 (3.9)
ﬂgtﬂl +pdivv® - prdivu =0 (3.10)
—v® _ ou
17 o Pl T diva” (3.11)
N E
5si$l-Qllf-Fs*0- (3_12)

F’ is the density of the viscous drag force experienced by the continuum s when it ex-
ecutes oscillations. QvUr Vis the external force produced by the sound field.

In this paper Egs. (3.10)~(3.12) and one equation arbitrarily chosen from Egs. (3.9)
are treated as the system of equations describing the propagation of the acoustic distur-
bances through the media considered. For instance, if Eq. (3.9) for @ =5 is chosen, a
system of 8 equations (3.9)—«3.12) is obtained with 10 unknown functions:
Aps, Apy, Ps, P, v u, =1, 2,3 . To equate the number of acoustic equations with
that of the acoustic disturbances (unknown functions), we add to Egs. (3.10)—(3.12) the
relations expressing the assumption that both phases are disturbed adiabatically. Then
the unknown functions can be sought for in the wave form given by the formulae (3.3).
On substituting such forms of the disturbances into the set of acoustic equations, the set
of algebraic linear and homogeneous equations is obtained for the disturbance
amplitudes. The condition of the existence of the non-trivial solution to the system of
linear homogeneous equations is obtained for the disturbance amplitudes. The condi-
tion of the existence of the non-trivial solution to the system of linear homogeneous
equations leads to a secular (determinant) equation which enables the dispersion laws
to be found for the medium considered. These dispersion laws express the frequency
dependence of the propagation velocity and attenuation coefficient of acoustic waves
which propagate through the two-component medium under study.

It should perhapes be stressed that it will be possible to establish the dispersion
laws in the above way for every particular type of the two-component media under
cons:deranon if the respective forms are found for the effective stress tensor o and
operators P and Q In the next section such considerations are presented for dilute
suspensions and emulsions.
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4. Propagation velocity and attenuation of ultrasonic waves in dilute suspensions
and emulsions

Basic assumptions

In this section dilute suspensions and emulsions are considered and use is made of
the above described hydrodynamic approach to derive the dispersion laws for the
media under study.

An emulsion is thought of as being a mixture of two chemically non-reacting and
immiscible viscous fluids. One fluid called the f — phase is volumetrically dominant
and the other called the s — phase is uniformly dispersed in the form of a large number
of spherical particles with a radius R. The viscosities of both fluids are assumed to be
independent of the disturbance frequency w. The limit when the ratio 1)/ is negli-
gibly small as compared with a quantity of order unity, i.e.,

)
1(s)

corresponds to the case when the considered mixture is a suspension of rigid spheres (s
— phase) in a Newtonian fluid (f - phase).
The assumption that the considered suspensions and emulsions are dilute, i.e.,

by<<1 (4.2)

allows us to neglect the forces with which the particles act on each other and take the
divergence of the effective stress tensor to be

<<1 (4.1)

divo" = grad[ - 4p + nrgradv + (—g[ + &Hdivv). (4.3)

According to the formula (2.13), the pressure disturbance Ap, in the emulsion as a
whole is thought of as being given by the formula

Ap = byAp(y) + bsApys) = Apr + Aps (4.4)
where Ap, and Ap, are related with each other by Egs. (3.8), i.e.,
A
P AZ:, a=s,f (4.5)
Calculation of F*

When an ultrasonic wave meets a particle, freely suspended in a viscous, compres-
sible, non-heat-conducting fluid, both the wave and the particle are affected by the fre-
quency-dependent force of the viscous interaction between the fluid and particle. The
wave induces changes in the mixture and motion of the particle which, however, is un-
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able to follow closely the changes in the environment. Therefore, the basic phenome-
non responsible for attenuation and dispersion is relaxation of the dispersed phase due
to the difference between the velocity of the suspended particles and the suspending
fluid.

