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1. Introduction

A phased-array is a transducer which consists of a number of small transducer-ele-
ments each of which is individually accessible for excitation and reception (Fig. 1). In
contrast to a linear array all elements always simultaneously contribute to the transmis-
sion of pulse or the reception of echoes.

Within certain limits, beams can be produced in any wanted direction, according to
the Huygens’ principle, by applying appropriate time-delays to the electrical signals to
or from the elements.

Like for ordinary transducers the overall dimensions /. (element-length) and /,
array-length in relation to the wave-length determine the beam-properties in terms of
both near-field, far-field and beam-width.

Once the width of the elements w being chosen, the number of elements is deter-
mined by the array-length /,, The necessary spaces between the elements should be kept
as small as is technically realizable in order to have the maximum effective radiating
area. This conflicts however with the requirement of sufficient acoustical isolation be-
tween the elements, so that here the first compromise has to be accepted. We will show
that this is not the only one we have to cope with.

2. Principles of beam-steering and beam focussing

In order to realize either deviation or focussing of a sound-beam the elements of the
array have to be excited by electrical signals which are delayed in a prescribed way
with respect to each other, as illustrated in Fig. 2.

In Figure 2a the situation is represented for achieving beam-deviation only. The
path-length differences, required to create a flat wave-front propagating in the direction
O, are linearly dependent on the element-positions and so are the time-delays.

If now instead of a linearly varying time-delay a circular dependence is chosen we
can achieve the forming of a circular wave-front rather than a flat one, as illustrated in
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FG. 1. Construction of a phased-array transducer. l; = array-length, /e = element-length,
w-element-width, ¢ = thickness (height).
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FIG. 2. Schematic presentation of three different transmission modes, together with the pertinent delay-line
settings. For simplicity only 4 channels one shown
(a): unfocussed transmission at an off-axis angle ©. Delay-time varies linearly with element position.
(b): focussed transmission in axial direction. Delay-time varies circularly with element-position.
(c): focussed transmission at angle . Delay-time as function of element-position is a combination of (a)
and (b).
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Fig. 2b, and a focussed beam is obtained with the center of curvature F as its focal
point. Finally, in Fig. 2c we show that the combination of a linear and a circular de-
pendence of time-delay will result in the deviation of a focussed beam.

We mentioned earlier that the number of elements is determined by their widths
and the overall array-length /, (see Figure 1). From Fig. 2 and the pertinent description
it is easy to comprehend that the complexity of the system and therefore costs increase
proportionally with the number of channels. For this reason we are very keen on keep-
ing the number of elements as low as possible, and the question is how far we can go in
enlarging the widths of the elements, before any negative effects become unacceptable.

In order to illustrate the effects of changing any parameter like for instance the ele-
ment width, we have to solve a tutorial problem. We have to find a useful way to
describe sound-fields or beam-patterns in such a manner that significant features are
not lost due to too much simplification.

Beam-characterization

In classical transducer theory the acoustic field formation is usually characterized
in terms of directional patterns, in general measured or calculated for continuous
sound. In Figure 3 a number of such patterns is shown for various source dimensions,
calculated in this case for short pulses, rather than for continuous sound. Such a charac-
terization, where the acoustical pressure-amplitude or intensity is plotted against the
direction or lateral position, is only meaningful in the far-field because there the curve-
shape is independent of range.

In modern echography, however, practically the whole range of interest is within
the near-field. Here the field structure is rather complex, although much more for con-
tinuous sound than for short pulses involving wide frequency-spectra. This can be easi-
ly understood, if we realize that with continuous sound there will be interference be-
tween the circular continuous waves with amplitudes all varying between the same
positive and negative values. There will be points of total summation and total cancell-
ing; in other words, a rather wild pattern. In the case of pulses, however, it will be ap-
preciated that the shorter the pulse-length, the more incomplete the interference will be,
because the spatial extent over which the amplitude differs from zero will become
shorter and shorter.

We hope to have explained now sufficiently that dealing with the near-field and at
the same time using short pulses, forces us to find other ways of describing the
mechanisms and the effects involved; other than just directional patterns.

Computer-generated beam-patterns

We will now set up a realistic model and calculate the field-patterns for different
directions @ different element-sizes, and for both non-focussed and focussed situations.
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FIG. 3. Directional patterns of sound sources of different dimensions for both Case I in A and for Case Il in
B. (a): directional pattern of a 0.625 A wide source (b) through (f): 2, 3, 4, 5 and 6 times source (a).

