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SOUND SOURCES OF HIGH DIRECTIVITY

R. WYRZYKOWSKI

Institute of Physics, Pedagogical College
(35-310 Rzeszow, Rejtana 16a)

The reversibility of Hankel transform suggests the possibility of constructing such a
sound source which radiates only within a certain cone. Both the approximate and accurate
theories of that source are given. It is proved in the paper that the accurate source is better
than the aaproximate one. The source is called the source of high directivity.

Introduction

In paper [7] was suggested the theoretical possibility of constructing a sound source
radiating only within a certain cone. Such a property is exhibited by a baffled piston with

a special distribution of the velocity amplitude, given by the Bessel function J 1(n-;-)

(n will be explained later, “a” — radius of the piston, r — cylindrical coordinate) divided
by the argument. The distribution must be extended theoretically to infinity. Such a
source was called the source of high directivity. In the present paper we consider the case
of the real distribution (only on the piston itself) and we prove that its directivity is better
than the theoretical one.

The author is indebted to prof. dr hab. Marek RyTeL for his interesting and stimu-
lating discussions and suggestions.

1. Theoretical basis
The possibility of realizing the directivity pattern mentioned above is the conclusion
of reversibility of the Hankel transform [1]. That transform of the velocity distribution
u(r) is the main part of the R-directivity index [7]
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where Q is the output of the source, y— the angle between the z — axis perpendicular to
the plane of the piston and the given direction, k — the wave number.
The Hankel transform of zero order is defined by the formula [1]

Ho(p) = [u(r)Jo( pr)rdr, @

where Jo( pr) denotes the Bessel function of zero order. If the amplitude of velocity on
the piston is O for 7 = a and u(r) for r < a, then

Ho(p) = fu(r)Jo(pr)rdr 3)
0
and the directivity index is
= 2% b (ksiny). @)
Q
It is well known that for the constant amplitude uo we have
up r<a,
u=1{ o )
rza,
and the directivity index has the form
Ji(kasiny)
R=2 kasiny ’ ©)

where J,(kasiny) denotes the Bessel function of the order one. One may expect the
velocity amplitude distribution of the form

¥
Jy ("E )
u(r) = 2up——", ™
e
a
to have the directivity index
const ¥S Yiim
R =
O }’ > Yiima

where ¥;i, denotes the so-called limiting angle — the half of the cone angle, in which the
sound is radiated. Of course, the constant in the formula (8) will be normalized to unity.
The directivity (8) can be realized only if the distribution (7) is extended on the-entire
plane of the baffle. We choose the gauge factor # to diminsh the influence of the area
r > a under the integral. Such a method is called the approximate one. In the accurate
method we choose the velocity distribution as follows:

@
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r<da
u(r)= W 9
0 r=a.

In the present paper both methods were applied and the results compared. One may ex-
pect that the distribution (9) will not give the sharp break-off of the directivity pattern for

Y= Ylim-
2. Approximate method

We choose the distribution of the velocity as in the formula (7). It is evident that the
best option is to accept for r = a u(a) = 0; therefore we must have

Ji(n)=0. (10)
The gauge factor » must be equal to the zeros of the functionJ;(n) denoted as @y,
n=Qu m=1,2,.. (11)
where ao =0, a;; = 3.8317
The formula (7) now takes the form
#
Ji( aim I )
u(r)=2ug—r (12)
Ay —
For r — 0 we have [7]:
5
Jl( Ay ; ) 1
Wiilse— =5 (13)
r—=0 r 2
i —
and
u(0) = u,. (14)

That explains the presence of the factor 2 in the formula (12). Owing to the extension of
the distribution (12) to infinity, the Hankel transform of u(r) is

Ho(ksiny) = 2uo—— [J1( @in =) Jo(krsiny)dr. (15)
(11,,,0 a

The integral in the formula (15) is given in the tables of integrals [1; p. 681]. It has the
value
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2 for ksiny<%

© alm a

r : a . A

P J = i e—
!J;(al a) o(krsiny)dr Y for ksiny 2 (16)