To calculate F*, it is necessary to consider the interaction F* between a single par-
ticle oscillating with the velocity v* and the fluid surrounding the particle closely and

occupying an influence domain of the volume of order much less than (2n %)3. The

fluid occupying the influence domain oscillates as a whole with the velocity v\ where
v is here to be thought of as the velocity of the fluid f at the centre of the particle if it
were absent. Before going on to calculate the interaction, we replace the finite influ-
ence region by an infinite one and assume that the interaction in the last fictitious case
differs negligibly from that in the former real case. In such a model, the infinitely ex-
tended fluid oscillates as a whole with the velocity v and exert a surface force, F’, on
the particle which oscillates with the velocity v In order to calculate the force F’, it is
necessary to find the velocity and pressure fields v¥(r, f) and pex(r, f) in the fluid f at
the boundary S of the particle (sphere).

Solving the auxiliary problem of determining v and pex, both the fluids f and s are
treated to be viscous and incompressible. Then the unknown quantities are involved in
the following set of equations:

av™

ot

(m) . (m) _

1 "
grad)v?"™ = - V(- pem + Nm grad v™) (4.6)

+ (v

divv™ = 0, m = in, ex (4.7)

Throughout the considerations concerning the calculation of the force F°, every ab-
breviation with sub- or superscript “in” and “ex” denotes a quantity referred to the par-
ticle or surrounding fluid, respectively. Equations (4.6) and (4.7) are to be solved with
the following conditions at the boundary S of the particle (sphere):

1) the normal components of velocity both inside and outside the particle vanish;

2) the tangential components of velocity and stress are continuous.

Moreover, every suspended particle is assumed to maintain its spherical shape due
to surface tension. Therefore, calculating F*®), we take into account the motions of the
particle (sphere) as a whole, all shearing and frictional effects, but neglect the expan-
sion and deformation effects.

Although the applied method of calculation of F* follows to a wide extent AHUIA'S
method [4], it is more general and the utility of their results is released from some
limitations. Ahuja omitted the term with the time derivative in the Navier-Stokes equa-
tion describing the viscous and incompressible flow of the fluid inside an oscillating
particle. In our calculation this term is not omitted but only the nonlinear (with respect
to velocity) terms in Eqgs. (4.6) are omitted. Introducing the respective dimensionless
variables into Egs. (4.6), one can verify that the nonlinear terms may be neglected if
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a Py Rawp(m
St=—<<,Rum=—"—7575<<1, Repy=—7— << 17 (4.8)
R Pma ® Ny
a denotes the oscillation amplitude. The abbreviations St, Ru(), and Re(m), m = in, ex,
denotes the Strouhall, Ruark and Reynolds number, respectively. On finding the ex-
pressions for v and p., from Egs. (4.6) and (4.7) with their boundary conditions and
conditions (4.8), we substitute the right hand-sides of v** and p* into the following
well-known formula:

F® = f (= pexcosB + o, cosf — o, sinf) ds (4.9)
S
where the integration is to be performed over the surface of the spherical particle. The
integrand of Eq. (4.9) is presented in the polar spherical coordinates with the polar axis
parallel to u. After evaluating the integral (4.9), we get the drag force as

F¥= - [47(ix+ KzR)T](f)Co —%iwﬁ(nRs]u (4.10)
po]
k=(1+1) 4.11
( [anJ i
3Inem+2 + 2nW¥Y
CO-% Ns) () 1) (4‘12)

3. 2
Em(mn + 1) + Nk + Rx ¥

W= 2n(n+1)H/ 1+2 (n+1)H,] (4.13)
| Ropy| 1
H,=(-1) - } 7 H(Zlﬁ 2)(2k + 5) (4.14)

Now the density F* of the viscous drag force experienced by the continuum s when
it executes oscillations may be evaluated from the formula

F’= § by 'R7FY. (4.15)

The last expression which is requlred to be found before going on to derive the
secular equation is the operator Q which has been introduced into Egs. (2.12) and
(3.12), Making use of [5, Eq. (7)], we get the operator 0 as