The array in our model has an overall length /, = 20 mm and radiates pulses with a
center-frequency of 3 MHz. Since the wave-length A = 0.5 mm the total radiating aper-
ture is 40 wave-lengths wide. The near-field length can be roughly calculated to be
200 mm, covering the whole range of interest.

We will consider the following cases:

Model A: elements of 0.625 A = 0.3125 mm
total number of elements is 64

Model B: elements of 1.25 A = 0.625 mm
total number of elements is 32.

For simplicity we neglect the isolating spaces between the elements. Since t0o ma-
ny parameters affect the beam-patterns we will carry out calculations for two different
cases. Case I concerns a line-array. This means that we disregard the second dimension
of the elements /. (see Figure 1) and thus reduce the model to a two-dimensional acous-
tical problem. Case II refers to an actual array where we have set /. equal to /,, that is
40 A, or 20 mm at f, = 3 MHz. All calculations are based on the same wave-form,
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which is a signal with a cosine-squared envelope filled up with five periods of a cosine-
function. At 3 MHz the total pulse-length is then 1.67 psec.

Before we proceed with the field-calculations, we should investigate firstly the
directional behaviour of the elements.

Figure 3A shows directional patterns in Case I for element-widths from
0.625x A= 0.3125 mm in curve (a), up to 6 x 0.625 x A = 1.875 mm in curve (f). We
observe that the directional selectivity of a sound-source gradually increases with its
width.

It is permitted to use directional patterns in these cases, since even for the largest
width the near-field length is only 1.76 mm. We see then that curve (a) applies to what
we adopted as Model A, and find that the radiated sound-pressure at the boundary-
angles + 45° and - 45° has dropped from 1 to 0.72, which corresponds to 2.85 dB. We
feel, more or less intuitively, that this could be acceptable for a practical system. In
other words, it seems a good enough approximation of a point-source.

For Model B we assumed an element-width twice as large and this corresponds to
curve (b) in Figure 3A. Here a drop from 1 to 0.55 can be noticed at the outer angles,
which is 5.19 dB. This seems quite unacceptable, because, again intuitively, the sum-
mation of the contributions of all elements for these maximum angles will also be at
least 5.2 dB lower than for @ = 0°. And if the elements radiate some spurious power in
or near zero-direction, this will be strongly enhanced by the so much greater on-axis
sensitivity. Let us see if our intuition is right.

For both models and for both cases field-patterns are calculated, using the pulse-
shape as we described already. In a 3D-picture only three quantities can be mutually
related. In this case these are the lateral displacement, the scanning-depth and the
sound-pressure or the sound-intensity. We have to decide about the pulsatile signals we
are dealing with. These are functions of time at each point in the plane considered and
we have no means for taking up time as a fourth dimension. We recall, however, that in
practical systems the signal-envelope, rather than the RF-signal, is displayed on the
screen, and that the echo-brightness is determined mainly by the peak-value of it. We
decided therefore to use also in our computer-model peak-detection of the signals. In
the field-patterns as will be shown the variable characterizing the field-strength is thus
the peak-value of the calculated sound-pulse in the field.

This variable, which we will call the peak-sound-pressure, is presented in the field
patterns as the height of the curves above the “ground”- or zero-plane. It cannot be em-
phasized strongly enough that the exposed patterns do not represent the beam-shape,
but the sound-amplitude. What the brightness is the Schlieren-pictures, is the vertical
deflection or “‘height” in the shown field-patterns.

Case I

We now come to the discussion of the computer-generated field-patterns for both
the Model A in Fig. 4 and the Model B in Fig. 5 in Case 1. The left column shows the
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FIG. 4. Beam-patterns as calculated for a 40 A wide line-array with 64 elements, each 0.625 A wide
(a), (b) and (c): unfocussed beams at 0°, 30° and 45° respectively
(d), (e) and (f): beams focussed at 160 A for the same angles.
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FIG. 5. Beam-patterns as calculated for a 40 A wide line-array with 32 elements, each 1.25 A wide.
Specifications of (a) through similar to Fig. 4.
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results for @=0° (a), ©@=30° (b) and ©=45°(c). Here no focussing is applied; the
time-delay dependence is just linear as in Fig. 2a.

The right column shows the same in (d), (¢) and (f) respectively, however with
focussing at a distance of 80 mm. This means that a circular time-delay dependence is
applied (Fig. 2b), combined with a linear one for the deflected beams, as in Fig. 2c. The
unfocussed cases (a), (b) and (c) show clean and homogeneous patterns, with uniform
width, as we expect in the near-field, and a gradually decreasing amplitude.

