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DISCRETE SOUND INDUCED BY LOW MACH NUMBER FLOW OVER SIDE BRANCH
DEEP CAVITY IN A RECTANGULAR DUCT
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This paper presents a model of the discrete sound induction effect due to a flow over a
deep cavity in the wall of a rectangular duct. Theoretical analysis applies shear layer ap-
proximation with a vortex sheet, with deflection satisfying the Kutta—Zukowski condition,
and an equivalent impedence system of a deep cavity with cavity impedence change in the
presence of the flow included. The applied theoretical method makes it possible to determine
the effect of resonance modes of the cavity on disturbances of the vortex sheet and also to

determine the frequency and relative value of pressure amplitude in the case of a discrete
sound.

1. Introduction

The low Mach number flow over a rectangular cavity is accompanied by a charac-
teristic effect of generation of sound with high intensity in narrow frequency bands. The
predominant character of narrow band components in the generated sound is reflected in
the widely accepted terminology. In accordance with this terminology this type of noise
is defined as a sound with discrete frequency or simply, as a discrete sound. In reality the
sound spectrum is continuous and besides components with considerable intensity in one
or several frequency bands, also a wide-band noise of turbulent origin occurs.

Discrete sound generated by a flow over a rectangular cavity is the effect of an inter-
action between disturbances of the shear layer and acoustic disturbances induced in a
cavity [1, 2]. Several possible variants of flow-acoustic interactions are distinguished in
the course of analysis of this effect. In accordance with the classification presented in the
paper [3] the relation //d > 8 defines a class of closed cavities where the shear layer
adheres to the bottom wall of the cavity (I —dimension of the opening of the cavity in the
direction of flow, d —depth of cavity). Open cavities with //d < 8 are the next group. The
formation of a shear layer in open cavities proceeds very much like in the case of a free
flow. An interaction between the shear layer and trailing edge is an additional source of
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flow disturbance [4, 5]. Open cavities are divided into two categories shallow and deep,
and the condition //d = 1 sets the boundary between them.

In the case of a deep cavity, for which //d < 1 the effect of discrete sound induction
is related with the shear layer instability due to two factors. The influence of resonance
modes of the cavity on disturbances of the shear layer is the first factor, while the second
one is the flow-acoustic interaction at the leading and trailing edges. If only the first
factor occurs in the process of sound generation then the instability of the shear layer can
take place solely for frequencies f close to definite values fm which are determined by the
resonance condition for a quarter-wave resonator [6]

kAd - ctan(kd) =0 (1)
and thus
c(2m-1)
fin= Xd+ Ad)’ =1,23,. 2

where m defines the acoustic mode; k and ¢ are the wave number and sound velocity,
respectively; and Ad is the resonator end correction. In the case in which only the second
factor would occur in the process of sound generation, the following relation between the
dimension [ of the cavity and wave length A for disturbances of the shear layer [7] is the
necessary condition for pulsation induction

U A oy, b by 243, )

where n defines the hydrodynamic mode, while 2,y = const is the phase shift due to the
edge effect. Therefore the instability of the shear layer can only occur for strictly defined
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FIG. 1. Deep cavity as a side branch in a rectangular duct /, s — dimensions of cavity, d — depth of cavity,
h — hight of duct, U - main flow velocity.
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In industrial installations for compressed air transport air discharge channels from
the main channel may be a potential source of sound with discrete frequency [8]. Such a
situation occurs when the discharge channel is closed while air flows in the main chan-
nel. In this paper we analyse the most unfavourable case when the discharge channel
joins the main channel under a right angle and forms a deep rectangular cavity during
cut-off (Fig. 1). An equivalent impedence system of a deep cavity with a gas stream
flowing past it (Subsection 2.1) was used in the presented model and the interaction
between resonance modes of the cavity and flow disturbances near the entry to the cavity
(Subsection 2.2) was also taken into consideration. Calculation results of dimensionless
frequency and values of relative pressure amplitude for discrete sound are compared
with the results of measurements presented in paper [8] (Section 3).

