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PART I - THEORY

1. Introduction

The monograph [2] presents the theory of sound radiation from such sources as: a
point on sphere, a spherical cup on a sphere and a pulsating sphere. Every mentioned
source has a separate theory.

In this paper the theory of sound radiation of sources with the geometry mentioned
above and described with spherical coordinates is generalized. A vibrating ring on a
sphere was chosen as the source. The sources under consideration in the monograph [2]
can be obtained from such a source.

Part I of this paper presents the theory of sound radiation from a ring placed on a
sphere. The theory is verified in several numerical examples in Part II. The directivity
function was calculates in terms of the width of the ring its position on the sphere with
constant width and its vibration frequency with fixed position and fixed width.

2. Geometry of the problem

Avibrating ring placed on a rigid sphere (acoustic baffle) symmetrically with respect
to the z-axis (Fig. 1) was chosen as the source (vibrating surface + acoustic baffle). This
ring is cut out from a sphere with radius R by two rotational cones with a common vertex
and with apex angles equal to 26, and 26,. Two cones also cut out a second ring for
z < 0. Only the ring in the top part of the sphere is taken into account.

If we assume that the acoustic parameters on the ring surface are axially symmetri-
cal, then the distribution of the field around the sphere is also axially symmetrical. Only
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FIG. 1. Geometry of the problem.

two parameters in the spherical coordinate system 7, 6, ¢ are sufficient to describe it.
These are radius r and angle €. In Fig. 1 we have S — area of the ring, So — area of the
spherical baffle, S; + S = 47R>.

3. Formulation of the boundary problem

For a steady, time-harmonic state the distribution of the field around the source is the
solution to the boundary problem for a Helmholtz equation ( A + k*)® =0, noted in the
spherical coordinates [2], with the following boundary condition on a sphere with
radius R '

g -1y, €<6, 62>,
an
k4
an =0, 8¢<31, 82>. (1)

where ¥ — velocity potential of acoustic field, n — unit vector of normal to the surface of
the sphere, vy — vibration velocity of the ring. The potential ¥ must be satisfy the Som-
merfeld radiation conditions -

lim=|r¥|<A, A -constant,

=+

1im=(%§+ik.'P)r=0. )

r—o
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For the condition (1) the ring is a time-harmonic pulsating surface radial vibrations. The
following sources can be obtained from a ring: in the form of a spherical cup
(6:=0, 8,E€(0, 7/2)), of a pulsating sphere (6, =0, 6, = and of a point source
(6,=0,6,—0).

4. Solution of the Helmholtz equation in spherical coordinates

Elementary solutions of the Helmholtz equation obtained with the Fourier method
have the following form:

W, =h(kr)PL(cos8)e™?, 3)

where h?(kr) spherical Hankel function of the second kind and order m, Pr(cosf) —

associated Legendre function of the first kind of order m and degree n, k = 27/ A.
Product

Ymn = Ph(cos 8)e™ | ()
is called the surface spherical harmonics. Including Eq. (4) in Eq. (3), we achieve
Wi = WD (kP )Y, (5)
For the axisymmetric problem n = 0 and the function (5) assumes a specific form:
oo = h$? (kr)Po(cos 8) = hwPa(cos ), (6)
where A, = h$?(kr), P,(cos8) = Po(cos ).

5. Solution of the boundary problem

The solution to the problem given in paragraph 3 is picked out in the form of a series

Pe ApWn, 7)
m=0
where ¥, = ¥, — formula (6).
Substituting (6) in (7) we have
W= Amhm(kr)Pn(cos8). 8

m=m

Expansion coefficients A, are calculated on the basis of the fact that the surface har-

monics are orthogonal. To this end Eq. (8) is substitutes in the boundary condition (1).
Thus )

-Ug = iA,,.h,’,, (kR)P,.(cos8), 9

m=0
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where

_9
r=R ar
Then the formula (9) is multiplied by P,,(cos 8) and integrated along the surface of the
sphere. For an arbitrary m we obtain

hiy (KR) = %hm(kr) Rile) (10)

F-R'

~Uy [ Ppi(cos0)do=Anhiy, (kR) [ Po(cos8)P,y(cos8)do, (11)
S s
The integral on the right hand side is
fP,,.( cosB)P,.(cosf)do=
S
2n & 2
= R*[[ [ Pn(cos )P, (cos 8)sin 0d6 | dg = 2R . (12)
e 2m+ 1

The orthogonality relation of the Legendre polynomials [1] was applied to calculate
Eq. (12)

1
JPu(z)Pu(2)dz = ' (13)
=} 0, m =m.

Since v, differs from zero for 8 € < 6,, 8,> only, then the integral on the left hand side
in Eq. (11) can be calculated over the surface S, instead of S.

