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The acoustical properties of a system composed of a porous layer and an undeformable
solid halfspace, immersed in a barotropic fluid, are analyzed for the case of normal incidence
of a harmonic wave. The explicit forms of expressions of the wave absorption coefficients
were obtained for different particular configurations of the system. This allowed us to discuss
the dependence of the absorption coefficient on the dissipative properties of a fluid and on
the parameters characterizing the pore structure of a porous layer, in a wide range of frequen-
cies of the incident wave. It was shown that the dissipative properties of the fluid do not
considerably change the value of resonance frequencies. However, these propetties as well as
the parameters of the skeleton pore structure strongly influence the coefficient of wave ab-
sorption.

1. Introduction

The determination of acoustical properties of systems composed of porous elements
is of great importance in many technical problems occurring, for example, in aircraft and
machinery noise control or in architectural acoustics. In these systems the porous mater-
ial in the form of layers, plates or halfspaces (ground), immersed in a fluid, strongly
interacts with waves propagating in the fluid in a wide range of frequencies.

The complexity of a theoretical investigation of the properties of such systems is
connected with the variety of transfer ways of acoustic energy. In the general case of a
deformable skeleton of porous material the acoustic waves are transmitted both by the
skeleton and by the fluid filling its pores, and also by vibrational movement of particular
elements of the system.

In the majority of papers devoted to the interaction of waves with porous material
(e-g. [1], [7], [11], [13], [16]) and to the investigation of its properties (e.g. [2], [14],
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[15]), the authors exploit the analogy between the propagation of plane waves in the
absorbant media and the propagation of electric disturbances in the loss lines. They char-
acterize the acoustical properties of a porous medium by two quantities: the propagation
constant of a wave and the wave impedance. They also formulate the boundary condi-
tions at the surface of a porous medium by means of the surface impedance. Some au-
thors (e.g. [1], [16]) use at the same time the existing equations of the dynamics of po-
rous media to determine the relations between the quantities and the parameters charac-
terizing a porous medium filled with a fluid. Such a characteristic, although sufficient for
the media which can be modelled as a modified fluid (the skeleton being undeformable),
needs to be extended by other quantities in the case of a deformable skeleton [16].

The other approach, rarely presented in the papers on this subject, consists in solving
the boundary problem formulated strictly within mechanical notions.

In spite of a great variety of papers concerning the interaction of acoustic waves with
porous materials and with their systems in the literature, there is a lack of theoretical
papers devoted to the analysis of the influence of the parameters characterizing the pro-
perties of porous media and the geometry of the system on its acoustical properties.

The main purpose of this paper is to analyze the acoustical properties of a system
consisting of a rigid immovable porous layer and undeformable solid halfspace, immers-
ed in a fluid, at the normal incidence of a harmonic wave.

The starting point for the description of the dynamics of a fluid in pores of a rigid
skeleton are the equations of the two-parameter theory of deformable porous media fill-
ed with a fluid ([5], [6], [8-10]), in which the skeleton pore structure is characterized by
two parameters: volume porosity and structural permeability parameter. These parame-
ters are explicitly present in the continuity and motion equations of the fluid as well as in
the boundary conditions representing the continuity of the fluid mass flux and its effec-
tive pressure at both surfaces of a porous layer.

Solving the boundary problem resulted in obtaining the explicit forms of the absorp-
tion, reflection and transmission coefficients of waves for different configurations of the
system. This enabled us to discuss the dependence of these coefficients on the dissipative
properties of the fluid filling the pores of the layer, on the pore structure parameters and
the geometry of the system in a wide frequency range of the incident wave.

2. Interaction of a plane acoustic wave with the porous layer-undeformable
halfspace system

Formulation of the problem.

We analyze the acoustical properties of the system consisting of a rigid immovable
porous layer of thickness b immersed in a fluid at distance-d from the underformable
solid halfspace. We consider the case when a plane harmonic wave of frequency
f(@=2f) and of amplitude A ;, propagating in a fluid, falls normally at the surface of
the porous layer (Fig. 1.). We assume that the fluid is barotropic, i.., the effective pres-
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FIG. 1. Scheme of wave interaction with a system composed of a porous layer and undeformable solid
halfspace.

sure pis in one to one relation with its effective mass density p’ (p’ = p’(p’)), and that
the viscosity of the fluid does not influence its macroscopic state of stress (the deviators
of the stress tensors in the bulk fluid and in the fluid filling porous medium are omitted)
but it is taken into account in the interface interaction force with the porous skeleton.

