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ACOUSTIC PRESSURE OF A FREELY VIBRATING CIRCULAR PLATE WITHOUT BAFFLE

L. LENIOWSKA and W. RDZANEK

Department of Physics, Department of Technics
Pedagogical University
(35-310 Rzeszdw, ul Rejtana 16a)

Formula for an acoustic pressure of a circular plate under free vibrations without baffle
board is derived with the use of oblate spheroidal coordinate system. The result is obtained
in terms of a single series of spheroidal function products. The number of terms ensuring a
required accuracy can be determined numerically. The field radiated by a plate without baffle
is analysed for the first three vibration modes on the basis of their directional characteristics
and accounting for various values of an interference parameter h = 2sra/A.

1. Introduction

The knowledge of basic quantities that characterize an acoustic ficld is necessary to
employ plates and shells vibrating systems used acoustic diagnostic applicances as well
as receivers and transmitters of acoustic waves. It was not earlier than in the eighties that
detailed analytical investigations on the acoustic field radiated by a circular plate begun
Analysis comprised free vibrations [10, 11] and forced vibrations [12]. Damping effects
and modifications of wave emission by its specific field were also accounted for [8, 13].
Relevant phenomena were assumed to be linear and vary in time in a sinusoidal manner.
Relatively simple mathematical tools were used since a plate was considered to vibrate
in an infinite plane baffle. No such baffle board exist in real situations and the obtained
results were valid for sufficiently high frequencies only.

Acoustic fields around sources without baffles or supplied with finite rigid baffles
were analysed in [1-5]. Directional characteristics and impedances for pulsating and
oscillating piston with uniform wave velocity distribution were found by solving a wave
equation with the use of separation of variables in the spheroidal frame of reference.

To date, investigations have been taking on acoustic fields radiated by a circular plate
without any baffle or with a finite baffle. This subject is dealt with in this paper, which is
an extension of [7] and also refers to [1-5].

Properties of the oblate spheroidal coordinate system are used to derive a formula for
acoustic pressure of a circular plate freely vibrating without a baffle. The plate is as-
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sumed to be thin, homogeneous and clamped at the circumference; surrounding medium
is lossless. Employing the known solution for free vibration of such a plate, wave
velocity distribution is found and transformed to the oblate spheroidal frame of refer-
ence. Such a degeneration of the frame leads to a formula for an acoustic pressure in
terms of series of spheroidal function products. Since no standard numerical procedures
have been worked out to calculate values of spheroidal functions, an attempt is made to
prepare suitable algorithms. To determine eigenvalues of the wave equation and the ex-
pansion coefficients d;", Hodge’s method [6] is used. Angular and radical spheroidal
functions and the necessary derivatives of radial functions are calculated with the help of
recurrence relationships given by FLAMMER [15], to within an accuracy of 67 significant
figure after decimal point.

Directional characteristics are given for the first three modes of freely vibrating cir-
cular plate without baffle and — for the source of comparison — with finite baffle as well
as for a piston with uniform vibration velocity distribution are also presented. For wave
lengths shorter than the dimensions of considered sources the obtained results fully agree
with the characteristics calculated for a freely vibrating plate with an infinite baffle by
using Huygens—Rayleigh integral [10].

2. Vibration equation for a plate

Free vibrations of a thin homogeneous plate of density o and thickness H, small
compared with its diameter 2a, is described by an equation [16]

62W B 4

?-’-EV w=0, 2. 1)
where M is a plate mass per unit area, B denotes its flexural stiffness and wis a deflection
function. For a circular plate the equation (2. 1) is solved in polar coordinates and the
deflections are [16]

w(r, ) =w(r)e ™ =[AoJo(kr)+ Bolo(kr) e 2.2)

where
k* = wVMJB, (2.2a)

w — frequency, Ao Bo — constants, Jo — Bessel’s zero-degree function of the first kind, Jp —
modified Bessel’s zero-degree function of the first kind.