2. Theoretical analysis

The case of a flow past a deep cavity with an opening with the following dimensions
—land s (s - perpendicular to the direction of flow) — located in the wall of a rectangular
channel is analysed here (Fig. 1). Low Mach number flow in the channel characteristized
the main velocity U. Hence, M? << 1, where M = U/c. We assume that the dimension of
the opening of the cavity —/ and s — and the height of the channel — h — are much smaller
than the depth of the cavity — d

l/d<<1, s/d<<], “4)
hid<<1 (5)

and so for frequencies close to the fundamental frequency f; (m =1 in formula (2)) we
obtain: :

kl<<1, ks<<l, (6)

kh <<1, ™

where k = 27f/c. On the basis of the condition (7) we can substitute the shear layer
which forms near the opening of the cavity with a vortex sheet. If the displacement of the
vortex sheet is defined by the function & which is a harmonic function of ¢

E= Ealx1, x3) €7, (8)
where @ = 2xf then the velocity components in the direction normal to the plane of the
opening just above and just below the vortex sheet are as follows:

v(x, t)| Py =(—jw+ U%)éﬁm, 9

v(x, z)] %o w0 = JOE="V,, (10)

where X = (x,, X, x3). The velocity v is discontinuous for x, = 0 only when 0 <x; </,
because the velocities v, and v_ at the leading edge and the trailing edge must be equal
to zero
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V. (x;=0)=v.(x1=0)=0. (11)
The condition (11) leads to the so-called Kutta—Zukowski boundary condition
§(x1=0)=6§/8x1(x1=0)=0, (12)

which says that the vortex sheet can only leave the leading edge tangentially. The condi-
tion (12) has another important consequence — the condition of pressure equality on both
sides of the vortex sheet is transferred to the leading edge. It would be very difficult to
determine the boundary conditions at the trailing edge on the basis of the expression
(11). In real conditions the influence of the trailing edge on the disturbances of the shear
layer is strongly nonlinear. In order to take this nonlinearity into consideration in the
presented linear model, we accepted that the displacement of the vortex sheet undergoes
a jump at the trailing edge

E=0 forx;=|,
E=0 forx;>1L (13)

what means that only the right-hand limit of the function & satisfies the boundary condi-
tion (11) at the trailing edge. The introduction of nonlinearity of the function £ at the
trailing edge is a necessary condition for flow energy transfer to the cavity and for the
induction of self-excited oscillations, as HOWE [9] and KELLER and ESCUDIER [10]
papers have proved. This conclusion also finds confirmation in the analysis of an im-
pedance model of a cavity presented in the following part of this paper.

2.1. Impedance model of a deep cavity

It results from the condition (6) that the dimensions of the cavity —/and s —are much
smaller than the length of an acoustic wave. Thus the system formed by the deep cavity
can be considered as a system with lumped elements. The properties of such a system are
characterized by specific acoustic impedance defined as the ratio of acoustic pressure in
the plane of the opening of the cavity to the acoustic velocity component in the direction
perpendicular to this plane. In the case under analysis, pressure as well as the normal
component of velocity depend on the displacement of the vortex sheet and thus are func-
tions of the coordinates x; and xs. Therefore, in an impedance model of a cavity the
pressure corresponds with the mean value of pressure on the surface of the opening of
the cavity, while the normal component of velocity corresponds with the mean value of
the normal component on this surface. In further parts of this paper these quantities will
be called mean pressure and mean normal velocity.