At the above assumptions the propagation of disturbances with small amplitude in
halfspace x < 0 (region I) and in the layer of the fluid (region III) is described by a linear
wave equation for the barotropic fluid
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is the velocity of wave propagation in the bulk fluid, whereas p{] stands for its mass
density in the undisturbed state of medium.

The description of fluid motion in the pores of an undeformable porous layer (re-
gion IT) is based on the two-parameter theory of deformable porous medium filled with
a fluid ([5], [6], [8-10]) in which the skeleton pore structure is characterized by two
macroparameters: the volume porosity f, and structural permeability parameter
A (4 =f,). The problem of fluid motion in pores of an undeformable skeleton is then the
particular case of this theory, and the equation describing the propagation of waves with
small amplitude takes the form [3]
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where k' is the coefficient in the linear law of the diffusive drag force while ¢, is the
velocity of wave front propagation in such a medium. This velocity is related to the
velocity a, in the bulk fluid (no skeleton) by the expression

co=Vray, K=Alfs (23)

Acoustic fields in the particular regions of the system are coupled via the compatibi-
lity conditions at their contact surfaces. For small disturbances of the medium these con-
ditions are: the continuity of the effective fluid pressure and the continuity of its mass
fluxes at both boundaries of the porous layer.” We obtain, [3]

v' =", (2.9)
vt "
e &
for x = 0, and
Avt =", (2.6)
av[l avlll
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for x = b, where v*(a =11, 1II) is the resultant velocity field in the region « of the
system.
An additional limitation for the velocity field v™ in the layer of the bulk fluid is the
boundary condition at the surface x = b + d. Due to the underformability of halfspace
x> b +d, we have

v =0. (2.8)

Equation (2.1) and (2.2) together with the conditions (2.4)—(2.8) describe the dyna-
mic behaviour of the fluid in the system shown in Fig. 1. It is evident that apart from the
parameters b, d and k which characterize the geometry of the system and the dissipative
properties of the fluid in its viscous interaction with the pores of the layer, the real in-
fluence on the acoustical properties of the system is exerted by the pore structure para-
meters of the porous layer. These parameters are explicitly present both in the motion
equation (2.2) and compatibility conditions (2.4)~(2.7).

Solution of the problem

The resultant acoustic field in each region of the system consists of two waves pro-
pagating in opposite directions (Fig. 1). These waves are the superposition of all elemen-
tary waves with proper directions resulting from the subsequent reflection and transmis-
sion of the incident wave at the boundaries of the particular regions.

* Continuity conditions of this kind are analogical to the conditions imposed at places of a rapid change
of the cross-section in the analysis of wave propagation in wave guides of stepwise-changing cross-sec-
tions [13].
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The acoustic fields in regions I and III, being the solution of equation (2.1), may be
represented by the functions

iy 1 (Aleime-zm'ix) _Re (Dleiwrezmh)_ 2.9)

u™ = Re (Ase™e 2 - Re (Dseierermit), (2.10)
respectively, and such a field for the region II, satisfying Eq. (2.2), takes the form

v" =Re (Agei“"e'2"ik") - Re (Dze‘“"e“”"’). (2.11)
where A o, D, (=1, 2, 3) are amplitudes of waves, and Re (*) stands for the real part of
a complex expression. The wave numbers & and k' satisfy the following relations:

k=flao, k?*=k*(1-ikolk) (2.12)
where
k=flco, ko=k/(2mco). (2.13)

The expressions (2.9)-(2.11) involve five unknown amplitudes of waves. To deter-
mine them, we have five boundary conditions (2.4)—(2.8). Introducing Egs. (2.9)(2.11)
into the proper boundary conditions (2.4)—(2.8), we obtain the following algebraic sys-
tem of equations

A1 -Di=A(A2- D),
A1 +.D1 =\/EK(A2+D2),
A(Aze—Zmr,vK_Dze2nir;K) =A3e—2J’ﬂ-’/;?? _D3621ﬂ\/;'r]’ (2'14)

ﬁK(AzeanK*‘DzeZmnK) =A36—2zn’Eq+D362m\/}n,

Ds =A38—4m'\/Er;(1+s)

where
K=k'ik, n=bk, £=d/b. (215)

The above equations allow us to determine the ratios of wave amplitudes propagating in
the system to the amplitude of the incident wave as the explicit functions of the quantities
characterizing the pore structure of a porous layer, the dissipative properties of the fluid
and the macroscopic geometry of the system, for various frequencies of the incident
wave. In particular, they allow us to determine the absorption coefficient « defined as the
ratio of energy absorbed by the system to the energy of the incident wave. This coeffi-
cient takes the form

a=1-|Di/A\|*=fi(n, 5o, & fo &) . (2.16)
where |- | stands for the absolute value of a complex number, and
Mo =bko

is the dimensionless parameter characterizing the dissipative properties of the system.
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The explicit form of the function f; is given in Appendix A.