The vibration process is harmonic hence the equation (2.2) supplics the following
expression for vibration velocity

u(r, 1) =v(r)e™ 2.3)
v(r)y=AJo(kr) + Blo(kr) 2. 4)

where
A=-iwA,, B=-iwBy (2. 4a)
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The velocity satisfies the boundary conditions for a clamped plate :

v(r)| _ =0 2.5)
dv(r)|
= -0 (2.6)

Their use in (2.4) leads to the so-called frequency equation
Jo(ka)I,(ka) + J(ka)ly(ka) =0, 27)

whose solution is a series k= k; for [ =1, 2, 3.
On account of the formula (2.2a) the free vibration frequency for the (0, /) mode is

f=kiVM/B 2% 2.8)
Formula (2.4) becomes
ui(r) Jo(kia)
¥ =Jo(kir) T Io(kir) 2.9

3. Transformation of velocity distribution for the OSCS

The equation (2.9) will now be expressed in the oblate spheroidal coordinate system
OSCS with the use of the following transformation

x=b[(1-7)(E+1)]"cosg

y=b[(1-n*)(&+1)]"sing G.1)
z=bé&n
where
@pe<0,2r>, ne<-1,1> <0, 0> (3. 1a)

Due to the symmetry with respect to the z-axis, Fig. 1, the problem can be con-
sidered in the xz—plane by assuming @ =0 in the formulae (3.1). Since r* = x” + y® on
account of (3.1) we get

r=b[(1-n*)(&+1)]"? 3.2)

Denoting the surface of a spheroid on which the source is transformed by &, and
substituting (3.2) into (2.9), the following formula for the vibration velocity is reached in
the OSCS

U;( n, gﬂ)
A

Jo(kia)
Iv(kia)

=| JokbV (1 - P)(E+ 1)) - LkbV(1 -7 & +1)) | (33)

where 2b is a distance between focal points.
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n=1
L(E,n)

a n=-1

FIG. 1. Circular plate in the oblate spheroidal coordinate system.

4. Solution of Helmholtz equation in the OSCS

Let @( & 0, ¢, t) denote a potential of a velocity field radiated by a plate. For har-
monic processes can be expressed as @(§, 7, ¢, 1)

D(E N, @ t)=W(E N @’ 4.1)

In order to determine a distribution of the acoustic field around a considered source,

Neuman’s boundary value problem for the Helmholtz equation should be solved in the
OSCS

9 o gan’ _@_ .
5(1_ )5;’:"' c-(‘:: +1 ag (§+1 (1- ) h(&"""? (7?,§,¢7)-0
4.2)

where h = kob — dimensionless wave number (ko = 27/4). Boundary condition on the
surface of a chosen spheroid &= &, has the form

¥ 1 ¥

-v(n, &), 0=sy=1
an  hg OF { 0 ¢

-1=71<0

E=E

where v(n, &) —according to the formula (3. 3)

172
h EI — hg=b ( é;;ﬂ ) — the so-called scaling factor [15] 4.4

In the OSCS the equation (4.2) can be separated into two differential equations, each
being satisfied by its eigenfunction that depends on only one spatial variable — £ or 1.
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Due to the symmetry of radiated waves with respect to the z-axis (@ = 0), the solu-
tion for outgoing waves is assumed to be a superposition of eigenfunctions, namely

W(n, &)=Y ASS( ~ ik, MRS - ih, i) (4.5)

where A, constant coefficients to be obtained from boundary conditions, S&( - ih, 1) —
angular spheroidal function of the first kind, R%)( - ik, iE) — radial spheroidal function
of the third kind depending on the distance of a wave from its source. Asymptotic proper-
ties of radial functions [15],

E—bsw» (_i)n+1elh§,

hE.

are such that the assumed solution (4.5) does also satisfy Somerfield’s conditions.

RGX( - ih, i&)

(4.6)

5. Determination of coefficients A,

To find A, that appear in (4.5), the known function v(n, &) describing vibration
velocity of a source on the surface of a selected spheroid & = &, is expanded into a series
with respect to the angular spheroidal functions [17]

v(n, &) = 2 VouSon( = ih, 17) (5.1)

[n turn, to determine the expansion coefficients V,, the series (5.1) is multiplied by
an orthogonal spheroidal function S,,( — ik, 1) and integrated on the surface of
spheroid. The following expression for V,, is arrived at:

1

1
NN S & = - :
V. N,,,,(—ih)!h“'v(n’ E0) Son(~ih, n)dn (5.2)
in which the N,,(—-ih ) has the form

1
Nan("ih) drm’ =fSar:(_ih-a T])So,,'(—ih, T])d?’] (53)

=
On account of the condition (4.3), we get
IRG (=i, &)
&

Equating the corresponding terms in the series (5.1) and (5.4), we finally obtain

1 < ]
’U( 1, 50) Lo "E EAHSOH(_Ih, n)

