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Surface acoustic wave (SAW) propagating in arbitrarily anisotropic piezoelectric
halfspace is considered. The wave interacts with a perfectly conducting and weightless metal
disk on the substrate surface by means of the electric potential only which is coupled to SAW
due to the substrate piezoelectricity. A perturbation theory of scattering plane harmonic SAW
by the disk is presented which accounts the dielectric, and elastic anisotropy of the substrate.
The solution for electric charge distribution on the disk is given in a form of fast convergent
scries easy for computation. The total electric charge induced by SAW on the grounded disk
is explicitly evaluated. Angular dependences of the scattered SAW in large distance from the
disk is also discussed.

1. Introduction

Surface acoustic wave propagating in a piezoelectric halfspace is accompanied with
a wave of electric potential on the halfspace surface. Perturbation of the potential allows
scattering SAW. This phenomenon is exploited for some technical purposes in SAW
devices. The theory presented below concerns SAW scattering by perfectly conducting
elliptic disk on anisotropic piezoelectric substrate.

There are similar problems in acoustics and electromagnetics, where a rigorous
theory has been developed of wave scatiering by ellipsoid and, in limit, by disk [1].
Perturbation theories are also known for small disks [2], [3]. The problem considered in
this paper differs from the above ones at least with the substrate anisotropy. The
dielectric anisotropy of the substrate directly effects the electric charge distribution on
the disk induced by the incident SAW. This, and the angular dependence of SAW
velocity and SAW coupling to the electric field resulting from the elastic and
piezoelectric anisotropy of the substrate, influence on the angular dependence of the
scattered SAW far-field.
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The theory presented below is a perturbation one. It relys on neglecting of
piezoelectric interaction when the electric charge distribution on the disk is evaluated.
This simplification can be applied under the assumption of weak piezoelectricity of the
substrate or on the assumption that the disk diameter is not excessively large as com-
pared to the wavelength of SAW.

The formulation of the boundary problem considered is given in Section 2. Appendix
B shows how the problem for elliptic disk can be transformed into the problem for cir-
cular disk of unit radius. The transformation results however in anisotropic Green’s func-
tion, which is discussed in Appendix A. Section 3 presents the solution of certain
electrostatic problem for anisotropic dielectric halfspace (much more elegant solution
was recently presented in [18]). The key features of this solution are discussed in Appen-
dix C. Section 4 is devoted to the evaluation of electric charge distribution induced on the
disk by the incident SAW. The scattered SAW is considered in Section 5 where some
numerical examples are also presented.

Note. In the paper, several functions are represented in a form of infinite or finite
series which components, as well as summation limits are described separately in the
main text or in Appendices. To clarify the presentation of the formulas the symbols of
summation are usually dropt (there are notes about it however from time (o time).

2. Integral formulation of the scattering problem

2.1. Simplified description of the substrate electric property

Consider a traction-free piezoelectric substrate surface with electric charge distribu-
tion in a form of the travelling wave on it

AD, = pexp(jot - jk - r) ey

where the denotation AD, expresses well known relation between surface electric charge
and the discontinuity of electric flux density on both sides of the surface [4], @~ angular
frequency (in what follows, the time dependence will be droped), k — wave-vector, p —
complex amplitude of the surface electric charge.

Following [5], [6] the wave of electric charge results in the wave of electric potential
on the substrate surface. The potential complex amplitude is

d=G(w,k)p (2)

where G is the Fourier transform of electric Green’s function of the piezoelectric
halfspace (the considered Green’s function concerns the electric quantities on the
halfspace surface only).

Generally, G can be decomposed into three components describing three different
physical phenomena, dielectric property of the substrate, gencration of surface acoustic
wave or bulk acoustic waves coupled to the surface electric potential. A detailed discus-
sion of the function G is given elsewhere [7], [8], let us only note here that both two
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former components are singular functions of wave-number k, while the latter component
is usually bounded function of k.

In what follows, the latter part of G describing bulk waves is completely neglected,
however there are not any substantial difficulties in including it into considerations on a
similar way as the surface waves.

Following this simplification we have

1 k*-ko
M oy v

where k = |[kl|, and ko — wave-number of SAW for metalized substrate surface, k, —
wave-number of SAW for free substrate surface, £, — effective surface permittivity of the
substrate, all the above quantities depend on the direction of propagation of the wave k/k,
note however that due to point symmetry there is £.( + ) = £,(1?) and similarly for ko and
ke

Itis convenient to write the relation (2) in spatial representation as follows

@(r) = [[g(r;r") p(x')dS' 4)
S

where the integral is taken over the whole surface occupied by the electric charge. Ex-
plicit form of g is given in Appendix A.