From the practical point of view, the absorption coefficient @ is the most important
quantity characterizing the global properties of the system under consideration. Further,
we analyze the influence of internal parameters of the system: 7)o, &, fu, K On the absorp-
tion coefficient « for various frequencies of the incident wave and different configura-
tions of the system.

3. Influence of internal parameters of the system on wave absorption coefficient.
Special configuration of the system

3.1. Absorption properties of halfspace of a porous medium immersed in a fluid

The simplest case of a configuration of the system depicted in Fig. 1 is the halfspace
of a porous medium immersed in a fluid (Fig. 2). This case is obtained by increasing the
thickness b of a porous layer to infinity.

—t=

0 x
FIG. 2. Scheme of wave interaction with a halfspace of a porous material.

The absorption coefficient a., of a such a system is given by the expression (2.16) for
b — o (ko= 0) and takes the form

- kf,P
 (Vxf,+P)*+ Q2

(3.1)

o0

where

P=RC(K)=\/(1+\/1+(knfk)2)/2, 32)
0 =Im(K) =—\/(- 1+ V14 (kotk)? ) 2.

The dependence of the coefficient @ on the dimensionless wave frequency 27f/k for
two different pore structures of a porous medium is depicted in Fig. 3. This figure shows
that the absorption coefficient o for low frequencies of the wave is small and increases
when the frequency increases, approaching asymptotically the value

al = aVkf,/(VKf,+ 1), (3.3)
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F1G. 3. Dependence of the absorption coefticient @ on the dimensionless frequency 2f/% (for an acoustic
plaster filled with air [16]; 2f/k = 1 corresponds to f = 400 Hz).

which is entirely defined by the pore structure parameters. The quantity ao is at the
same time the absorption coefficient of the porous halfspace for the case when the fluid
is inviscid (k= 0). This means that in the range of higher frequencies the pore structure
is the main factor determining the value of the coefficient of wave absorption by the
porous halfspace, whereas in the range of low frequencies the predominant influence is

exerted by the diffusive drag force characterized by the parameter k.

3.2. Absorption properties of a porous layer with an impervious back surface

Let us now analyze the absorptive properties of the considered system in the case
when the porous layer lies on the surface of an underformable solid material (&= 0,
Fig. 4). For such a configuration of the system, the absorption coefficient & given by the
expression (2.16) takes the form

a=[i(m Mo, & for K)o (3.4)
The dependence of the coefficient on the dimensionless wave frequency 7 is shown in
Fig. 5.

An important element in understanding the character of the course of the curves in
Fig. 5 are the notions of (anti) resonance (resonance and/or antiresonance) frequencies of

¥

FIG. 4. Scheme of wave interaction with a porous layer with an impervious back surface.
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FiG. 5. Dependence of the absorption coefficient & on the dimensionless frequency 7 for two different
pore structures of a porous layer and various values of the coefficient 7o (for airand b = .02m; a) 7 =1
corresponds to f ~ 9.8 kHz; b) # = 1 corresponds to f ~ 12 kHz).

the fluid filling the porous layer. These frequencies determine the position of extremal
values of the coefficient o Taking into account the fact that both waves propagating in
the layer form a standing wave, the node of which is placed on the contact surface with
the undeformable halfspace, the (anti) resonance of the fluid in the layer occurs when the
multiple of one fourth of the wave length Ao, propagating in the layer, is equal to the
thickness of the layer, i.e., for

balisia  1e1,20. (3.5)

Then, for an odd number of /, on the front surface of the layer, the loop of a wave
appears and the fluid contained in the layer will behave as a material of great flexibility,
intercepting and dissipating a great part of energy of the incident wave. These are the
resonance frequencies of the layer for which the coefficient & takes maximal values.

In turn, in the case when / is an even number on the front surface of the layer, a node of
wave appears and the fluid contained in the layer will behave as a material with small
flexibility, reflecting a great part of the energy of the incident wave. In this case we deal
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with antiresonance of the fluid in the layer and the absorption coefficient « takes mini-
mal values.