>t 4

(5.4)

v f he,v(1, E0)Sa(=ih, n)dn (5.5)

Nl zh)REf,‘?( ~ih, &)}
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where
ARG (=ih, &)

REY (i, &) =

(5.6)

6. Acoustic field of a circular plate

To describe an acoustic field radiated by a plane circular plate with no baffle the
following acoustic pressure is applied

- .
F=py D(En, @ t)=-ipchW(E n) (6.1)

where p — density of medium, ¢ — sound velocity. The formula (6.1) together with (4.5) to
describe ¥( & 1) refers to a source on a spheroid &o. To make this solution valid for the
considered plate, the coordinate system must be degenerated by assuming &o = 0. We get

P( E? 7?) » _Iph EAJtSm(—ihv H)RE,,:?( _ih? lg) (62)
where
1 1 :
An=Nou(=ih) RS (<ih, 0)! S riandie o)
and
vi(n)=A[Jo(kiaV1l- n*) Jo(k'a)ln(k,a\/l ~5*)] (6.4)

" Io(kia)

7. Diagrams and conclusions

When analysis an acoustic field radiated by a circular plate without a baffle, two
cases can be examined each depending on a manner in which the waves are emitted by a
system with the plate as a source of vibrations.

Model 1. A ficld radiated by the upper surface of the plate. The source should be
assumed on the upper surface of spheroid and the field is to be calculated according to
(6.2).

Model 2. A field radiated by both upper and lower surfaces of the plate. In the ab-
sence of baffle this results in two axially located sources on the upper and lower surfaces
and vibrating in the counterphase manner. The coefficients A, (6.3) should now be cal-
culated from

-b

1 0
¥ 7 Son(=ih, d Son(—ih, dn (7.1
OETT L RIS S vi(m)San(=ib, m)ndn + f vL(m)Sa(=ih, ) ndn |(7.1)

0 -1

A
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FIG. 2. Directional characteristics of the first three modes of freely vibraling circular plate without a baffle

for h = 5; a — model 1, b — model 2. Curves are numbered according to the 1st, 2nd and 3rd mode.
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The distribution of acoustic field in the Fraunhofer zone is determined by a direction-
al characteristic

D= |p|flpqu| (7.2)

where p —acoustic pressure in an arbitrary direction, pm.x — Maximum acoustic pressure.
At a generic point of the field L (& ) that is sufficiently distant from the source, the
following relationships are relevant:
if
E— o , b=const, (7.3)
then
§|§ — r/b and 17— cosf (7.4)
On account of asymptotic properties of the radial function (4.6), the ratio (7.2) can be
rewritien to become

. (=)' AuSon(~ih, cos 0)

(1.5)

n

D=
2 ("i)"AnSou( = Iha 1 )l

11

10
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FIG. 3. Directional characteristics of the first three modes of freely vibrating circular plate without a baffle
for h = 1, model 1. Curves are numbered according to the 1st, 2nd and 3rd mode.
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FIG. 4. Directional characteristics for the second mode of [reely vibrating circular plate without a baffle for
various values of i; a —model 1,b—model 2, 1: h=1,2:h=5,3:h =10.
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F1G. 5. Directional characteristics for the first mode of freely vibrating circular plate for i = 5, model 1.
1 — without baffle, 2 — with baffle, b/a = 0.2.

With the use of this formula the directional characteristics were prepared for the first
three modes of the plate, different frequency ranges being adapted for each of the modes in
order to accentuate the differences resulting from the absence of baffle. In addition, a direc-
tional characteristic for a piston with uniform vibration velocities is shown it Fig. 2.

The characteristics for model 1 (Fig. 2a), plotted according to (7.5), arc found to
coincide with the characteristics for a plate in an infinite baffle (cf. [10, Fig. 15]),
provided the generalized interference parameter i > 10, (h = 27a/4) (Which corresponds
to wavelengths comparable with the radius of the plate or shorter ones). For smaller & the
characteristics are shown in Fig. 3. For a plate with no baffle it is the model 2 that seems
to be more adequate (due to the symmetry of directional characteristics with respect to
the middle surface of the plate), Fig. 2b and 4. Moreover, for plates whose radius is
comparable with the lengths of emitted waves a finite baffle is found to change the shape
of acoustic field around its source, Fig. 5. An effect of finite dimensions of baffles on the
directional characteristics of plate with be dealt with in a separate paper.
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