2.2. Simplified formulation of the scattering problem

Itis shown in Appendix B how the problem for elliptic disk can be led to the problem
for circular one. It is done by suitable scaling and subsequent transformation of the coor-
dinate system. The following considerations concern the transformed spatial coordinates
where we have to do with circular disk of unit radius.

Let us consider the grounded disk which electric potential is zero. With help of (4)
this can be expressed in a form

- @'(r) = [[g(r;r) p(r')ds’ ®)
S

where r and r’ belong to the disk area S where ||r|| < 1, and @° is the incident wave
potential on the free substrate surface

@° = exp(jk,z) (6)

(for convenience, we apply the unitary potential amplitude and incident SAW propagat-
ing in —z-axis direction).

In the case of free (floating) disk where the disk potential can have nonzero value
(constant over the whole disk), the scattering problem can be divided into three parts
which can be solved separately.
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i) firstly, the solution for grounded disk should be found and the total electric charge
Q induced on the disk evaluated,

ii) secondly, an auxiliary problem should be solved for grounded disk with

— @° = V = const applied instead of (6). The total electric charge Qo over the disk should
be evaluated in this case, 100,

iii) the last step is to make a superposition of both solutions with V chosen in such a
way that Q + Qo = 0. The potential V is the floating disk potential induced by the incident
SAW.

The problem ii) describes also the generation of SAW by a disk supplied with an external
voltage, it can be solved on a similar way as the problem i).

The integral cquation (5) is very complicated and, generally, it can not be solved
exactly. However, for common piezoelectric substrates we can apply the assumption of
weak piezoelectric coupling, that is

Av/v = (ko - ky )k, << 1 @)

This enable us to apply the iteration procedure in solving (5), speaking in advance we
will perform only first step of the iteration.
Applying results given in Appendix A we can write

- @ =[[gfpds + [[g"pas ®)
S Ry

where g¥ is a singular function at r = r, while g" is a regular function proportional to
Av/v which value is relatively small. It means that the second component in (8) can be
neglected for all r in vicinity of r’, say forall r from the disk area S.

Following this simplification the first approximation 10 (8) is

- Jm k ejml‘?= p(rlﬁ') dx'd'=
% (kr) J;f 2are.(0-a/2) .

1 27 R(®)
— [[e(T-m2)T"dD [p(r, &)dr ©)
2y 5

where 7 = ||[r - r'||, #=arg{(r - r')/7} similarly r, #and r', ¥’ represent vectors r and
r’ in polar coordinates on the substrate surface (Fig. 1). The left-hand side of (9) is
— @ in polar coordinates r, . The equation (9) is the weekly singular Fredholm integral
equation of the first kind for charge distribution .

Confining our consideration to the first approximation, the far-field solution for the
scattered SAW can be evaluated with help of asymptotic representation for g~ (see Ap-
pendix A), that is

d(r— o0, 9) =g (1, 0)plr', 0")dS (10)
S

where pis the solution of (9).
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3. An auxiliary electrostatic problem

3.1. Arbitrary distribution of electric charge over the disk

Charge distribution which is a smooth function over the circular disk can be repre-
sented by a series (summation over m, n will not be explicitly marked troughout the

paper)

' ! TPI l“ jm
p(r, i )=o'mn(1_(—’ﬂ))ll,zej g (11)

where T, is the n—th order Tchebyshev polynomial and o, is an arbitrary constant. The
applied charge distribution (11) exhibits square-root singularity at 7' — 1 which is typi-
cal for the problem considered here [2]. The condition that p(r', @) = p(-r', @ + x)
constrains n in (11) to numbers having the same parity as m.

Substitution of the above representation into (9) gives the potential @ under the disk
(that is for r < 1) in the form (see Fig. 1 for geometric interpretation of r, and r)

2 (1-rp”

¢=%IJdT?X(§_ J[/Z)f!f(f], W' )dr, (12)

-(l-rl)
where x = 1/¢, and
ry=rsin(%- 17)
ra=7 +reos( - )

Y= ()

ﬂ'=§—%arg[ (=ra+jr)/(=ra-jr) | (13)

where arg {e’“} = a.