Taking into account the fact that the phase velocity of a harmonic wave in a fluid
filling pores of a rigid skeleton is given by the expression

Vo=co/V1+(no/2n)?, (3.6)

the condition (3.5) may be transformed to a more convenient form:

mV1+(no/2n,)? =1/4 (3.7)

which allows us to determine the values 17, of dimensionless (anti) resonance frequencies
of the fluid in the layer.

As Fig. 5 shows, the parameter 7)o characterizing the dissipative properties of the
fluid in a porous layer does not influence significantly the position of extremal values of
the coefficient a. This means that in order to determine the (anti) resonance frequencies
and the values of the coefficient a corresponding to them, the approximated form of the
condition (3.7) and of the expression (3.4) may be used.

For 1o/n >> 1, from Eqs. (3.7) and (3.4) we have

=114, (3.8)

K 4V f,th(rn0)
(1 + Vi futh(ano))? - sin?(27n) (1 - xf2)/ch*(wn0)

(3.9)

From Fig. 5 and the expression (3.9) it is evident that both parameters 7o and x
strongly change the form of curves of the coefficient. Moreover, the pore structure para-
meter k influences the position of extremal values of the coefficient c. This parameter is
explicitly present in the expression defining the dimensionless frequency 7 and therefore
its influence, however not evident in Fig. 5, appears as a change of the scale on the axis
of frequency.

The condition (3.8) together with the expression (3.9) are convenient for the calcula-
tion of the parameter x of the pore structure and of the coefficient k' from the experimen-
tal data for the absorption coefficient a.

3.3. The absorption properties of the porous layer — solid halfspace system

In this section of the paper we analyze the absorptive properties of the system shown
in Fig. 1 and described by the expression (2.16). In our considerations we put special
stress on the discussion of the influence of the fluid layer separating both parts of the
system on the wave absorption coefficient a.

Similarly as it was in the case of a porous layer with an impervious back surface,
(anti)resonance frequencies determine the form of curves of the absorption coefficient of
a system of two layers.

The system shown in Fig. 1 has three types of frequencies which determine the positions
of extremal values of the coefficient a. The first type of these frequencies is connected
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with (anti)resonance of the fluid filling porous layer and it appears when the condition
(3.7) or (3.8) is satisfied. The second type od (anti) resonance frequencies results from
anti resonance of the fluid contained between the porous layer and the undeformable
halfspace. They are given by the condition

d=mA¢/4 m=1,273,.,

which, due to constant phase velocity in a bulk fluid, equal to @y, may be expressed in
the form
m 1

e v

The third type of (anti) resonance frequencies of the system results from (anti) resonance
of the fluid contained in both layers as a whole. In this case the condition for the (anti)
resonance frequencies is obtained by requiring the time of transition of the wave through
both layers to be equal to the multiple of one fourth of the wave period.

When the phase velocities of waves in each layer is considered, this condition takes
the form

(3.10)

Ne(V1+(no/2n.)? +VKe)=n/4 n=1,2,3,. (3.11)
or
n 1
M™=41+Vke (312)

for n/no>> 1.

The conditions (3.7), (3.9) and (3.11) or their approximated forms allow one to eva-
luate the influence of particular types of (anti) resonances (parameters of the system) on
the form of the curves of the coefficient a. These conditions determine the exact position
of extremal values of the coefficient @ only in the case when the parameters of the sys-
tem are so chosen that all three conditions are fulfilled at the same time, i.e., when all
three (anti) resonances are present. Then the value of the number »n determines the type
of extremum. For even n there appears a minimum of the coefficient «, and for odd n,
there appears its maximum. In the remaining cases the positions of extrema are deter-
mined by neighbouring (anti) resonance frequencies of different types.

The conditions (3.8), (3.10) and (3.12) provide that for small values of the parameter
&, the (anti) resonance frequencies of the fluid in a porous layer and in both layers as a
whole are close to one another, and the (anti) resonance of the layer of a bulk fluid occurs
at higher frequencies of the wave. This means that for low frequencies and small values
of &, the position of extrema of the coefficient « is determined by the (anti) resonance
frequencies of the fluid in a porous layer and both layers as a whole.