0 for ksiny>%

From the formula (15) we calculate the directivity index (4) in the form

4
( fo for ksin;’<%
2 a
im
o[
dmu o
R= —02 for ksiny=—c£1- (17)
o) Qim 4
a
0 for ksiny>%

The output of the source for the velocity distribution, determined by (7), is
a ¢ r
=4mug— —)d
Q =4mu o !Jl(al,na) " (18)

and solving the elementary integral we get

2
0 = 4mu, ('E:L) . (19)

1m

Substituting (19) into (17) we get

—

for ksin y%‘lﬂ

=
I
l

for ksiny=%. (20)

L 0  for ksiny> %
We see that in our problem does exist a limiting angle

< siuri o
Yiim = SN a’ (21)

above which we have no sound field i.e. no radiation of the sound energy. In the physical
sense only ¥jm < /2 Or siny;, <1 is acceptable. For that reason only for the case
ka > a;,, we have the required source.
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The condition ka > a;,, can be expressed by the corresponding wavelength A

2ma
A< a—lm. (22)
If we take
ka= Ay (23)
then:
2na
lhm = E’;’;’ (24)

In the physical sense y;;, takes its maximum value

4

lim = 2 (25)
Figure 1 represents the values y;;, versus ka for ay;, @;; and aya.
Vim
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HG. 1. Values of piim versus ka for ayy, ajzand a3 .

Further reduction of ka leads us to a undirectional source. Coming now to the calculation
of the specific impedance of our idealised source, we denote by @ its real part and by y
its imaginary part. To find & we will modify the method applied in [6] for the constant
velocity amplitude. For that purpose we introduce in the formula given in [6] a normaliz-
ing coefficient x and we get

Jt.f2

(’“’ f R*(kasiny)sinydy. (26)

0=

It should be remembered that formula (26) for x = 1 was obtained for the constant
amplitude by equating the acoustic power emitted by the source (expressed by 6) to the
power obtained in the farfield by integrating the square of the directivity index. When the
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amplitude is not constant we must remember that the first quantity is proportional to the
mean value of squared velocity amplitude, but the second one is based on the output and
is proportional to the square of the mean value. When we calculate the accurate values
we will demonstrate the method of calculating k. In the present case we can find it simp-
ly by equating the lim & to unity. From (20) and (26) we have

ka— >
Yiim
(ka)® ¢
0=x > afsmydy, (27
from which we directly obtain
k 2
0= x(—;—)( 1 - COSViim) (28)

Substituting (21) for the value of sin yjim, W€ may write

VIS \/ Ay |
COS Yiim = 1 - sin Yiim = 1- E“ (29)

and also
(ka)’ [ oim\’ ]
= - o . 0
0=k > 1 1 T (30)
When ka — o we have:
lim@=+ i lim(ka)*[1-1+ L +..] (31)
ka — o 2 ka— « 2(ka)2 o
Since
limf=1 (32)
ka— =
we obtain
1 K Qin
e = 3
242 ) =
and the normalizing coefficient:
. iy (34)
A im
Substituting (34) into (30) we get:
2(ka)? i)’ ]
0= =) 1- 1—(ka) ; (35)

The formula (35) is valid only when ka = @y
When ka — ¢, We have:

lim 6=2. (36)

ka—= a,
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As it was explained before, the case ka < a,,, does not present any interest. But, to keep
continuity of our reasoning, we can admit that for ka < @y, Jjim remains constant and
equal to /2 in the formula (28), and
2(ka)?
B (37
A

Of course, when ka — 0, the value of #tends to zero. To obtain the imaginary part of the
specific impedance we use the method given by W. RDZANEK in [4], and substitute in the
formula (26), representing the real part, cosh for siny and integrating with respect to
1 from 0 to . We have therefore, due to (34):

8:

2(ka)? ¢
g SR Y J R?(kacoshy)coshypdy:. (38)
Aim
In the considered case R(coshy) is equal to 1 for y ranging from 0 to ym, and O for
7> Vim- It is well known [4] that the application of integral transform (38) gives us the
result to within the accuracy of a constant. That value must be found from the condition

lim y = 0. (39)
ka— o
From the formula (38) we obtain
2 k 2 Yim
X= ( f) fcoshwdtp+ <. (40)
Ul 0
In the case of ka > a,,,, the integral (40) is a simple one and we have
2(ka)*
X= ( f ) sinh yjim + C. (41)
A
or, according to (21)
2( ka )2 . .1 %im
= ' h — : 42
¥ =) [ sin (sm ka)]+c (42)

Since integration in (40) is performed with respect to 1, C may be a function of ka, and
should be calculated from the condition (39)
When ka — « we have

; . -1 Ay _ alm-‘alm
smh(sm %ka) Smh_ka T T (43)
and
k 2
TR L Y (44)

ka—> » ka—o iy ka
The only possibility of fulfilling the above condition is to take
o sudka, (45)

a]_,.,,’
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and finally we obtain

2(ka)® . (. .10\ 2ka
= h bl P v
p-a sinh |sin™ — = (46)
When ka = ay,, we must replace (l;_a by 1 and we obtain
im
x= 2sinhg -2 =2.5986. 7

When ka < a,,, the value of ¥, in the formula (41) remains equal to 7/2. In that case
we must choose another value of the constant (from the condition of continuity for
a1, = ka and the positive value of ysi.e.

2
K = 2(;‘;) (sinhg— 1) (48)

or, substituting the value of sinhs/2,
sinhz/2 = 2.2993,

we get
(ka)®
x = 2.5986 5 (49)
Qm
We see that for ka — 0 we have
lim =0
ka—0

Of course, the case of ka < ay,, is of theoretical interest only, since it has no application
in practice.

3. The accurate method

We assume the distribution function of the velocity amplitude as

T @)
ZuO—?— for O<r<a
u(r)= Cin (50)
0 for r=za
The directivity index (1) takes then the form:
a
4ma r g
R=MOQalm Bf.h(almz).lg(krsmy)dr. (51)

In order to calculate the output of the source we must replace in (18) the upper limit
o by a.
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a o r
O'% 4nuoa—m(;f.ll(a1mz)dr. (52)

The integral is an elementary one and we get
2

Q 43’5“0( ][1 Jo(al,,,] (53)

Substituting (53) into (51) we obtain the directivity index in the form

R- [ al,,,i Vo( krsiny)dr. (54)

all-Jo(am)] b

Evidently, for y=0 we get R = 1. In the formula (54) we introduce a new variable:

x== (55)

a

and we get:
1

Sy =] [1(@unx)Jo(kaxsiny)dsx, (56)

Rm——0
1-Jo(ax

Figures 2, 3, 4 represent the directivity index versus the angle yfor ay;, apand 3. The
continuous lines represent the approximate case the dashed line the accurate solutions
(56). Of course, the value ¥y, has not the same meaning as before. Nevertheless, it is
easy to calculate the directivity pattern for y= y;» (21) because the above integral takes
then a form given in the tables of integrals. In that case we obtain (kasiny = dy,,)

1

D s 7)ol ) d. (57)

Rjjm=—72—
T = Jo( @) 8

T3

N}
T

TETA,CHI

0 — ] 7 6 KA 20

FIG. 2. Directivity index for a1, 12, a13: approximate case — dashed line, accurate case — continuous
line.
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—;—90“

FIG. 3. Directivity index for ar11, @12, er13: approximate case — dashed line, accurate case — continuous
line.

“hd ,90°
0 1

FIG. 4. Directivity index for a11, 12, 13: approximate case —dashed line, accurate casc — continuous
line.