27R?

0,
) %
me(cosﬁ)da— 27R me(cos6)51n9d8— S T

S, 6,

P.(0y, 62), (14)

where
Pu( 6y, 02) =Py, 1(cos8r) - Pp_1(cosbr) = Pp,i(cosb) + Pp_i(cosBy). (15)

The relationship [1]

22

[Pn(2)dz=

1

1 =2
o[ Prer(@)-Paaa(@)] (16)

was used to calculate the integral (14).
Substituting Eq. (12) and (14) in Eq. (11), we have

WwPn( 6, 62)
"= 3hn (kR) ’ (17)

Therefore the solution of the boundary problem is given by the formula (8) with the
constant A, defined by Eq. (17).
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6. Specific solutions

To check the validity of the solution for a ring, its specific form can be compared
with the solutions given in the monograph [2] for a spherical cup, a point on a sphere and
a vibrating sphere. For example, for a spherical cup 6, =0, 8, € (0, 2/2). From the ex-
pression (17): we have (P,,(1) = 1 for every m)

A ko) )[P,,,H(cosﬂz)—Pm$1(cosl92)]. (18)

- 2h,, (kR
Substituting Eq. (18) in Eq. (8), we obtain the solution to the problem of sound radiation
of a spherical cup. The same solution is given in the monograph [2]. Chapter XX, for-
mulae (22) and (39). The solution (8) described the acoustic field for an arbitrary dis-
tance r > R. The specific form of this solution describes the far field: for r — o in ac-
cordance with [2]

—-i[kr—(m+1)—;£]

hm(kr) =exp pm : (19)
Equations (8) and (17) lead to
= —i[kr-(m+1)%r]
'P=202h:m (eR) &P P Pu( 61, 62)P(cos0) 20)

The formula (20) was used to calculate of numerical examples.

PART II - NUMERICAL CALCULATIONS

7. Frame of numerical calculations

First, verifying calculations were carried out:
— since the series in the formula (8) is infinite, the number of terms ensuring adequate
accuracy of results was numerically determined,
— the distance from the sphere which can be assumed as the approximate boundary of the
far field was estimated also numerically. Furthermore the directivity function was calcu-
lated in terms of:

the width of the ring,

the position of the ring with constant width,

the dimensionless wave number ka for a fixed position of the ring on the sphere and
for a fixed width.

Up to now there are no papers concerning the directivity function of a ring placed on
a sphere. Therefore the validity of the computer programme was checked by comparing
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the directional function calculated for a spherical cup with the characteristic for such a
source given in the monograph [2].

8. Directivity function of a source
This means the far field defined by

|p
D=— 21
Pl (

where: |p| — pressure amplitude measured in an arbitrary direction, | po| — amplitude of
maximal pressure.

The formula (21) express the pressure drop in an arbitrary direction in dimensionless
units. It is convenient to express this drop in dB. Then

|p]
DdB =20 lgm_ (22)
=7 pol
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FIG. 2. Directivity of the source as a function of the terms’ number of the series (8).
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Since p(r) = po %J, then time harmonic radiation the spatial distribution of acoustical

pressure is p = iwpo ¥, where ¥is defined by the formula (8).

9. Examples

9.1. The shape of the far field was investigated as a function of the number of terms
in the sum (8).
A spherical cup defined by angles 6,=0,0,=60 and kR=3, R=0.1, k=30,
f=1600 [Hz] was assumed. The results of calculations are presented in Fig. 2. Line “1”
was plotted for m =2, line “2” for m =3 line “3” for m =5 and line “4” for m = 10.
Examination of Fig. 2 indicates that the difference between the directivity function cal-
culated for m = 5 and m = 10 are small. Calculations were carried out on an IBM PC/AT
computer, so even when much greater values of m were taken into consideration, e.g.
m = 50, the calculating time was not very much longer, m = 10 was accepted for further
calculations.