FIG. 1. Geometrical interpretation of integral variables.
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[t follows from (13) that the substitution can be made

ri= &sinn

ry=Ecosn (14)
resulting in variables

V=0 n

r=§ (15)
both dependent on r; and ¥, which applied to (12) yield

il s e
¢= 4E6fx(0—n/2)e’ dv | M(T—W“’ 'dr, (16)

~(1-r))

Let us introduce an auxiliary function f(r;) the domain of which is -l=ris1so0
that f(r,) can be further expanded into a Fourier series as follows

T,[(r}+r3)"7
W(1-1i-r3)"

(1-r))

firy=f

=)

4™y w Nicye 7

] =-

where

2.2

1 (1-r,) 2 2

1 ; Fithra
e1=3 [dre™ | SLevae)

2 2,172
-1 -(l-r:)m(l-rl r'Z)

le] )
e?™dr, (18)

We easily note that the integration area in the double integral (18) appears to be a circle
of unitary radius on the plane (4, r2) then applying new polar coordinates (14) the in-
tegral (18) can be transformmed into
L OETL(E) B e s
SEtal\b alEsing _—jmun
dE f /™5™ gy (19)

6[(1 _ 52)”2 4
The second integral can be evaluated as 27(signm )"J \m|( 7wl §) where sign{m} = +1 for
m =0 and -1 otherwise.

Now, with help of the relation given in [9] (rel. 2.13.30.2, p-209) for a>0 and

v>-1

1
Cl=§

fcos [ narccos{x/a)]

2 25112
) (@-x)

J,,(cx)dx = J[/QJ(,H',‘),'2(asz)J(v~;L)f2(aC/2)

where cos(narccos(z)) = T,(z) we obtain

ci™" = (:r/?.)z(signm)"'[Jlml—rwlllmlw—l +J&m|—u—1J|m|+»+1] (20)
2 2 2 2
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where the argument of each Bessel function J above is 7z//2. Also note that all these
Bessel functions have half-integer indices because m and n have the same parity. Upper
indices in the left-hand side of (20) mark the dependence of ¢; on m and n.

It is easy to prove that

Pl 0, for m=0 and arbitrary n,
e = -1)"*(1-n%", for m=0 (neven). (21)

Some further properties of the coefficients c are discussed in Appendix C.

Having f(r,) expanded into the Fourier series (17) the relation (16) gives after
simple transformation

¢=%ak,,xm_kc§*""ef“*’1m(mr) (22)

(note that there are summations over m, k and / in infinite limits and after » from 0 to ).
Taking into account (C.2) the above relation can be further transformed into

(kyn) b(k,r:)
1 f”np(-1)‘+ (”[)P for 10
D= O tm- 16" An(tlr) { LT i (23)
cftm forl=0

(summation after p —see Appendix C).

3.2. Particular case of charge distribution

Let us introduce a polynomial (m and n have the same parity, n = 0)

T,"(r) =Y wer, |m|sn (24)

k=|m|(2)

which is a Tchebyshev polynomial truncated from the lower side, the only components
left are these with power of r equal or greather than |m|. Note that & in the definition (24)
has the same parity as n. Also note that 7" = T, (neven)and T\" = T, (n odd).

Consider now a particular case of charge distribution over the circular disk in a form
(O — arbitrary constants, n = |m|)

™ (25)
It is shown in Appendix C that the electric potential resulting from the above charge

distribution in the disk area (r < 1) on the strength of (12) takes the form similar to (23)
but without terms (+1)"//7, that is (summation over m, n, land p as previously)
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0; for/=0andm=0
1 mo %"
D==CYm-r€"" " =1 Ja(mlr); forl=0 2
2 b Ko~ (-1) (nl)? ( ) (26)
c§®"); for/=0and k=0

where a®") can be expressed by aj“") by suitable superposition (C.5) (transforming (23) to

(26) we took into account that.J,,(0) = 0 for m = 0 as well as (21) and Appendix C).
Moreover, some components in (26) can be completely neglected because ([9], rel.
5.7.19.9, p.678)

2(— %> T (kx)=0 ; O<x<m, v-2n>1/2

k=1

It means that all components with p <|m| in (26) can be dropt independently on the
values of 0y, and a3*") .
Let us consider net, or total electric charge on the disk resulting from integration of
charge distribution (25) over the whole disk. We have (summation after even n)
1
T _ 1y
Q=ffpd§=2;rao,,f-(-{—"(§r))l—,2dr=2nao,,( L)% 2ef3 9 g, (27)
s 0 = F

=
1-n

4. Charge distribution induced by SAW

4.1. Approximation of the incident potential wave

In (9) the wave of electric potential coupled to incident SAW is represented in polar
coordinates. This representation can be further expanded with help of the relations given
in [9], rel. 5.7.17. (26) and (2) (below taken with 2 = 1)

< k+ 1 | il T om-v-1
E( -1) 2 5. (kx) = 54 cosec(amr)J,(ax)
k=1 =

o0

2(—1)"10(kx)=% i i e R £ BT
k=0

The result is (summation over m dropt)

0; for [=0 and m=0
Sinky imo < (T R
P s e IR -1)- e J.(xmlr), I=0 28
k, ,_,E_m( ) - () @
j for /=0 and m=0

where v=2form=0and v=0 form=0.
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As known, J,,(7lr) ~ INT for large / and r = 0. It means that the above series over
I is absolutely convergent for all m and 0 < r < 1 under consideration. Allowing certain
error of an order of O(1/N), components with large /, say with |/| > N can be omited
when the series is evaluated. Thus we can replace infinite limits of summation over [ in
(28) with = N, where N >> k, /.