As it results from Egs. (9) and (10), there is a discontinuity of the normal component
of velocity in the plane of the opening of the cavity. This leads to a discontinuity of the
mean normal velocity. This means, from the acoustic point of view, that the cavity
treated as a system with lumped elements, can be divided into two systems: outer in
which the input signal is determined by the mean normal velocity for x, = + 0, and inner
in which the input signal is determined by the mean normal velocity for xz=-0.
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If these quantities are noted as V', and V5, then on the basis of Eqgs. (9) and (10) we have

g 1 5
1 . 3 U
V;=T§6f5’.(—ja)+ Uaxl)gdxldx3=V2+Isofg(x1=t)dx3 (14)
s I 8
jw
ia=m54!§¢ua} (15)

It results from the conditions of pressure equality on both sides of the vortex sheet that
the mean pressure p; is continuous in the plane of the opening of the cavity. Thus

Vl ” —P:/2'1 ] (16)

Va=ps/za, (17

where z; and z, are specific acoustic impedances of the outer and inner system respec-
tively. The minus sign in the expression (16) includes the fact that the phase shift be-
tween mean pressure and mean normal velocity is equal to xzin the outer system [6]. The
‘formulae (16) and (17) do not characterize the acoustic properties of the whole cavity
because they concern the outer and inner system separately. In order to connect these two

systems into one and thus obtain an impedance model of the whole cavity, Eqgs. (16) and
(17) should be substituted in Eq. (14). After conversions we obtain

Z1Z>
ps = Zi+ 25 VO » (18)
where .
U
V= -l_safg(x1 = l)dxs. (19)

Therefore an equivalent impedance system with a parallel connection of impedances of
the outer and inner system is the model of the whole cavity. In this model the mean
normal velocity V, represents the exciting signal and mean pressure p; is the response to
the excitation. As it results from Eq. (18) p, differs from zero only when Vj = 0. Acoustic
oscillations can only be induced in the cavity when £(x1=[) = O (formula (19)) what is
equivalent to the assumption that the function & which defines the displacement of the
vortex sheet is discontinuous on the trailing edge.

2.1.1. Specific acoustic impedance of the outer system

Impedance z, of the outer system characterizes the process of acoustic energy ex-
change between the oscillating medium in the opening of the cavity and the outer
medium. When there is no flow the real component of this impedance corresponds with
the energy lost in the system (i.e. radiated energy) and the imaginary component cor-
responds with the energy of the medium oscillating with the system (i.e. energy initially
transferred to the medium, but later transferred back to the system due to inertia). In the
presence of a flow the energy transfer between the oscillating medium in the opening of
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the cavity and the outer medium is much more complex. In real conditions this process
determines mutual interactions between acoustic disturbances and the mobile medium.
This causes some acoustic energy transfer to the out side [11]. This effect can be in-
cluded in the analysed flow model which is an idealization of an actual flow, by introduc-
ing a modification of impedance z;. To this end we can take advantage of results of
impedance z; measurements presented in WALKER's and CHARWAT’s paper [12] and the
theoretical model suggested by these authors. This model makes it possible to determine
changes of impedance z, in terms of flow velocity. In accordance with [12], impedance
z1 is the sum of two impedances

Z1=21 +23, (20)
where z| characterizes the process of energy transfer between the oscillating medium in
the opening of the cavity and the outer medium with no flow, while z| defines the in-
fluence of flow on this process

cK(M - jkl/2
_ peK( 21 ), 1)
1+5°/4
where K is an empirical constant, S = !/ U, and p is the density of the medium. Im-

pedance z, corresponds with the radiation impedance of a rectangular piston with dimen-
sions / and 5. Hence, on the basis of [13]

"

Zy

z] =r,+jpckAd, (22)
Pk’ a5
rp="2g ("+5) 23)
is the specific acoustic radiation resistance, and
8(1%+1Is+5%)
i on(l+s) )

is the end correction.

2.1.2. Specific acoustic impedance of the inner system

The impedance of the inner system corresponds with the impedance of a rectangular
cavity with depth d and other dimensions —/ and s, with absorption phenomena included.
The effect of acoustic wave damping is related with the occurrence of a tangent force on
the walls of the cavity and with losses due to heat exchange between condensations and
thinning in the medium. If the depth of the cavity greatly exceeds its other dimensions
then the acoustic wave propagating inside the cavity can be considered to be a damped
plane wave with a wave-front perpendicular to the axis of the cavity. Thus the velocity
potential ¢ in the cavity is as follows

¢ = (Ae”’" + Be'”") i (25)
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where A and B are constant their ratio depends on the boundary condition on the bottom
wall of the cavity (x, = —d), and y= n + jk where n is the attenuation constant [14]