Since the (anti) resonance frequencies given by the formula (3.12) decrease when the
parameter ¢ increases, the extrema of the coefficient e displace in the direction of lower
frequencies (Fig. 6a). From Fig. 6b it is seen that a further increase of the parameter &
does not change significantly the absorption coefficient « for low frequencies but it cau-
ses the appearance of extrema connected with (anti) resonances of the layer of a bulk
fluid.
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FIG. 6. Dependence of the absorption coefficient a on the dimensionless frequency n for two different
pore structures of a porous layer and various values of the coefficient & (for air and b = .02m; ayn=1
corresponds to f~ 9.8 kHz; b) 17 = 1 corresponds to f =~ 12 kHz).
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FIG. 7. Dependence of the absorption coefficient a on the dimensionless frequency 1 (for air and
b=.02m n =1 corresponds to f = 9.8 kHz).
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Figure 7 shows the exemplary curves of the coefficient a for two values of the para-
meter 17, in the case when the interaction of all three types of (anti) resonance frequen-
cies is fully developed.

4. Interaction of a plane acoustic wave with a porous layer

The problem of wave interaction with the system composed of a porous layer and an
undeformable solid halfspace, formulated in Section 2, allows us to approach directly the
problem if wave interaction with only a layer of the porous medium (Fig. 8). Formally,
we obtain this case by removing a solid halfspace x > b + d from the system shown in
Fig. 1. Then the acoustic field in the third region is represented only by the wave leaving
the layer, and the amplitudes of waves in each region are given by the system of equa-
tions (2.14),+2.14), for D3 = 0. 4

I I m

F16. 8. Scheme of wave interaction with a porous layer.

The acoustical properties of a porous layer are characterized by two quantities: the
reflection coefficient Sand the transmission coefficient y. These quantities are defined as
ratios of the energies of the reflected and the transmitted waves, respectively, to the ener-
gy of the wave, incident on the layer. Solving the system of equations (2.14),—(2.14),, for
D5 = 0 we obtain

B=|Di/AN|* = fo (1, N0, four K), (4.1)
y=|As/AL|? = (1, Mo, for ). 42)

The explicit forms of the expressions (4.1) and (4.2) are listed in Appendix B. The (anti)
resonance frequencies of a fluid in the layer are given by the condition (3.8) or (3.9).
In the case of an inviscid fluid (7 = 0) the expressions (4.1) and (4.2) take the forms

1—q2

B y=1-p (4.3)

T 1+q°ctgX(2an)

where

ahy 4xf; .
(xfo+1)°
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FIG. 9. Dependence of the reflection coefficient fa) and the transmission coefficient y b) on the
dimensionless frequency 7 (for air and b = .02 m 7= 1 correspond to  f~ 9.8 kHz).

Figure 9 shows the exemplary curves of dependence of the coefficients §and y on the
dimensionless frequency 7 for various values of the parameter 1), characterizing the
dissipative properties of the fluid in the pores of a layer. This figure shows that for small
values of the parameter 7o, waves with low and resonance frequencies penetrate inten-
sively through the porous layer, and as the value of 17, increases, this penetration de-
creases, and the form of curves for both parameters become uniform in the whole range
of frequencies.

The form of the expressions (4.3) indicate a strong influence of pore structure on the
values of the parameters f§and y.

5. Concluding remarks

In the paper we have considered the problem of wave interaction with a system com-
posed of a porous layer and an undeformable halfspace immersed in a barotropic fluid,
for the case of normal incidence of a harmonic wave. Solving the boundary problem,
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formulated strictly within mechanical notions, resulted in obtaining the ecplicit forms of
expressions of the wave absorption coefficient for various configurations of the system.
This made it possible to discuss the influence of the intrinsic parameters of the system
(b, d, K, f,, k) on the absorption coefficient for a wide range of frequencies of the inci-
dent wave.

The obtained results, independently of their cognitive and practical importance for
designing the acoustic barriers and absorptive lining, are a good basis for the interpreta-
tion of experimental data for porous materials filled with a fluid, the skeleton of which
may be recognized as rigid. Such investigations are often carried out on small samples in
a resonance tube ([14]-{16]) where a sample in the form of a disk is placed either directly
on the undeformable piston closing the tube or some distance from the piston depending
on the method of measurement. These measurements allow one to determine the para-
meters of wave propagation in porous materials, their absorptive properties, and the pa-
rameters characterizing the pore structure of the skeleton.

The above considerations are also a good starting point for further analysis extended
to systems of many layers and systems in which the porous layer is deformable and
movable.

