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ACOUSTIC POWER OF RADIATION OF A CIRCULAR PLATE FIXED ON THE RIM AND
VIBRATING UNDER EXTERNAL PRESSURE

W.RDZANEK

Institute of Physics, Pedagogical University
(34-310 Rzeszdw, Rejtana 16a)

The main scientific aim of our work was the realization of theoretical research on the
problem of energy radiation of axially-symmetric forced vibrations of a circular plate. This
research focussed on the determination of frequency characteristics of relative acoustic
power. A thin plate, fixed on the rim in a rigid and flat acoustic baffle, radiating into a lossless
and homogeneous fluid medium was considered. Dynamic interactions between the acoustic
wave radiated by the plate and the form of the radiations as well as losses in the plate were
neglected.

The active acoustic power of radiation was expressed with a single integral within finite
limits and with elementary form in special cases, i.e., for high-frequency wave radiation and
when the plate’s thickness is sufficiently small in relation to its diameter. The results of cal-
culations are also presented in graphical form.

1. Introduction

The practical application of a circular plate as a vibrating system in acoustic devices
— sound emitting and sound receiving — has led to a comprehensive and more detailed
description of acoustic properties and of the problem of radiation energy of axially sym-
metrical forces vibrations of a circular plate, in particular.

Besides theoretical considerations of the analysis of the field of acoustic radiation
from supercifial sources with a “guessed” distribution of vibration velocity (which ap-
proximately satisfies the boundary conditions related with the shape of the source), this
field was also theoretically analysed. Here the cause is taken into consideration assuming
that the distribution of the force inducing vibrations of the source is known.

A detailed description of parameters which characterize a circular membrane as a
sound source or receiver, with a stress on the problem of the output impedance frequency
characteristic, can be found in Haiasaki’s paper [ 1]. The acoustic impedance of radiation
of a circular membrane excited to vibrate with the neglect of losses in the membrane and
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the influence of the surroundings is known from the paper [5]. SzenpErOw [9] analysed
sound radiation of an oscillating membrane without an acoustic baffle applying associa-
ted integral equations. The paper [8] analyzes the problem of radiation of an acoustic
wave by a circular plate. However, the directional characteristic was only determined
with the application of the classical Kirchoff-Love plate theory under the assumption
that the surface distribution of the factor forcing vibrations is known.

Expressions for acoustic power radiated by a circular plate, concerning individual
forms of vibrations, are presented in the papers [6] and [7]. Yet, their application was
limited to high frequencies. This problem was axpanded in LEVINE’s and LEPPINGTON’S
paper [3] by including a correction for the “oscillating” character of radiated acoustic
power. Furthermore the effective damping coefficient was calculated for frequencies
comparable with resonance frequencies, including losses in the plate and the relation
between the wave radiated by the plate and its vibrations.

However, there is no expression so far for acoustic power radiated by a circular plate
when the surface distribution of the factor forcing vibrations is known.

This paper undertakes this problem under the assumption that the plate is sufficiently
thin and the forcing pressure is strong enough to neglect the influence of losses, includ-
ing vibration damping by the acoustic field. Frequency characteristics of active power
were determined for a known surface distribution of the pressure forcing vibrations. Ele-
mentary forms of expressions were achieved for special cases, i.., for high frequencies
of radiated wave and for a plate thickness sufficiently small with respect to its diameter.
It was also shown that expressions obtained for limiting cases are already known from
previous papers. The results of numerical calculations are presented in graphical form.

2. Assumptions of the analysis

Let us consider the case of an acoustic wave radiated in a fluid medium with low
self-resistance (¢.g., air) by a thin homogeneous circular plate (r < a, z = 0) with a plane,
as a rigid acoustic baffle (r > a, z = 0) behind it complete fixing of the plate results in the
following boundary conditions: the deflection of the plate 7(r) and the derivative
an(r)/dr are equal to zero for r = a. We assume that the plate is subject to external
pressure Re { f(r)exp(-iwt) } forO=<r<a.