1/2
=195 10“(%) ; (26)

The acoustic pressure p and acoustic velocity v in the cavity can be determined on
the basis of the expression (25)

¢ —jwt
’

p= -p%=jpck(Ae”’+Be"’")e (27)
= a¢' 2 r*z —¥xXy\ L, -jet
v—aTzn—y(Ae Be ) e (28)
Since p; = p(x2=0) and V, = v(x, =0), then
__pc A/B+1
2= plVe= A1 =)

If we accept that all walls of the cavity are perfectly rigid then the A/B ratio can be
determined by applying the condition v(x, = —-d) = 0 in Eq. (28). We obtain

A/B=¢e* (30)
and finally
o 21008
Z2= ik cth(yd). (31)

2.1.3. Average acoustic pressure on the surface of the opening of the cavity

The relationship between the exciting signal represented by the mean normal
velocity Vj and mean pressure p, — the response of the cavity to the excitation —is deter-
mined by the expression (18) in the impedance model of the cavity. In this formula pres-
sure p, remains unknown. It is equivalent to the mean acoustic pressure-p on the surface
of the opening of the cavity

{38}

pe =%Bfafp(xz= 0)dx1dxs. (32)

Pressure p is continuous for x, = 0 because p, can be determined by defining p on the
boundary of the outer area, i.e. for x = + 0. If the function ¢, (X, ¢) defines the velocity
potential for x; > 0, then the derivative ¢, /dx; for x, = + 0 corresponds with the normal
component of velocity v, (formula (9))

39,

6x2 Iz-+0.

V(X X3, 1) = (33)

Applying in Eq. (33) the following identity
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vy x5, 1) = [ [0y ys 1)0(x1 - y1)0(xs - y3)dyidys (34)

and the formula (9) which defines the dependence of the normal component v, on the
displacement of the vortex sheet & we obtain

o

¢+=ff[ (—jw+ U%) Ea(y1,y3)}G(}’2=0)d)’idy3a (35)

where
G(x,y,1), X=(x1,%2,%3), ¥=(y1,¥2y3)h
a Green function which satisfies the following boundary conditions:
G G G

672(x2=h)=673(x3=0)=:3x_3(x3gs)=0’ (36)
G —jwt
672(x2=0)=(5(x1—yl)6(x3—y3)e’ , xE<0, l), (37)
ﬁ(x2=0)=0, x & <0, 1>, (38)
axz

The range of variables y; and ys in the expression (35) can be limited to intervals:
0=y, s, 0=ys;=sby extending the conditions £a(y1, y3) = 0 onto the entire rigid sur-
face limiting the entry to the cavity. This is equivalent to the assumption that the separa-
tion of flow only occurs in the entry to the cavity. Since on the boundary of the outer area

plx2=0)=- p(—fw+ Ua%) $.(x2=0), (39

then, after substituting Eq. (39) in Eq. (32) and including Eq. (35), we obtain

sl s 1
e gff e o)

x G(x2=0, y2=0)dy dysdx,dxs. (40)

Considering Eq. (36) for x, € <0, [>, we can present the function G in the following
form:

o o nmx Aol =
G(xv Y t) 2 2 COS("S—Z") [ Gﬂ(xm ¥ t) * G,,(X[], Yuiyo Zh, 3, t) ]: (41)
n=0

where Xo = (x1, x2). The second expression in square brackets in this formula is an addi-
tional component of the Green function. It results from the reflection of the acoustic
wave from the top wall of the channel x, = h. In cases of low Mach number flow and
x, € <0, [> the function G, has the same form as in a case without flow (see the Appen-
dix)
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£,c0s( ?3)
" -
Gu=j————Hi" [k V(x1-y1)+ (x2-y2) ] &7, (42)
where &, is the Neumann constant and k, = (k> - n#%/s%)"/2.