Substituting in (57) the value of the integral [3 p. 41] we get:
1
an=§[1+«fo( Cim) |- (58)

We see that the value of the directivity index for yjn is independent of ka but, of course,
it is obtained for a fixed y, which depends on ka. For example, we have for
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TETA,CHI

-

0

FIG. 5. Real & and imaginary yxm parts of the specific impedance for )], 12 and a3 versus ka.
Continuous line — accurate solution, dashed line — approximate one.

a 12

LN

TETA, CHI

0 y; e 7 6 KA 20

FIG. 6. Real 6,, and imaginary . parts of the specific impedance for a1, a2 and a3 versus ka.
Continuous line — accurate solution, dashed line — approximate one.

@11 Riim = 0.2981, for a3 Rjim = 0.6501 and for &3 Ry = 0.3752.
Simultaneously we take into account that the integral in the formula (56) may be
considered as the definition of a new function. We will denote that function by F,,(x)

Fo(x) = [J1( @imt)To(xt)dt. (59)
0

Examination of that function must be considered as a separate subject; in the present
paper we will only use the values F,,(x) calculated numerically. Applying (56), the direc-
tivity index takes now the form:
Aim
R = TOT TR
1-J 0( a j_m)
According to (26) we can write the real part of the specific impedance in the following
form:

Fn(kasiny). (60)
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—90°

FIG. 7. Real 8,, and imaginary Xm parts of the specific impedance for ar1y, @12 and @3 versus ka.
Continuous line — accurate solution, dashed line — approximate one.

k7]
(ka)? At
On=x F2(kasiny)sinyd 61
2 TT-daea T4 Sl ©b
and the imaginary one:
(ka)? Lim

m=K FZ(kacoshy) coshyd 62
B (- Ta( @) 1 f IR =

To calculate the normalizing coefficient k we denote by u the amplitude of the velocity
on the piston. According to the remarks following (26) we have:

2
Umean
i T (63)

Substituting (50) for the value of u in (63) we have 44} both in numerator and deno-
minator. For that reason we may omit that factor and write the mean values:

o= Jul r)rdr = J' e f J(x)dx (64)
0

where:
r
= Uy 65
X m" (65)

The integral in the formula (64) is a simple one and we get:

umean=% [I_JO(alm)] (66)
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We obtain the mean value of the square velocity as:

"le(al,,,i) am2
2 2 a 2 Jl(x)
U dnen=—% | ————dr=—"- dx, 6
(4 )ome= 23 (alm)z a%,,,of s (©7)
— | r
a

where x is, as before, defined by the formuia (65). The integral in (67) is given in tables
of integrals [3, p. 41 form 17] in the form:

flj, dt=—n[1+Jn(x)+J,,(x) 221,,(x)] (68)
0 ! k=0
In our case we have n = 1 and
r1 1
f?J["(t)dt=-2-[ 1o Jdite) T8 (69)
0
Taking into account the limits of integration we get
1
() =5~ [ 1= Jo(@1m) ] (70)
1m

According to (66) and (70) the normalizing coefficient (63) is equal to:
4 [1-Jo(awm)]® 4 1-Jo(@im)
o ke e (71)
[0 &7 I—Jo(alm) A 1+J0(a1m)

To obtain the final results we must substitute the k coefficient given by (71) to the for-
mulae (61) and (62). Thus we get

2(ka)®

Op= 110 am)fF (kasiny)sinydy (72)
and:
= %]Fm(kacoshw)mshwdw (73)

The enclosed figures present the values of 8, and ¥,, (72), (73) continuous line and the
approximate values dashed line for m =1, 2, 3 versus ka. The results were obtained
numerically.

Conclusions

The approximate method of the considered velocity distribution gives us the direc-
tivity coefficient equal to 1 in a certain angle, when ka > a,,. The results of the accurate
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method have a better directivity. Of course, the cut-off of the directivity coefficient does
not occur, but practically the pattern is sharper and the lateral lobes are so small, that they
can be neglected — they are invisible in the figure. The real part of the specific impedance
is practically equal to 1 for ka > 1.5a 1, and the imaginary part is then equal to 0. So we
may say that the source adjusts well to the medium. If we compare the results for dif-
ferent values of a,,, we see that the source for @y, has the best properties. Since this is
the case the easiest to be realised we have no nodal lines, this value should be chosen.
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