The theoretical analysis of such a system is based on the equation of vibrations given
by LEVINE and LEPPINGTON [3]

(ka'V* - 1) v+ 261 ko= -i/(Mw)f 1)
for z =+ 0. The quantity ¢(r, z)exp(-iwt) is the acoustic potential which fulfills the
Helmholtz equation (V2 + kﬁ) @=0, k= w/c. From now on we will neglect the time
factor exp (—iwt). The normal component of vibration velocity of the plates surface
v(r) = —i wn(r) and acoustic pressure generated by the plate p(r) = ipo we(r), where
po is the density in rest stage of the fluid medium. The wave number of the plate is
defined with k, =M w’/B, where M is the mass of the plate per unit surface,
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B = By(1 - i¢') is the plates flexural rigidity with internal losses in the plate included [4],
&'~ measure of plates damping. The quantity &; = po/(Mko) is the measure of density in
rest stage of the fluid medium to material density of the plate ratio.

We will limit our considerations to the case of acoustic power radiated by the plate
to which the theory of bending of thin plates applies, accepting that the plates thickness
h satisfies the inequality (e.g., [2]).

h<01D, @)

where D = 2a is the diameter of the plate. In accordance with the assumptions, the plate
is surrounded by a fluid medium with low self-resistance and the following condition is
fulfilled:

E;ko = pofM<< 1, (3)

Hence, instead of Eq. (1) we have
(V' =k*)n(r) =f(r)/Bo, “

where k* = @VM/B,. The disregard of term 2¢&1ko@ in Eq. (1) means that the influence
of the acoustic wave radiated by both surfaces of the plate on the form of vibrations is
disregarded.

Moreover, we accept that the amplitude of the factor inducing vibrations is as fol-
lows:

f(r) =

fo for 0<r<ay,
{ 5

O for ap<r<a.

where f = const. Accepted simplifications lead to a limitation of the range of application
of the solution to Eq. (4) depending on the frequency of the factor inducing vibrations.
The solution to Eq. (4) should not be applied to frequencies close or equal to resonance
frequencies.

In practice such a type of vibration excitation can be realized with, for example, two
flat circular electrodes with a radius a < a, parallel to the surface of the plate [1]. The
solution to Eq. (4) for a plate excited to vibrate by the factor (5) is as follows [8]:

__ T
25(y)

ni(r)/mo=1 {lyh(}’o)+gh(}’)[Jl(YO)No(}’)-i-

oD =SB LN 0 =700 M) 1|

inlhr) o el LI G0+ LRGE) (K () 1+

=Jo() [1(y0) Ki(y) = 11 () Ki(y0) ] } Jo(kr) (6)

forO<r<a,,
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n2(r)/ 70 -2—}55{—1};11(;@) 2100 [ Mo (1) +

Yo
25(y)

+N1(9)Io(y) ]}Jo{kf) - {l},h(}’o) +1i(y0) [KO(}’)J'l(}’) +

-Ki(y)Jo(7) ]}IO(kf) +% {h(}’u)Ko(kT) +J§r11( Yo) No(kr) ] (7

forap<r<a
where J,(x) is a Bessel function, I,(x) — modified Bessel function, N, (x) — Neumann
function, K, (x) — cylindrical MacDonald function, all are of the n-order.
The following notation was introduced:

y=ka, yo=kay, S(?)=Jo(?)11(?)+Io(Y)Jl(}’) ®
and
g I
o= -3 " )

The relative amplitude of the transverse displacement of points on the plates surface
can be expressed in a much simpler way in a special case when the whole surface of the
plate is excited to vibrate with a factor different from zero. If we accept ao = a (vo=7),
then instead of the solution (6) and (7) we have

M) m0= 1= 505 [ Do) + 11 (D olhr) (10)

and 12(7)/n0=0
2. Acoustic power

The calculation of active acoustic power radiated by the vibrating plate will be based
on the definition

N= % af »(F)v'(F)do (11

where p is the pressure radiated by the plate and v’ is a quantity conjugate with the
complex quantity of vibration velocity v. In the case of a circular plate with its vibrations
presented by the formulae (6) and (7), i.e., a circular source with an axially-symmetrical
distribution of vibration velocity the Hankel representation (6) for acoustic power is ap-
plied:

/2

N = poc ks [M(0)M"(9)sin0d, (12)
0

where
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a, a

M(9) = iw[fm(r)Jg(kgrsinﬁ)rdr + [ na(r)Jotkorsin®) rdr (13)
0 a,

is the characteristic function of the source. We calculate integrals from Eq. (13)
n/2

fokoa 2J‘ 1 [J1(€ow)
Mw ¥ : (w)4 Eg W +
- 3 L

2

N= pgc:ra2£3 (

~ Ul 1157 (0) = Wien, 1) Ja(w)| } sin 0, (14)

where €9 =ag/a, W = kgasint*and :
U=U(¢o,Y) =gi0}’5 [11(6'0}')10(}’) =Ii(&oy)Jo(y) ]= (15)
W= W(ea) =S [Ji(ea) (1) + 1i(201) (1)} (16)

It is convenient to use the notion of relative acoustic power N/N* in numerical
calculations N is the active power of the source for kg = 27/A — . If kg — o then
p(r) = pcv(r). On the basis of the formula (11), we reach

N =lim N = % poc [v?(F)do. (17)
ky— o 2 i
In the case of vibrations of the plate (6) and (7) the quantity N Gl equal to
f)_
(o) _ 9 0 0
N = pycma (Mm) 5(7) {2S(y) + &S(y0) +

+'§10(}’) T, [ YoJo(¥0) =37 1(70) ] -Jo(J’)Tz[ volo(y0) - 311 (y0) ] +

+gh( ) J1( y0) [}’oTs—- 3w, ] +J1(N 1 () [ YoT4-3W; ] +
2
=S 1 (10) + 55 [T o) = () o) | } 18)
where

Wa=J1(7%)No(y) =Jo(7)1(y0),
Wa=11(7)Ko(y) + Io(y)Ki(10),
Ty =J1(0)N1(y)=J1(Y)N1(10)
Ty =11(y0) K1 (7) - 1i(7)K1(10),
T3 =Jo(10)No(y) = Jo(¥)No(10),
Ty = 1o (y0) Ko( y) = Io(¥) Ko(70)- (19)
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The form of the quantity N ) is more elementary when the whole surface of the
plate is excited to vibrate with a factor different from zero. For ag=a, we have
=2/(my), W.=1/y, T =T,=T3=T,=0and instead of Eq. (18) we have
2

N®) = pgcnaz(% ) B, (20)

where

p=1-

SLinh(y) [ 3 2o ] (20a)

+
S(7) g S(y)
4. Acoustic power for high frequencies
The relative acoustic power gy = N/N for the case of ag = a( yo = y) is calculated on

the basis of the relations (14) and (20). We substitute £ = sin#and introduce the follow-
ing notations

a=koa, 6=k/ko=yla, (21)
Wo=(2/8)J1(y)11(7),
Uo=(1/S)[J1(o(y) = Ii(7)Jo(y) ]. (22)
We achieve :
oo=r5"ﬁ"1f C
Vi-¢#
{(6/5)11(05) (Q:Z)UoJ(aE) WoJo(ag) }? dt 23)

The integral (23) is converted into a form making oy analysis for high frequencies
easier on the basis of the LEvINE and LeppingTON method [3]. We introduce the function
of a complex variable

F(z)=[0/z-(2/0)Us 2T (az)H" (az) +
+2(2/0)UoWoJo(az)H: " (az) + Wo [ WoJo(az) +

~2(0/z)J1(az)|HS" (az) (24)
for
ReF(§) = { [0/~ (£/0)Un]J1(a&) - Wolo(aE) }>. (25)
The calculation begins from a contour integral

f zF( z)dz " 26)
c V1- St .

The integral is calculated for contour C (F ig. 1) m31de which the integrand is single—valﬁed
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and regular. We assume that.d < 1 (ko > k). The contour integral is noted as follows

1 © 0
f+ f+ f+ f=-21-Rez(z= d) +%Rez(z =id)+ %Rez(z =0). (26a)
0 1 Ry =
i§ o
urg\/l—z: =m/2
0 ? OSgetdid b
7

HG. 1. Integration path (see [3]) for the expression (26)

Contributions to the value of the integral (26) from small semicircles around singular
points with second order poles z = 6, +id and 1/4 arc of the small circle arround the
breakway point z = 0, which is a first order pole at the same time are calculated with the
following auxiliary taken into consideration:

N zF(z)
Fikt V1-2%(z+0)*(2%+ 62)2,
_ zF(z)
722 V1-2(2+i6)2(2%- 6°)%
Fo(z)= £ EL)

o : (27)
1 _ZZ (24_ 64)2
The contribution during integration over the big circle R.. disappears when its radius

oncreases infinitely. If we also take into consideration the fact that Re F(i ) = 0 for real
values of 7, we obtain from the expression (26)

1 1
Reof il 2dx=af 3

VIl oY) Vl—xzx
{[0/x = (x/0)Up | J1(ax) - WoJo(ax) }2
y dx

- Re{ i [%%m)»«ﬂ (8)+ 73 (ia)”+ 28)
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L]

"'f 5 2{[CUX—(x/é)Uo]z.I-.(ax)Nl(ax)+

' A sl (xt e 0
+2(x/0)UgWoJo(ax)N(ax)+ Wo | WoJo(ax) +
-2(0/x)J1(ax) |No(ax) }dx, [cont.] (28)
where the first integral is interpreted in terms of the main value the second integral is its
expansion to explicit form and the symbol denotes differentiation for an adequate argu-
ment of the functions ¥ and F,. The integral parts for the functions ¥ | (9), F2(i0) are
found after taking the following into consideration:

ReF(0)=0
2

ImF(d) = —n% (%) JH L) To(y),

2
F(f5)=i_;(%] L(y) (1) Jo(7)

2
ImdF’(5)=%(%) {%SL(}’)M}')—1%(}')[13(7)+J?(7)],

S

while Im7o(0) = - 67° is obtained immediately.
The integral from the formula (28) is calculated within the limits (1, %) on the basis
of known asymptotic expressions:

2
ReoF(i0) = - 2 (Z] {%Sh(r)h(}*) s RO LB - (29)

Ji(ax)N(ax)=-Jo(ax)No(ax) ~ (max) ™ cos2ax,
Jo(ax)Ny(ax) ~- (wax)™'(1+sin2ax),
Ji(ax)No(ax)~(mwax) "' (1 - sin2ax), (30)

for o — o, x > 1. Since the “non-oscillating” part of the integral is equal to

£ Q2U0Wox/(5+2lvl*06/x
—(mra)™? dx =
If \,xz"l(x4—64)2

_21(NI(y) {_1 1 1

+ + +
yS6° W1-02 2V1+6°

0’ 1 1
) T[2(1—62)3’2_2(1+62)3’2H’ G

then when we apply the asymptotic calculation method to the “oscillating” part of the
integral
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(| [(0/%)% + (x/6)2U3 = 2U - W3 | cos2ax
(mra) f +

X xz—l(x4~64)2

. [20/x)Wo~2(x/8) Uo W,  sin2ax }dx, (32)

Viio1 (x* = 6%)?

and take the value Re { 7i [-;- Fo(0)+F1(0)+F5(id)]} into consideration, we will

finally reach a formula for relative power in the following form:

S 1 )y 1 1
Oo= 1{—— 24 + +
&g S 2V1-62 2V1+ 62

+i[1f(r)[a’3(r)+lf(r)] J%(r)[fé(y)—rf(r>1}+

+
s? 2vV1-6° 2V1+ 0

o 1 o 2T
R o 7T W{ | 30009 - DB (1 i+

2

—%(11(}’)10(?) =1Ii(y)Jo(y) ]cos(2a+ m/4) +

. 22 [ 52 %}Q T (N o(¥) = L(1)To( 1)) ] sin(2a + :c/4)}} (33)

with the error 0(6*a™>'?),

For the case of frequency of a factor which forces the plate to vibrate equal to the
frequency of free vibrations, that is for

» . _Jl(kn) - |
6—6n’ Y“Vr:, a”_JO(}’n), S(}’rr)"'o (34)

we obtain the formula

_ 1 (1+a)? 1 (1-a,)?
O, =limoy(k)== =
kL“; of - (1—(5,2.)”2+2 (1+6ﬁ)”2+

254
72?1 - 54

5{(1-ai07) cos(2a+ n/4) + 2a,0,sin(2a+ 7/4)}.  (35)

identical with this published in [3].
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5. Acoustic power in specific case