2.2. Disturbances of the vortex sheet

It results from Eqs. (19) and (40), that two fundamental parameters in the impedance
model of a cavity: mean normal velocity Vo and mean pressure p;, depend on the un-
known function & which defines the displacement of the vortex sheet. In the case under
analysis we can accept that sheet disturbances are two-dimensional [15, 16]

E(x1, 1) = Ea(x1)e ™™, (43)
therefore the expression (9) can be noted in the following form:

v (-jo+ U5 o) 6 ) (44)

As we can see from Eq. (13) the function £ is discontinuous at the trailing edge
(x1=1). Thus, if £&.(x,, t) denotes the displacement function-continuous on this edge —
then on the basis of Eq. (13) we have

§(xy, ) = Ee(xp, ) [1-H(x, = 1) ], (45)
where H(x; - 1) is the unit step function
1, x>,
H(x; =)=
m-n-{ o7 (46)
Substituting Eq. (45) in Eq. (44) we hence achieve
a8

Y 1-H(x,-1)]-UE(])d(x,-1)e ™, (47)

v=(—jw&. + Ua

The introduction of a discontinuity in the function & leads to an additional component on
the right hand side in Eq. (47). It represents the pulse velocity source. This source is a
kind of an external force because, as it was assumed in the theoretical model, the discon-
tinuity function & described the nonlinear effects accompanying the interaction between
the shear layer and the trailing edge. A vortex sheet influenced by such a source exhibits
instability which manifests itself in an amplitude increase of the sheet displacement
when the distance from the source grows. If the motion of a vortex sheet located on the
boundary of a low Mach number flow with velocity U in an unbounded two-dimensional
space (no rigid surfaces) is influenced by a velocity source —U &,(1) 6(x; - I) e, then
the displacement of an unstable xortex sheet is described with the function &, which is a
superposition of Kelvin—Helmholtz waves:

£ = ME(D)] i~ 4 peie -0 ] goior (48)
where &= (1 - j)/U, while € is a quantity conjugate with .
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In the case if a vortex sheet lics within the area of the opening of the cavity, its
unstable motion is a result of the presence of the pulse velocity source at the trailing edge
and the influence of an acoustic signal induced in the cavity. Since, in accordance with
the condition k! < 1, this signal is approximately a plane wave in the plane of the opening
of the cavity, we accepted in our approximation method of the function & that £is a sum
of the functions (48) in which an unknown quantity & was introduced in the place of the
parameter ¢ and the component Q e where Q denotes the amplitude of a plane wave
acoustic displacement was included. The parameter ¢ was changed into the parameter &
_ an unknown function of @, U, 1, 5, d, h — in order to include in £ mutual interactions
between disturbances of the vortex sheet and acoustic modes of the cavity. Therefore the
following assumption was accepted in the £ approximation: the acoustic signal induced
in the cavity does not change the form of the displacement function in the case of an
unstable vortex sheet, it only modifies this function parameters. Hence the form of the
function & accepted in the theoretical model is as follows:

E=ME,(]) [aej“(x"‘) +bel¥® - ] e+ Qe ™, (49)

where a=a, +ja; and a,>0, a;<0. The displacement of the vortex sheet & must
satisfy the Kutta—Zukowski condition at the leading edge, thus

B pr.ll _ B

&(xy, I)=§a(x1)e'j”'=Q(1-“m:€ B+

e-ﬂ.xlﬂ) e—jwl, (50)
where =jal=p,+jpiand

Br=-ail>0, Bi=a,l>0. (51)
The amplitude Q and parémetcr B in the formula (50) are unknown quantities. Equation
(18) should be used to determine B. This equation defines the relationship between the
mean normal velocity Vo and mean pressure p; in the impedance model of a cavity. Once
we know the form of the function E(xy, t), Vo can be determined on the basis of Eq. (19)

V0=@ b -l + ﬁ.,e*ﬁ'-1 TRl (52)
L \B+p B+B

while Egs. (41) and (42) are included in the expression (40) and is integrated in terms of
x3 and ys, it can be written in the following form:

I I
_jpQU ¢, . 0 B o PR
p="25% Bf(-fw+Uaxl)!(rle + e PP - jS) x
X {H[()l)(klxx -yil) +H.;()1)[k\[(x1—y1)2+ 4n’ ]} e dy dxy, (53)

where 71 = B°(jS - pB)/(B+ B’) and y2= B(jS + BY/(B+ B). Since kl << 1, then the
following approximation of the Hankel function [17] can be applied in the formula (53)

3
HEO(klxy -yil) = (kb = y11/2), (54)
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H[kV(xi=y )+ 40 |~ 3 eal-1) "Hz,,’(zkh)—"j%w ()
n=0

When we substitute Egs. (52) and (53) in the expression (18) and integrate it in terms of
x; and y, we obtain the following equation

L Fy(B)
P=JS+ By

The functions F; and F> which occur in this expression are:

(56)

7

nZ1Z B B
Fl(ﬁ)=—pCM(zllizz)[eﬂ—l+ﬁ ( )]ﬁ+(ﬁ)(ﬁ +jS) x
x{S[jln(k[/Z)—g](e'ﬂ'—1)+%JrSEl+(ﬁ’+jS)[2‘3(~ﬁ‘)+%jﬂ24(—[3')]}+

+sz[%-.ln(k£/2)+jfrog] (1 +£)ﬁ, (57)

Fa(B) = SUin(ktj2) % (1= eP) =2 2S5, + (B jS) [ 55(B) + 3 72 B)] (58)

where X, 35, 35 and X, are series as follows:

o En(=1)"(kl/2)* HS, (2kh)

& ="§] 2n+1)! 2 (59)
o &(=1)"(kl/2)” H5,)(2kh)
= =§0 2n+2)! ’ (60)
33(2) = En;nl,)zl (61)
3(z) = 22( 1)"(kl/2)” HS (2kh) 2 (2n o Zond (62)

n=1

In the case of the accepted particular geometry of the system (h, /, s and d are given) Eq.
(56) can be presented in the following form

Br+jBi=F(f, U, B, p), (63)
where F is the function found on the right hand side in Eq. (56). Thus we have

Br=Re[F(f, U, B Bi) ], (64)

Bi=1m[F(f, U, B, B)). (65)

Since the frequency fand velocity U are independent variables then for f = const and
U = const Egs. (64) and (65) represent a set of equations with two unknown quantities —
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B and B;. A numerical procedure is necessary to solve these equations. Roots sought for
are such values of $,and f; which satisfy the conditions (51).

2.3. Discrete sound frequency

The cavity in experimental studies presented in the paper [8] had the same square
section as the main channel, h = [ = s = 6 cm and depth d = 53 cm. The frequency f, of
the discrete sound was determined on the basis of changes of pressure amplitude po mea-
sured at the bottom wall of the cavity in terms of f.

If we accept x, = -d, the pressure po can be determined from the expression (27).
Hence we have

po=jpck(Ae "+ Be™)e ™, (66)

where A = Be®™ on the basis of Eq. (30). The relationship between po and p; can be
determined on the basis of the fact that p, — the pressure in the plane of the opening of the
cavity—corresponds with the p value from the expression

iv _ Ps

ch(yd)’
where P = | po| and @is the amplitude and phase of pressure po, respectively. Substituting
Eq. (18) and including Eq. (52) in Eq. (67), we obtain

Z1Z7 B g B - _
(zl+zl)ch(7d)[ﬁ+ﬁ’e +ﬁ+ﬁ'e 1)

Since the parameter 8= f3, + j B; is a function of fand U then for fixed values h, /, s and
d Eq. (68) can be presented in the following form:

P(LU)=Q gL U, B, U), Bi(f, U)]}, (69)

where g is the function to be found in square brackets on the right hand side in Eq. (68).
For frequency f = f, amplitude P achieves a maximum in terms of f, so