Now consider Lagrange interpolation allowing representation of [/* - (k,/7)*] " ina
form of finite series of terms like /™%, p=1,2, .., N with strict equality of both repre-
sentations for |/| = 1,2, ..., N (see Appendix D). Applying this representation in (28) we
obtain series like

|m|+ v

N N ' k
/N ke | Ky
2 -1 B (ﬂ) Tn(lr)
=1 p=1
(v as above in (28)). Once more it is seen that the summation over / can be extended to
infinity with error of an order of O(I/N).
Finally, an admissible approximation to (28) is

0; for /=0 and m=0
z a0 N (m)
sink,, ; B
selDX e ___UC,JMI‘?E (-1) E £ — J.(xlr); [=0 (29)
k., g p-v+|m!(2)(ﬂ:l)p |
I for =0 and m=0

where summation over m is limited to [m| < M and B, appearing above are correspond-
ing coefficients of the Lagrange interpolation calculated for N dependent on |m), namely
for N, = N - |m|. Note that p varies from |m| + v to N by step of 2 so that both p and m

have the same parity. To obtain good approximation one has to apply large value of N, at
least to fulfil N - M >> k,, /.

4.2. Evaluation of charge distribution

A comparison of (29) and (26) makes evident that:

i) electric charge distribution induced by SAW can be expanded into a series like
(25), resulting in the similarity of both the above series.

i) the expansion coefficients 0, can be evaluated on the strength of equality of
similar components appearing in (26) and (29) at the same m and P

iii) when comparing the above series, components with p < |m| must be neglected what
ensures that the number of equations equals the number of unknown (see Section 3.2).

Adirect comparison of (29) and (28) takes place for every m and p = 0, and separate-
ly for free term at /=0 (only for m = 0). On the strength of (21), (27) the later gives
directly the total electric charge induced on the grounded disk by the incident wave of
electric potential of unitary amplitude (6)

sink,,

Q= (4/x0) x

(30)
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It follows from this relation taken for k, — O that the disk capacitance is [10], [15]
C=4/x (31)

The simultancous equations obtained as a result of the comparison ii) can be solved
numerically on the usual way. However note that for the simplest case of circular disk on
isotropic substrate, when only xo = 0 and the remaining ;= 0 the simultaneous equa-
tions are separated for every m. What’s more, the matrix of the equations has a triangular
form in this case (this follows from the triangular form of truncated matrix aj*"’ for
p =|m|, where the dot upper index means any particular value of m, sce Appcndlx Cand
the discussion at the end of Section 3.2, below (26), concerning zero-valued series of
Bessel functions).

It is seen that the above equations allow to evaluate all 0,,, except goo which can be
evaluated on the strength of (30) and (27). This concludes the evaluation of charge dis-
tribution on a grounded disk. It was discussed in Section 2.2 above how it can be ex-
ploited in the case of free (floating) disk. The simple result is that the disk potential
induced on the floating disk is V = Q/C = sink, /k .

5. Angular dependence of the scattered far-field
5.1. Asymptotic analysis of the scattered SAW

Relation (10) describes the scattered electric potential wave on the substrate surface
at point (r, ), far from the disk, where the wave can be considered as plane wave which
Poynting vector is oriented in direction 1. The double integral over the disk area S can
be evaluated on the similar way as the integral (19) in Section 3 above. Indeed, we have
after simple transformations with taking into account (C.2) (summation after m, n, k,
note that g is inversely proportional to Vr, see Appendix A)

m n)
y Lo m(6,+2/2) [ T (T,, T;) ' )
(p ffg pdS Lo W O € } ! f r )1’:2 Jm(rkﬂ)dr (34)

We easily note the similarity of every k-th term of (34) and (19), if only () is
replaced by k. Thus we can write

e Co 0, (O 12) Z(C}""") " t;(;'"”')cf""“) (35)
vr () =k,
Taking into account (C.2), (C.4) we see that
(m,n) (m,n)
Cea m(8,+2)| Gp i g
Do s T 00 cos(ml) + sin(7l) (36)
vr (xl)? (ml)? Cofs danr

where a, — see (C.5), similarly y, = (signm Pl - E dihhylmaly,

m
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Below we show that we need not evaluate all y,, but only y, (for m even). Indeed, it
is easy to prove that the right-hand side of (35) is a regular function at ks — 0, then (36)
should be regular as well. It means, that every term like acos(kg)/ks must be accom-
panied with term like ysin(ky)/kjust necessary to climinate singularity from the expres-
sion [ acos(kp) + ysin(ke)/ks]/ks at ko= 0. This allows to evaluate y for the given c.