9.2. The distance from the surface of the sphere which can be assumed as the bound-
ary of the Fraunhofer zone. The following values were assumed: AR =3,R=0.1,
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FiG. 3. Directivity of the source as a function of the distance r.



284 A. BRANSKI AND L. LENIOWSKA

F X

| -

. ﬁ\‘

L % .

N
- \ \
-5 [ LY \\

B AN

L \\\ N

L \
5 I \\ \ ) /] d
- LR RS {
< 10 A \ / A
9 L \ \ Fd
s f Yod an J !/
< r \ L_'HL 2 , /
2 r A \ - N

r N /
> - \ " N N / g
-'E = el “\: \\ "——-.4 \ / I /’
= r ~1 ~ /s
g -15 ~ N AL
e L ~o \ = |7 7
o - ~ / /

F SR /

B \ N/ ,"

L \\ ll

; i

20| ‘\ 7
_25 -I L1 1 1 T T T -1 B A T T -1 LA L 1 L1 1 1 L4 1 1 1
0 30 60 90 120 150 180

angle [deg.]

FIG. 4. Directivity of the source as a function of the ring’s width.

6, =30, 6, =60. The distance from the surface of the sphere was changed r = u x R. In
Fig. 3 line “1” is plotted for u = 2, line “2” for u = 5, line “3” for u = 8. As can be seen
from Fig. 3 lines “2” and “3” are close to each other. This means that the shape of the
field does not change. For a chosen, frequency of f= 1600 [Hz] 8 x R = 4 diameters of
the source can be accepted as the boundary of the far field. In the further part of this
paper r = 10 x R was assumed.

9.3. The directivity function was calculated for a variable width of the ring, for
kR = 3. This value was chosen so as to compare the results of calculations for a specific
shape of the ring (spherical cup) with results given by the bibliography. Line “1” in Fig.
4 is plotted for such a case, i.c., 6, =0, 6, = 60. Its shape corresponds with a line which
illustrates the far field for a spherical cup with the same parameters 2], Fig. 20.7. In this
way the validity of the elaborated computer programme was checked. Line “2” is plotted
for 8, =30, 6, = 60, curve “3” for 6, = 45, 8, = 60. As can be seen from Fig. 4 in all
cases the maximal energy is radiated in the direction of the main axis. As the width of the
ring and its position on the sphere change the shape of the directivity function and value
of the acoustical pressure in the main axis in the silence zone change.

9.4. The shape of the directivity function was calculated for a constant width of the
ring and various positions of the ring on the sphere (kR = 3). In Fig. 5 line “1” is for a
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FIG. 5. Directivity of the source as a function of the ring’s place on the sphere with constan! ring width.
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FIG. 6. Directivity of the source as a function of the ring’s vibration frequencies.
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spherical cup with ;=0 and 8, =30, line “2” for a ring with 6, =30 and 6, = 60 and
6, = 90. Examination of Fig. 5 indicates that as the ring moves on the sphere, the third
local maximum moves with it the first, main one is on the axis of the source in the sound
zone. The second one is on the axis of the source in the silence zone.

9.5. The shape of the directivity function was calculated for a constant width of the
ring and constant place of the ring on the sphere ( 6, = 30, 6, = 60) for various frequency
fvalues. In Fig. 6 line “1” is plotted for f = 500 Hz, line “2” for f= 1000 Hz, line “3” for
f=2000 Hz, while line “4” for f=5000 Hz. It should be noted from Fig. 6 that Dgp
strongly depends on f, even within the presented range. It was impossible to calculate
Dy for other f, because of the limitation of argument values of the special function cal-
culated using subroutines from the CERN library.

10. Conclusions

Examples solved in this paper confirm the correctness of the given generalized the-
ory of sound radiation by sources with spherical shape.

The Fourier method was used to reach the solution in the form of a quickly conver-
gent series. [t was proved that is is enough to take only the first few terms in practical
calculations of the directivity function. The shape of the directivity function depends on
the width of the ring, its place on the sphere and also very strongly on the vibration
frequency. It is characteristic of Dgg that it has two constant local maxima; both are on
the main axis of the source-one in the sound zone, the second in the silence zone. The
third local maximum appears depending on the position of the ring on the sphere.

The topic of this paper will be continued in order to find such a source with the most
directive i.e. with a sharp main leat and small side leaves.
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