Pi(U)=P(fo U)={Q g [ £ U, B:(f; U), Bi(f, U) ] }max- (70)
The results of calculations of the parameters 8, and f; (roots of the set of Egs. (64) and
(65)), presented in Fig. 2, illustrate a typical dependence of these quantities on the fre-
quency f for U=const in the case of a cavity with the following dimensions:
h=1=s=6cm and d =53 cm. We can see that the function S,(f) achieves a distinct
maximum for a certain frequency f (Fig. 2a). Also the greatest changes in the parameter
B are observed around this frequency (Fig. 2b). Relative changes of the function g for
quantities 8, and B; determined from Figs. 2a, b are of similar character as changes of
B, in terms of f (Fig. 2c). This indicates that the values of the function g depend on the
real part of S mainly.
As we can see from Fig. 2c, the function g reaches a maximum in a very narrow
frequency frange. This makes this function similar to spectral characteristics typical for

po="Pe (67)

u
!

P-Q

]- (68)




SOUND INDUCED BY FLOW 299

B a)
451

1
1
i
40 Iy
!

35t / K

Bi| »b)
85+ Vi

80F~—""

751

10t ¢©

gmﬂ)(

a8

06

041

-— -
e —— —

0

75 750 55 fiRz]

FIG. 2. a) Parameter By, b) parameter S, ¢) relative value of function g from the expression (69) in terms
of frequency f. Flow velocity U = 19.5 m/s.

discrete sound. Therefore basing on the assumption that the parameter Q influences the
function P in terms of f only slightly, and here

where B (U) = B,(f4 U), ﬁf’ (U) = Bi(fs U). Figure 3 presents calculation results of
the parameters ﬁf’ and B for a range of flow velocity from 15 to 26 m/s. We can ob-
serve that changes of 7 and B which accompany an increase of U are clearly of a
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F1G. 3. a) Parameter B, b) parameter ,b'f in terms of frequency velocity U.

different character. The function which describes ﬁf in terms of U has a maximum
(Fig. 3a) while the value of B¢ always decreases when U grows (Fig. 3b). Since the
value of the function g depends mainly on the parameter ﬁf the function
glfs U, Bi(U), ﬁf’(U )] reaches a maximum within the flow range 15-26 m/s, as it re-
sults from Fig. 3. If we make a hypothesis that the parameter Q also only insignificantly
influences the function P, in terms of U, then relative changes of P, will correspond with
relative changes of the function g. Hence

PiU) __ glfaU BB

(72)
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3. Results and conclusions

Figure 4 presents the results of measurements and calculations of the P 4/ (P 4)max ratio
as well as of the dimensionless frequency St =f;I/U. From Fig. 4a we can see that
P 4/(Pa)max determined theoretically and experimentally are very similar, but the maxi-
mum value of P4/ (P4)max Occurs at a lower flow velocity U = 19.5 m/s.

When we compare experimental data with the calculated results shown in Fig. 4b we
notice that the values of the frequencies f; determined theoretically are always slightly
higher than the measured frequencies f,. For example forP ;/(Pa)max = 1 the theoretically
determined frequency f; is equal to 150.3 Hz, while f; determined from experiment for
P 4/(Pa)max 1s €qual to 145.5 Hz [8]. The fundamental frequently frequency f, is calcu-
lated from the formula (2) for a cavity with depth d = 53 cm and end correction deter-
mined on the basis of Eq. (24) is equal to 154.4 Hz. This means that the maximum gene-
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FIG. 4. a) Ratio P4/(P4)max, b) dimensions frequency St in terms of velocity(---) — calculated values, (...)
— measurement results in accordance with [8].
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ration of discrete sound occurs at a frequency f; slightly lower than the fundamental
frequency f; of the cavity.