Exactly, the expression in brackets in right-hand side of (36) can be rewritten as
follows

asCoS ks + yssinkyfks

208 kg + y3Sinkg/ks +

ks
sinkg/ky + ; for m even
}’l MR kt% Vi (37)
ink
acosky + yasinko/ko + echie 12}'481 ofke
? ; for m odd
ks

As we see, every y, can be evaluated from the given vector of a, this way, except y;
which appears only for m even and which must be evaluated directly from (35), (36). It
should be noted however that the above representation is not convenient for computation
for small value of kg in which case it is better to apply (35) and to evaluate suitable
Bessel functions (20) in ordinary way.

5.2. Numerical examples

All results shown below (except Fig. 11) were obtained either for circular disk of unitary
radius or for elliptic disk with main axes 1/a and « (that is for R = 1, see Appendix B).

ommmmmg0 2SS T g

FIG. 2. Diagram of electric charge distribution on a circular disk of unitary radius for k,, = . Left figure —
isotropic substrate, right figure — dielectrically anisotropic substrate (xo = 1, 2 = —j.2), upper part of the

figures — imaginary component, and lower part — real component of p(1 - rz)l"2 (see relation (11)).
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FIG. 3. Angular scattering pattern for grounded circular disk on isotropic substrate, kv = /2 (on left) and
ko= 3m/2 (right figure).

* l

| |
FIG. 4. The same as on Fig. 3 but for floating disk.

[400]
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FIG. 5. Circular disk on isotropic (lefl) or anisotropic substrate (right, the diclectric anisotropy only, the
same as in Fig. 2), forky = 7

FIG. 6. Isotropic substrate and elliptic disk with & = VZ, longer axis horizontally oriented and ky = 7vVZ
(left figure), and vertically oriented and kv = /¥ (right figure), incident SAW from top of the figures.

[401)
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FIG. 7. Isotropic substrate and 45” rotated disk wilh ¢ =2, ko = /4, a - grounded disk, b — floating disk, ¢
— radiation pattern obtained for unitary voltage amplitude applied to the disk.

The influence of dielectric anisotropy of the substrate on the electric charge distribu-
tion on the circular disk is illustrated on Fig, 2 for k, = 7. The case of isotropic substrate
is shown on left part of the figure, while the right one concerns substrate with xo = 1 and
%2 =—j0.2. The diagrams do not present the charge density directly, it illustrates rather

|

11G. 8. As in Fig. 7 but for k¢ = 77/2.
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|

|
FG. 9. As in Fig. 7 but for k,, = .

the relation (25) with square-root term dropt for better presentation of the charge dis-
tribution in vicinity of the disk border. We sec that the charge distribution is effected well
by the dielectric anisotropy of the substrate.

Figs. 3-10 show the angular dependence of the far-field amplitude S (see (A.12)) of
the scattered SAW, multiplied by vr. All figures are in the same scale except Fig. 10,
which dimensions are 50% reduced. A kind of normalization was also applied, namely
the values of the wave amplitudes were divided by Av/v for SAW propagating in z-
direction (in isotropic cases we simply applied Av/v = 1, sec Appendix A). In all cases
the incident wave propagates from the top to the bottom of the figures. As we see, in each
case the largest value of the scattered field takes place in the shadow area.

Figs. 2-9 concern mainly isotropic substrate, the scattering patterns are rather typi-
cal. Fig. 10 concerns Y—cut lithium niobate and incident wave along —Z-axis. The disk is
elliptic with main axes ratio 4:1, it is 47.2° rotated with respect to X-axis, as it is com-
monly applied for SAW reflection from Z to X direction. We observe large amplitude of
the scattered field in + and - Z directions. It is connected with small curvature of the
slowness curve in this case, leading to large value of Cy (see Appendix A) for 7= 90°
(detailed discussion can be found in [14]).

In computations, we applied limited angular harmonic expansion (25) with |m| up to
M =9 and finite series over n up to N = 14 for m even or N = 15 for m odd. This results
in simultaneous equations for real and imaginary parts of 0,,, of dimension up to 60*60.
Note that o, = x2, and x2,, =0 what results in

O_pn = (_1 )m G:rm (3 8)

so that the equations are separated for even and odd m. The calculations can then be
arranged in such a way that only components with m = 0 are to be evaluated. The conver-



FIG. 10. 4:1 clliptic disk (a = 2), 47.2° rotated with respect lo X—axis ol LiNbO3, Y-cul, incident wave in
- Z direction (vertical axis of the figures), ky = 7/2, a, b, c —as in Fig. 7.