For (ko/k)* = (a/y)* << 1 a simplification in the formula (14) was accepted

-2
[ 1 - (ko/k)*sin* 0] -l (36)
The condition (ko/k)* << 1 can also be substituted with another one, namely
LEWE P e CLatla | 37)
2a o E Y1

where 7, is the root of the frequency equation S(y;) = 0, corresponding with the pulsa-
tion w,, p is the volumetric density of the material of the plate, E — Young modulus, v—
Poissons ratio. As opposed to the inequality (k/ko )* << 1 the inequality (37) contains an
explicit dependence between the quantities &/2a, o/ w, and the so-called “material con-
stants”. Accepting ao = a, we have

n/2

e S Yy (esin®) a _
oo=(aly) B of [ © sng 5 Upsin?J,( asin®?) + (38)
- Wodo(asin®) )*sin?dd.
N/NZ[
20}
I ]
15| i
ST _/ .
i "
/// . \\
10|~ ”-ZE:E‘:‘E{—E:——
. 4 /s
I N 9/—
05 /
0 20T 3w

FIG. 2. Acoustic power radiated by a circular plate in terms of pulsation for different values of the
parameter bo . ao/a = 1 was accepted.
a-0.25; b- 0.16; c-012 d-0.1;
c-0.08; f—0.06; g—0.02.
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HG. 3. Acoustic power radiated by a circular plate in terms of pulsation for different values of the
parameter bo . ao/a = 0.5995 was accepted.

a—0.25; b-0.16; c-012 d-0.1;
c—0.08; f-0.06; g-0.02.
N/N=
i r\e
20 R
I b .E’\
A \
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L 2, \ / \
L N / \
L] Ty, S
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i ]
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/ \
L l \
\
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/
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FiG. 4. Acoustic power radiated by a circular plate in terms of pulsation for different values of the
parameter bo . ap/a = 0.7373 was accepted.
a-03; b-0.16; c-0.12 d-0.1;
c-0.08; f-0.06; g-0.02.

[331]
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After integration

2B00=1- 129 _2

—;Wo[ 1-Jo(2a) | +

J
+ qz{ZWng + 4U0 [l(%a)' —Ao} +ZyU0W0 [Ao —Jo(2a) ] +

+4iy2UE[AD—ZaJ-l(Za)—JO(Za)]}+q4U%A0, (39)

where g = a/y <1 and

Ao=Jo(20) +35 [J1(2a) So(20) - Jo(20)$1(2@) ] (40)

where S, (x) is an n-order Struve function.

6. Conclusions

Our theoretical analysis has resulted in an expression for acoustic radiated by a cir-
cular plate, including the factor forcing the plate to vibrate.

The performed calculations indicate that the relative radiation power N /N, in ac-
cordance with the formulae (23) and (33), accepts finite values for all values of the para-
meter koa, ka, even for those frequency bands in which these formulae should not be
applied because of the accepted ideal model of the vibrating system. Even for the bound-
ary values ka — ,, i.., the frequency of the factor forcing the plate to vibrate is equal
to the frequency of the plates free vibrations we obtain results which can be found in the
earlier papers [6] and [3].

However, it is impossible to discuss the boundary case (ka — ¥, ) for the radiated
power N, in accordance with the formula (14), and N{“’), in accordance with the formulae
(18) and (20), when their values increase infinitely due to disregard of damping effects
and the influence of the plates sound field on its vibrations.

There were several various values of the parameter ao/a, accepted in out numerical
example. This made possible the estimation of the influence of the factor forcing vibra-
tions of the plate, a, the radius a, of the central circular surface excited to vibrate was
changed. This case is illustrated with diagrams of acoustic power radiated by a circular
plate in Figs. 2, 3 and 4. Also such values of ao/a were analyzed, for which the volu-
metric displacement of the vibrating plate is equal to zero. In these cases exceptionally
unfavourable conditions for radiation should be expected.

[t was also stated that the frequency characteristic of radiated power (Figs. 2, 3 and
4) significantly depends on the plates thickness 4, its diameter 2a and material constants.
To this end calculations of radiated power were carried out also for various values of the
following dimensionless parameter

bo = koa/(ka)? = (h/2a)VE/[3pc3(1- )],

including the material constants, and is proportional to the quantity &/2a.
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