APPENDIX A

The explicit form of expression for the wave absorption coefficient a is:
a=fi(n, no, & fu, k) =
=1 -[(ch(¥) + Pesh(¥)) %~ (sin(X) - Qscos(x))* +
+ Psin*(X) + Qéch*(y) /[ P3sin’(¥) + Qoch*(¥) +

+(ch(¥) + Ppsh(y))? - (sin(X) - Qpcos(¥))?]

where
. Pg +sin(7) [ Ps(PZ + QF - 1)sin(7) + Qs(P§ + Q5 + 1)cos(7) ]
G PS?+Q:2 ]
~Qs +sin(7) [Qs(P§ + Q3 + 1)sin(7) - Ps(P3 + Q5 - 1)cos(7) ]
Qg = T "
PS +Q.f
p, __ Ps+sin([Ps(PS + 0F - 1)sin(7]) - Os(Ps + 05 + 1)cos(7)]
v P +Q? ’
Qs - sin(77) [ Q@s(P§ + Q5 + 1)sin(7) + Ps(Ps + Q5 - 1)cos(7)]
QD= 2 2 »
PS +Qs

and
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X=2anP; y=2anQ;
Ps=P/(Vkf,); Qs=0Q/(Vkf.);

n=2anVxe,
whereas

P=V (1 +V1i+(nom)2,
0=~V (-1+V1+ (noin)?)2.

APPENDIX B

The explicit forms of expressions for the coefficients of wave reflection 8 and of wave
transmission y are:
B=fom, Mo, fn ) = yKo(ch?(¥) - cos*(X))?;
7 =501, M0, for K) =
1
" (ch(¥) + Posh(3))? - (sin(¥) - Qocos (%)) + P3sin*(X) + Q3ch*(y)
where

x {1+ P35+ 08 —4P3

4Pi+03)
PsPi+QF+1 PsPi+Q¢-1
2 PErQE 2 Pl+Q?

and X, y, Ps, Qs are the quantities defined in Appendix A.

Qo=

References

[1] K. ATTENBOROUGH, Acoustical characteristics of rigid fibrous absorbents and granular materials,
JASA, 73, 3, 785-799 (1983).

[2] 1.Y. CHUNG, D.A. BLASER, Transfer function method of measuring in-duct acoustic properties. 1.
Theory, JASA, 68, 3, 907-913 (1980).

[3] M. CIESZKO, Reflection and refraction of a plane acoustic wave in a fluid at the interface between
two porous media (in Polish), Eng. Trans., 37, 4, 76-88 (1989).

[4] H. DEresiEwICZ, J.T. RICE, The effect of boundaries on wave plane waves in a liquid-filled porous
solid. Reflection of plane waves at a free plane boundary (General case), Bull. Seismol. Soc. Am.,
52, 3, 595-625 (1962).

[5] W. DERsKL, Equation of motion for a fluid-saturated porous solid, Bull. Acad. Polon. Sci., Serie
Sci. Tech., 26, 1, 11-16 (1978).

[6] W. DErskl, S.J. KOWALSKI, On the motion and mass continuity equations in a fluid-saturated



276 ACOUSTICAL PROPERTIES OF POROUS LAYER

porous medium, Studia Geotech. et Mech., 2, 3-12 (1980).
[7] M.A. FERRERO, G.G. SACERDOTE, The acoustic impedance of thin layers of porous material,
Acoustica, 10, 336-339 (1960).
[8] J. KUBIK, Mechanics of deformable media with anisotropic permeability (in Polish), Prace IPPT, 29
(1981).
[9] J. KUBIK, A macroscopic description of geometrical pore structure of porous solids, Int. J. Engng.
Sci., 24, 6, 971-980 (1986).
[10] J. KuBIK, M. CIESZKO, On internal forces in porous liquid-saturated medium (in Polish), Engng.
Trans., 35, 1, 55-70 (1987).
[11] P.M. MorsE, K.U. INGARD, Linear acoustic theory, in ,Handbuch der Physik", Band 11/1,
Springer, Berlin 1961.
[12] JM. SABATIER, H.E. Bass, L.N. BOLEN, K. ATTENBOROUGH, V.S. SASTRY, The interaction of
airborne sound with porous ground. The theoretical formulation, JASA, 79, 5, 1345-1352 (1986).
[13] E.SKUDRZYK, The foundations of acoustics, Springer, Vienna 1971.
[14] H. UtsuNo, T. TANAKA, T. FUNKAWA, Transfer function method for measuring characteristic
impedance and propagation constant of porous materials, JASA, 86, 2, 637-643 (1989).
[15] S.L. YANIV, Impedance tube measurement of propagation constant and characteristic impedance of
porous acoustical material, JASA, 54, 5, 1138-1142 (1973).
[16] C.ZWIKKER, C.W. KOSTEN, Sound absorbing materials, Elsevier, Amsterdam 1949.

Received on December 11, 1990