40
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FiG. 11. The dependence ol total clectric charge ampliludc (2 induced on clliptic electrode on the electrode
length d (that is on the disk main axis which is perpendicular to the direction of SAW propagation). Vertical
axis in arbitrary units. The electrode width w is assumed constant, applied as a unit for figure horizontal axis.

[404]
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gence of the solution for charge distribution given in a form of (25) was checked by
applying different M and N. We obtain satisfactory results for wave-numbers up to 6.
The last figure (Fig. 11) presents total electric charge induced on the grounded ellip-
tic disk on YZ lithium niobate. The disk has one main axis of constant (unitary) length
w = D/a which is oriented along Z-axis of the substrate (that is in SAW propagation
direction), and the other main axis has variable length d = @D, the total charge is depend-
ent on (the vertical axis of the figure is in arbitrary units, the figure presents the relation
(30) with k, w assumed constant). In very coarse approximation the figure may be inter-
preted as concerning the detection “efficiency” of one (isolated) electrode of an inter-
digital transducer of SAW. As we see, the “efficiency” does not depend linearly on the
electrode length what may effect the performance of apodized transducers [8].

6. Summary

An anisotropic diffraction problem cannot be expected to be solved explicitly so that
computations are necebsa?’ The theory presented above allows to perform some com-
putations only once (a,™"’ can be stored and applied in all cases). It is worth to note that
important part of computations are performed with integer numbers («,, are integer num-
bers), however the value of these numbers grows very fast with m, n, p, so that applying
FORTRAN double precision variables on IBM-PC allows to perform exact computa-
tions with |m| < 9 and » = 15 only. This work was supported by grant 312129101.

Appendix A

With help of new spatial and spectral coordinates
k.=kcost; x=rcost
k.=ksin8;, z=rsint (A. 1)
the inverse Fourier transform of G (k) can be writtcn as

o 2
g(r, 9 = (Zx)'zfdkfe"‘”‘“‘“" Dy (60)do +

k (8) - k2(0) (2
—(2n)'2fdkf B e o T
-k (8)
where (n takes even values only because of polar symmetry of €,)
x(0)=1/c.(0) =£.(0+ )= Y xne'’ (A.3)
-o(2)

(2 in brackets means that n varies step 2).
First component of g is [11]

85, ) =5 = (D4 7/2) (A 4)
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while the second one can be transformed into
¥ e c AO+ O+ m/2)
r,M=02n dk
&ry 0)= (20§ Osz-ki(mﬁm/z)

allowing to apply Jordan’s lemma on the complex k-plane. The result is
o+ /2

g (r, 9) = j(4m) [[A(0") tho( )]0 D gy (A.6)
@-n/2

e_jrksinﬂda (A. 5)

where
Alkey = (ko + y) (ko — ko) (Kyee) = 2(ko - ky)/Ee = 2 Ak

The function g = g© + g* taken with arguments (7, 1#) describing vector (r—r') in
polar coordinates presents the electric Green’s function for piezoelectric half-space. This
function expresses electric potential at point r resulting from the point electric charge at
point r’, where both r and r’ are on the substrate surface.

Let us evaluate the relation between ||g¥]| and ||g"|| for the simplest case of isotropic
substrate. We have

gl /g™l < 7r Ak = 20( Av/v)r/A

where Av/v is of an order of .001 for week piezoelectrics and .01 for strong ones
(Av/v = .024 for YZ lithium niobate). The above estimation means that in all cases g
can be neglected when evaluating potential in the distance of about one wave-length A
from the point electric charge, and up to above 104 for week piezoelectrics. This justifies
the approximation (9) in the main text of the paper.

An asymptotic Green’s function g for large value of r (it follows from the above
reasoning that g" can be neglected in this case) can be obtained applying the stationary
phase method [12] to (A.6). Taking into account that

rer-r (A.8)

for r — o, where r is the distance from the disk center to point (r, 17), where electric
potential is evaluated, while (7', ') is the pointin the disk area, where electric charge is
placed, and r is the distance between these two points, we obtain