The ratio of propagation velocity U, of flow disturbances within the opening of the
cavity and main flow velocity U is a quantity frequently determined theoretically and
experimentally. The velocity U, presented in the theoretically model in Section 2 is equi-
valent to the mean phase velocity Uy for disturbances of the vortex sheet described with
the function (50) for f = f,. In order to determine Uy, Eq. (50) must be converted into the
following form

E(xy, t) = | Ea(x1)] €/ 1V00) ~27at]) (73)
whc}e

d
Y(x1) = arctg{ [ tg(Bixu/l) —%th(ﬁfxlll) l X

r

p -
1 _ﬁ_t d d
x[1_cos(ﬁfx1/1)ch(ﬁfx1ﬂ)+ﬂd tg(ﬁ:xlfl)th(ﬁrxlfl)] ‘ (74)

The velocity Uy defines the propagation velocity of disturbances with constant phase

(%+ Uf%) [ 9(x1) ~27fat ] =0, (75)
and thus - -1
U;=2Jrfd(671i'] : (76)

Since d1/dx, = const, then Uychanges in terms of x,. Therefore U. corresponds with the
mean value Uyin an interval x; € <0, [>. Hence
1

Ue _fa| 20 (39
=T [O(BXl)dxl : (77

The expression in square brackets in Eq. (77) represents the wave length A for disturban-
ces of the vortex sheet within the opening of the cavity. Equation (77) can be the noted
as follows:

E=f.:‘ﬁ=5t(i) : (78)

Figure 5 presents the results of calculations of the ratio // A within the flow velocity
range 15-26 m/s ((91/dx,)”" was integrated numerically). We can see from Fig. 5a that
the ratio //A changes within the limits

086<1/is133, (79)
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and its value always decreased when U grows. This means that the wave length A in-
creases when flow velocity is increased. For velocity U = 19.5 m/s, when P4/ (P 2)max

I/A=11, (80)

what according to Table 1 is a value close to //A given in the papers [8], [18].
Figure 5b presents U,/ U in terms of U calculated from the formula (78) for values

Table 1. Ratio % for maximum sound generation

authors In
ELDER [6] 0.77
BRUGGEMAN [8] 091
ELDER
FARABEE [18] 1.05
DEMETZ

Stand I/ A from Figs. 4b and 5a. We can see that U,/ U changes are insignificant within
the flow velocity range 15-26 m/s because

0.4 5 U./Us045. (81)
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when Pg/Pamax = 1
U./U =042,

what, according to Table 2, is a value close to U,/ U stated in the papers [6], [8].

Table 2. Ratio U, /U for maximum sound

generation

authors U./U
ELDER [6] 0.46
BRUGGEMAN [8] 0.47
ELDER
FARABEE  [18] 0.35-0.6
DEMETZ

APPENDIX

Calculation of Green function G .
The function G, is a solution of the equation

3°G

> cos(nmxs/s) VG, - ijM@ -M
0 dxy 0x]

= . kia,,) =o(x-y)e?”

(82)

(AD)

where k, = (k% — n>2*/s*)"’% After multiplying A1 by cos (nzx3/s) and integrating it

with respect to x3 within the interval x3 € <0, s>, we obtain

G,,_MzaG

_ kMt
axL

+ G, =

_ Sncos(n’m’:‘}/s) d(x1 _yl) 6(x2_y2)e-jwt-

When we apply the following conversion of variables in Eq. (A2)
xt = fPxn i = 10V, X5 = s, ph = pya € = £+ WM (xi=y1)le,
where u=(1-M* )'% we have ‘
V3G, + k3G, = f(y3) 0(x'1 = y1) O(x'2 - y'2) e,

(A2)

(A3)

(A4)

where f(ys) = u* —gﬂ—w—). Equation (A4) is a inhomogeneous wave equation in

s
two-dimensional space, therefore, when we include the condition (38) we have

1y —jwt
Gn= _Ejf(y3)H6n(kﬂr )CI f,

(AS)
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where r' = [ (x{ =y )*+ (x3 —y3)*]"% Returning to initial variables we obtain

Gom i encos(nxyag’s) HY kut e kM(xi;yl) I .
25(1 - M?) 1-M -M
where 7' = (x;-y1)* + (1 - M*) (x2-y2)* "2
When M? << 1, kl << 1 and x, € <0, I>, y; € <0, [>
Gum = ZEGIIL) D (1) e, (A7)

where r = [(x; -y 12 (Ty— y2)2]u ? 50 the function G, has the same form as it would
have in a case without flow.
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