9 bspf o)
o " bp pu

Q=pB (4.16)
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Secular equation

Upon substituting the expressions (3.8), (4.3), (4.15) and (4.16) into Egs. (3.11) and
(3.12), we obtain from Egs. (3.9)«3.11), after some manipulation

a(4p)
Tt pdivv? + pdiva = 0 (4.17)
A -
( af A, Bydivv? =0 (4.18)
-y ) Ju

P 2 + s — Fy + cjgrad(Apy) - nav - (§f+—)graddlvvm 0 (419

B av 4
[at(1+ )+Dju+(1-B)—/— o = 0; (4.20)
D =3B(p) 'R (ikR™' + K n;Co (4.21)

Now let us suppose that the unit vector e in the formulae (3.3) is parallel to the unit
vector e; along the direction of the reference axis Ox; . Then the substitution of the for-
mulae (3.3) into Eqgs. (4.17)—+4.20) leads us to the following secular equation:

-iw 0 ikp ik ps
0 —-ilw I.kﬁf 0

i (4.22)
0 icfk [—iw;_)+k2(§'r]f+gf)] - lwp;

0 0 -Z 1

where the successive column of the determinant correspond to the amplitudes of the
disturbances Ap, Apy, v and u, respectively.
In accordance with Eq. (4.20), Z is defined as

Z=iw(1-B)[D-in(1 +%3)]-‘. (4.23)

Equation (4.22) leads to the following equation
2

(Fris| <repee G -inGue i (29

where the dimensionless propagation velocity ¢* and attenuation coefficient u” of the
two-component medium is defined as

c
c =£, ,u'=u—f. (4.25)
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FIG. 1. The frequency dependence of the dimensionless propagation velocity ¢* for by = 0.05, 0.075, 0.1
and R =210 %m.
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FIG. 2. The frequency dependence of the dimensionless attenuation coefficient u” for bs = 0.05, 0.75, 0.1
andR=2-10"°m.
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FIG. 3. The values of the dimensionless propagation velocity ¢" as the function of the volume fraction bs
for &= 6,30, 150 MHz and R =2 - 10~ °m.
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FIG. 4. The values of the dimensionless attenuation coefficient ,u' as the function of the volume fraction bs
for @ =6, 30, 150 MHz and R = 2 - 10~ *m.
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Figure 1-4 present the results of numerical calculations of ¢” and " for the aqueous
emulsion of sunflower oil. Digital computation was performed using Eq. (4.24). The
required physical properties of the components are taken as given in [6, Table 1], i.e.,
c=1604.1ms™Y, Ppy=1111.1kgm™>,  py=920.6kgm™, 7 =0.0677 Pas,
N = 0.054 Pas, &5 = &) = 0. Figures 1-2 present the dispersion laws for the emulsion
with b, = 0.05, 0.075 and 0.1. The results presented in this figure illustrate the depend-
ence of ¢* and i on the angular frequency w for the given values of the volume frac-

tion of the dispersed component, b,. Figures 3-4 show the dependence of ¢” and 4" on
b, for w= 6, 30 and 150 MHz.

Conclusions

From the presentes results it follows that the volume fraction and size of the
suspended particles of dilute emulsions may be estimated from the measurements of
the propagation velocity of ultrasonic waves. On the other hand, the theoretical descrip-
tion of ultrasonic wave propagation in dilute emulsions is rather simple as compared
with that for highly concentrated emulsions. It should perhaps be stressed that this
method of the estimation of b; and R could be used not only for dilute suspensions and
emulsions which have been considered above, but also for highly concentrated two-
phase media. It follows from the fact that every highly concentrated two-phase medium
of the primary volume Ve may be converted into a dilute one by introducing an amount
AV; of the suspending fluid. If the volume AV} is known, then we may evaluate from
the final volume fraction b; the primary one, b?, by using the following relation:

AV,
0_ 41 i
by =bs(1+ Vo ¥
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