O, ) =g (r—=>o0, &, 0)~
F+m/2
~ji2m) [ x(6')Ak(8 )e ") A ay (A.9)
-n/2

Let us denote a stationary phase point as 84 (below we assume that there is only one
such a point). This is an angle, for which the Poynting vector of the wave with wave-
number k,( 8s) is directed to the observation point (7, ) (as known, the Poynting vector
is perpendicular to the slowness surface k,( '), here ¥ = 65[13]). The stationary phase

method yields
K o=ky(6s) (A. 10)
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C e
g(e.r, ) = zm‘;_ exp[jr'kacos( ' — Bp)]e?" % (A. 10)
; - [cont.]
T
Co=|— . X(89) k. B)

k(8 )cos(@ -1
P [k.(8 )cos( )]I
on the assumption that the second derivative in the denominator in C s is different from
zero [14]. Further transformations gives (phase term exp[ —jrkascos(? - 8,)] dropt)

’ ' Cl‘?
g (o, )= T
Let us define the amplitude of plane SAW as S, where Poyinting vector of SAW is
IT=SS"/2 by the definition of S. Unitary amplitude SAW propagating in z-direction is
coupled to electric potential of amplitude ., while propagating in direction #is coupled
to potential @,. Taking this into account one obtains the dependence of scattered SAW
far-field on the the angle #as follows

S(1) = B(9)[ P./Dy] (A. 12)

0 =6,

Ejm(rrkﬂ)e-jmt?'ejm(ﬂ,’2+ 8,) (A 11)

Appendix B

Let us consider an elliptic disk having main axes R/a and aR. The disk orientation
in the coordinate system x, z is described by rotation angle 6. The disk is transformed
into a circle of unitary radius on the (& &) plane, where new cartesian coordinate system
&, Cis defined by

z/R = (&la) (1 + a*1g’6y) Pcos 6,

x/R = [ a& - &(1 - a*)sin6y)] /cos by (B. 1)
(the new system is chosen in such a way that {-axis is directed along z-axis, it means
that the incident wave propagates along — {-axis in new coordinate system).

Consider a wave propagating in the direction that is ¢ rotated with respect to £ in the
new coordinate system, and the wave-number of the wave in new coordinate system is k.
In old coordinate system this wave correspond to (that is, it is transformed into) the wave

with wave-number £, and its propagation direction is rotated from x—axis with angle 9,
where

(1- a")tgﬂg +(1+ tgzﬂo)aztgﬁ'
9 1+a'tg’6,
k=sk' (B.2)

172

tg

1 (1+ a4tg290) "
TR a?(1 + g6 )cos* Lo e
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Note also, that the point described in polar coordinates by r" and @' in the new system
corresponds to point described in polar coordinates by r and in old system, where

r=r's (B.3)
On the strength of the relation (3) the amplitude of electric potential resulting from
the wave of surface charge fulfils

o 1 (skY-K_ 1 K- (kis)’
AD; £ (0)sk (sk') -k K[se(D] k- (kuls)

As we see, in the coordinate system ( & &) we obtain similar relation as in the original
system (3), but with & (') =s¢e(0), k' () =ko( /s, ky () =k, (F)/s with
= 9( ), instead of &, ko, k.

The relation (36) gives the scattered potential amplitude. In the transformed coor-
dinate system where the disk is a circular one with unitary radius. To transform the an-
gular dependent scattered potential @( ) into the original system of coordinates one
should take into account the relations (B.1). To apply it we need to denote polar coor-
dinates of the same point in the old system of coordinates as r and 6, while polar coor-
dinates in the new system (that is in the system applied in (36)) as r’ and 6'. With these
denotations the far-field potential wave is

() = o(0')(r' )" (B.5)

where 0= 6(8') and V(7 /r) term appears above as a result of the dependence of ¢ on
r (6 and 9 from (B.2) are different angles!).

It is worth to note that the scattered far-ficld amplitude can be also calculated directly
in the original system of coordinates, with applying suitable asymptotic Green’s function
and charge distribution expressed in the original coordinates. The evaluation of the in-
tegral (10) however, needs integral variable transformation leading to integration over a
circle. Both approaches give the same results.

(B. 4)

Appendix C

As known, it is for integer k

syt o, ot 20
-1 bl /8 i
Jra1p(z) =2 }P: [ i cos(z) + " sin(z) ]
where a and a? can be found elsewhere [16], and summation after p = 0 takes place in
finite limits. The above allows to rewrite (21) in form (for [ = 0)

1 _(myn) 2 _(myn)

cl=(:r/2)2(signm)'”(2 % cosz(m’/2)+2 - sin®(wl2) +

(l/2)? (ml/2)?
i :
TN BTG cos( /2 )sin( 7l /2 )) (C.1)

which can be further transformed into (cos(al) = (~1)')
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Py (myn) Py ‘gms")
¢ = n(signm)” cos(l) + +
1 p-g(z)(’”)}’ -Pztz)( ml)”
Py d(m,n)
sin( zl) (€1 2)

P
p-ra2f()"

The coefficients a, b and d can be easily calculated numerically, it is also easy to
check that the following Property I takes place
PROPERTY |

a) b})ﬂ, n) bfj n) =)

what means, that there is not the second component in brackets in (C.2) for m = 0 or
m=1,

b) in (C.2) the summation after p is step 2 and takes place in the following limits
(m and n have the same parity)

= 2 for m even or 1 for m odd,

Py=n,

P; =2 fornevenor 1 for nodd,

Py = |m|a

Ps =1 for m even or 2 for m odd,

Ps=n+1,

¢) in (C.2) the number of components of ( + 1)'//” kind is [m/2| (integer part of the
product for m odd).