The focussed beams in (d), (¢) and (f) converge in the beginning to form a narrow
region about the focus at 80 mm, and diverge behind that region. The amplitude is no
longer uniformly decaying but has a maximum at the focus, as we also expect because
of the concentration of acoustical power on a smaller area. All in all, it seems that our
intuition was quite right in telling us that with an element-width of slightly over half a
wave-length good results could be achieved.

Although we were suspicious already about the application of (only) twice as wide
elements, we had no idea, perhaps, that the deterioration of the system’s performance
would be so dramatic as shown in Fig. 5. This is not true for pattern (a), of course,
because all elements transmit the same signal at the same time and number and size of
elements are then irrelevant. Thus, Fig. 5a is identical with Fig. 4a. Beam-pattern 5d
shows a very little difference with 4d, but this is still not alarming. It really goes wrong
when we try to deflect the beam either focussed or not. We notice that in addition to the
wanted beam, a relatively strong sort of side-lobe is radiated in a near-zero direction.
This clearly takes place at the expense of the wanted beam, which shows in all cases
(b), (¢), (e) and (f) lower amplitudes than in the corresponding cases of Fig. 4. At a
deflection of 45° the unwanted beam is definitely stronger than the intended one. Our
intuition was right, when we had some suspicion about the practicality of double-sized
elements, after considering the directional pattern as in Fig. 3A, curve (b).

In discussions about array-transducers often the term “aliasing” is used. This is a
common expression in signal-theory and is used to characterize the effects of under-
sampling of a signal. If we make the element-spacing too large, the sampling of the
spatial signal is then too coarse. This applies only when there are frequency-com-
ponents in the lateral direction, which means for deflected beams only. The reader may
feel somewhat confused, since “sampling spatial signals” suggests that we are referring
to reception of signals rather than to transmission. Then it may now be the right mo-
ment to emphasize that transmission and reception are fully reciprocal. The calculated
patterns for transmission can as well be considered to represent reception sensitivity.

Case Il

Showing the results of a line-array first has the advantage that any near-field effects
due to the element-length /. are eliminated and cannot obscure the particular effects of
the lateral configuration. We can state now, roughly, that the differences between Fig. 6
and 7, representing Case II, and Fig. 4 and 5, referring to Case I, are due to the ele-



Sy

[[[[[



d)
, “}}nu//
W
e)
sl /
f)

FIG. 6. Beam-patterns as calculated for a 40 A wide rectangular-array with 64 elements, each 0.625 A wide
and 40 A long
Specifications of (a) through (f) similar to Fig. 4.
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FIG. 7. Beam-patterns as calculated tor a 40 A wide rectangular-array with 32 elements, each 1.25 A wide
and 40 A long.
Specifications of (a) through () similar to Fig. 4.
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FIG. 8. a) Beam-pattern of a single element of 0.625 A width and 40 A length
b) Peak-sound pressure as a function of depth in the elevation-plane at & =0
------ Same function for line-element of 0.625 A.

ment-length . It may therefore be appreciated that changing /. will yield different
results, as will any (fixed) focussing applied in the elevation-plane.
Comparing Figures 5 and 7 shows that also for an actual array element-widths con-

siderably greater than % A are out of the question because of the aliasing effects. We can

thus restrict ourselves to comparing Figs. 4 and 6, which is quite revealing.

In Figure 6a, b and ¢ we observe a more or less uniform level, whereas in the cor-
responding patterns of Figs. 4a, b and ¢ a monotonous decrease with depth can be
noticed. This means that there is an enhancement,effect obviously due to the direction-
al-pattern in the elevation-plane.

This enhancement-effect is even more striking in the focussed-beams of Fig. 6d, ¢
and f, as compared to the corresponding ones of Fig. 4.

In order to illustrate this further the beam-pattern was computed for just one ele-
ment of 0.625 A width and 40 A length. The result is shown in Fig. 8a and reveals nice-
ly the enhancement-effect over almost the whole range of interest. In the far-field and
for continuous sine-waves there is a rule that the total 3-dimensional directional pattern



148 J. SOMER

of a transducer is the product of the two directional patterns measured in the azimuthal
and elevational planes separately. Here we have no far-field conditions and no mono-
frequency sound, but nevertheless the behaviour must be to some extent similar. This
may become even more obvious from Fig. 8b, showing a cross-section of the pattern in
8a, and thus representing the field-strength as a function of depth in the elevational
plane for ©@=0. In the same picture the curve A/y is given as a dashed line where y
represents depth and A is chosen such that the curves have the same level at the begin-
point at y = 20 A = 10 mm. The latter can be assumed to be the attenuation curve of a
line-(or point-) source, as we find in Fig. 4a for instance. The difference between the
two curves in Fig. 8b should correspond with the difference between the patterns in
Fig. 4a and 6a, which seems to be true. The dimensions of the actual array of Case II
turn out to be a good choice in case no focussing is applied. In the focussed cases, how-
ever, the variation in amplitude along the beam is considerable. This raises the question
whether another value for /. or a proper way of focussing in the elevational plane could
yield any better result.