The polynomial (24) can be written as a combination of Tchebyshev polynomials of
the lower orders as follows [16]

[m] -2

T =T~ 3 T (C.3)
k(2)

where #; are easy to find and where summation after k starts from O for m even or 1 for
m odd, step 2, to |m| -
The following Property II takes place for every m and n = |m|

ProprerTY 11

|m] -2

b= i €4
k

The formal proof of (C.4) is expected very tedious, but it is very easy to check it numeri-
cally. All numbers appearing in (C.4) are integers so that the numerical check of (C.4)
may be considered exact and sufficient for our purpose in the paper.

Now consider charge distribution in the form of (24). On the strength of (C.4) we
obtain the representation (26) for potential under the disk, where components like
( +1)'/I” does not appear and
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Table 1. Coefficients af,”" " and yi”" ") for some m and n = m in following rows, in subsequent
columns @), are arranged with growing p except the cases of even m, where in the first column y;

is presented.
y1 even) i az(m even) ag
m n a (m odd) :1 a3 (m odd) | as
0o | 2 1 E 2 I
4 1 1 8 72
6 1 ' 18 912 7200
8 1 i 32 5280 192000 -1411200
1 1 -1
3 -1 12
5 A 84 -720
7 = | 312 -13200 100800
9 o1 840 -104880 3528000 -25401600
2 | 2 B/ v o
4 0 : 8 120
6 2 l 22 1200 -10080,
8 0 E -32 6240 -241920 1814400
3 3 4 -60
5 -4 -100 1680
g 8 472 21840 -181440
9 -8 -936 146160 -5382720 39916800
4 | 4 8 i 80 840
6 -16 ll -128 -1680 30240
8 32 5 320 -11424 483840 -3991680
5 5 -16 1680 -15120
7 48 -3696 -35280 665280
9 -112 11184 -315504 12640320 -103783680
§ ithoil A ki o6 40230 332640
128 : 2560 -112896 -887040 17297280
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af™" - (signm)”'(a_f,’"‘ " E “w" )af,""")) (C.5)

k

Table I presents values of « for some indices m, n, and p. The calculation were per-
formed in double precision (18 decimal digits). Note that the values presented in Table I
are integer numbers so that their values can be considered as exact ones.

Appendix D

Consider an expression 1/(n* - £*) for e < 1 firstly. It can be expanded into a Taylor
series as follows

1! 0F .9 .08 +£”’ Sl
g - n 114

—2+—+...] (D. 1)
The Lagrange interpolation formula applied to (D.1) forn =1, 2, ..., N yields (below,
there is strict equality for n in the above limits, a, is given in rel. 3.1.1 of [17], for in-
stance)
1 _a

as asn
3T mIR AT el 2 N (D.2)
n-¢ n° n n

By comparison of (D.1) and (D.2) we see that applying a,=1, a,= ¢ ...,
ay=€"""") we admit an error to (D.2) of an order of ¢'/(1 - &) thus vanishing for
N — o. It means that a; — 1 for N — o, similarly a, becomes constant dependent on &
etc. This reflects fact that (n” — %) is close to n~ 2 for n > N — .

The above is difficult to prove for £> 1 s0 we show it numerically in Table I1 below
for N between 4 and 10 and for some ¢ (only a; is shown in the Table)

Table 2. First coefficient a; of Lagrange interpolation (D.2)

E\N 4 5 6 7 8 9 10
25 99999 1. i 1. 1. 3 1.
9 98270 1.0006 99998 1. 1. 1.

25 1.1978 97802  1.0016 99991 1. 1. f

39 19.927 -1.389 1.2903 97490  1.0016 99992 1.

95 54.608 -31.86 12.779 -1.833 1.4938 93439 1.0069

Most important conclusion is that at least the leading term of Lagrange interpolation
(D.2), that is the term @,/n’ became 1/n” for large N. So applying (D.2) beyond its
validity area, thatis foralln =1, 2, ..., N, ...%, we admit error of an order of 0( 1/N> ).
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