So far we did not refer to figure 3B showing directional patterns of sources similar
to those of 3A, but with a finite element length /. = 40 A, corresponding to Case II. As
in Fig. 3A, the range for which these curves are computed is 265 A = 132.5 mm, which

is about% of the total range covered. Although curve (a) is more flat than the corres-

ponding one in Fig. 3A, at another distance the result may be worse, as can be seen in
Fig. 8a. Therefore, the curves of Fig. 3B hold for one single depth only. For elements of
finite length such a representation is no longer meaningful and a full understanding of
the finite element-length effects can be obtained only from a 3D-pattern as in Fig. 8a.

In the Appendix a brief account is given of the computational aspects, by which the
results presented above, are achieved.

3. Conclusions

Since modern phased-array systems operate entirely in the near-field a new ap-
proach is necessary to describe their performance.

Investigation of computer-models has shown that increasing the element-width le-
ads progressively to deterioration of the produced beams. The element width should

not exceed % A too far. With 0.625 A a reasonable performance seems to be possible.

The element-length has a great influence on the overall beam intensity. It is likely
that it can be used in the desing for shaping the beam in the azimuth-plane. Also focus-
sing in the elevational plane may affect the overall beam-shape in the azimuth-plane.
Of course, the beam contours in the elevation-plane are important too. It requires furt-
her research to acquire more knowledge about this aspect. Also the influence of the ap-
plied wave-form is not yet fully understood. All in all, as compared to far-field pro-
blems and mono-frequency sound, the complexity of the near-field problem and pulsa-
tile signals is considerable.
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Appendix

The computational problems are considerable whichever algorithm is chosen.
Depending on the model-configuration and the computer-capabilities one or another
computation-method may be preferred. Different approaches were chosen for the two
cases and we will explain why. In both cases the computations were carried out in two
steps for the greatest possible flexibility.

Case I (line-array)
In the first step the function

Ho (X, Yo f) "f

el,

exp (= j27(f/fe) R(xp, Yp, X))
R(xp,yp,X)

eY)

was calculated.
The calculation takes place in the frequency-domain because the line integration
was over one element with a width of 0.625 A, and could be performed as a summation

of only 5 values. Furthermore, Hy is directly available as a spectrum of which only that
part needs to be stored as far as it corresponds to the bandwidth of the acoustic signal

S(f). Ho(xp,yp,f) was stored in a 318 x 75 x 384 — rray as complex numbers.

In the second step we introduce the acoustic signal in spectral form (S(f)), together
with the element-configuration (m;, m;) and the phasing- and shading-information
(Wi f))-

Then

L

5:(xp,p) = max |F "' [S(f) Y. WA f) - Ho(x, - i€, ypu ) ]| (2)

i=m,

Case II (rectangular array)

A similar approach as in Case I would now involve a surface-integral of a comple-
xity depending on the element length /. Such a surface-integral can be avoided by ap-
plying the so-called impulse-response method [1]. The whole computation is then car-
ried out in the time-domain. Instead of performing a surface-integral, the impulse-
response /o(f) can directly be derived as a function of time. Considering the possibility
of fast-fourier transforming this function leads to the conclusion that the bandwidth of
ho(f) is too large. The huge number of points needed for the FFT, in order to avoid alia-
sing effects, would lead to much too high CPU-times. Fourier-transforming the /o(f)
function analytically seems quite a formidable task.

Choosing the time-domain approach, however, requires the performing of a convo-
lution-integral, which needs a lot of care to insure that a sufficient accuracy is obtained.
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The first step to be carried out is now
pﬂ(xps Vs )= hO(xm Yoo 1) ® s(t) with hﬂ(xp; Yp t) = @z(xp, Yps f)- Ql(xpaYp: 1), (3)

where the @’s are given as arcsine- and arccosine-functions.

Again, the field information for only one central element is calculated. Some
flexibility, however, is lost since we have to introduce the wave-form in the first step
already. The required storage is now half as much because of real numbers, rather than

complex ones.
The second step requires the remaining information about element-configuration

(rm1, my), phasing (f4) and shading (w;).

my

8t (Xpyyp) = max | E wipo(x, — iAe,yp, t + tai) | (4)

=
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