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THE SOUND POWER OF A CIRCULAR MEMBRANE FOR AXIALLY-SYMMETRIC
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This paper gives an analysis of the sound power with regard to the influence of a
radiated wave on the vibrations of a membrane. The vibrations of the membrane are forces
by time-harmonic external pressure. The source is placed in a rigid plannar baffle and
radiates into a lossless and homogeneous gas medium. Distributing a velocity in a series of
eigenfunctions, we could transform a motion equation into an algebraic system of linear
equations. As the final result of the analysis, a relative real power of self and free vibrations
for high frequency was derived using an approximate method. The expressions derived here
are very useful and convenient for numerical calculations.

1. Introduction

The problem of radiation of surface sources, specified as classical, still exists and is
very often considered. It results from the necessity of solving newer and newer theoreti-
cal and practical problems as well as from the upgrading of computational methods.

Lately there have been published solutions concerned with the interaction of plates,
membranes for axially-symmetric vibrations and also the interaction of two modes of the
same source. .

Recent studies [1, 48] are devoted to sources fixed in a coplanar rigid baffle and
radiated into a lossless gas medium. The paper [1] presents an analysis of forced vibra-
tions of a plate with regard to the damping effects caused by an internal friction and the
influence of radiated waves through a plate on its vibration. The second part of the paper
[1] also shows an approximate method of calculating real power by integration in a com-
plex space using an asymptotic expansion of cylindrical functions. The same results
were obtained in the paper [4] applying another approximate method.

With reference to the papers [1, 4], the present one is concerned with the calculation
of the acoustic power of a circular membrane set in a planar rigid baffle. The forced
vibrations are considered with regard to the influence of a radiated wave on the vibra-
tions of the membrane. The losses inside membrane caused by internal friction were
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disregarded due to the slender thickness of the membrane. The expressions obtained
have a simple mathematical form and can be the basis for further detailed numerical
calculations.

2. Damped vibrations of membrane

A circular membrane of a radius @ and surface density 7, placed in a rigid planar
baffle, is surrounded by a gaseous medium with a rest density po. The membrane is
excited to vibrations by an external force f(r, t) = fo(r)exp(-iwt) for 0 sr=sa. The
vibrations are modified as a consequence of the interaction of the medium with acousti-
cal pressure p on the membrane surface.

The equation of axially-symmetric vibrations of the circular membrane is as follows:

2
(Tvz—n%)s(r,rw(r, ()= 2p(r, 1), )

where & is the distribution of the transverse vibrations, T, the force stretching the
membrane, related to a unit length. Using known formulations for harmonic phenomena
between the displacement & () and normal velocity &(r) = iv(r)/wand the acoustical
pressure po(r) and velocity potential po(r) = poiw@(r), Eq. (1) could be presented in
a changed form:

(k;2V2+l)U(r)+2£1k¢(r)=—-?iajfo(r), 2

where k, is the wave number defined as k2 = nw*T, € = po/nk, k =274,
Let us present the normal velocity in the form of an infinite series of eigenfunctions

v(r) = ¢ va(r) 3)
in which
V(1) = VonJo(kur),0=sr=a (3a)
and use the orthonormality property :
fvn(r)vm(r)rdr=6mn (4)
0

for normalized velocity U,, =V2 /aJ(k,a) equation; the previous equations (2) turns
into an algebraic system of linear equations

#
c,,[%— 1) +2£ii2cmg,m,=f,, )

P m

The quantity f, expressed as

fl'1=n%05rf0(r)vn(r)rdr (6)
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is the coefficient of expansion of the external force into a orthogonal series, whereas
8mn 18 a normalized mutual impedance of axially-symmetric modes for free vibrations [7]:

ka - iw

G = 2(kna) (kya) [

0

where x = kasin6, y=V1 - (x/ka)* for 0 =x < kaor y=iV(x/ka)* -1 for ka < x < .

The real part of g,,,(m = n) can also be interpreted as a relative real power of free vibrations.
In order to calculate the acoustical power of a circular membrane let us use the
definition [4]:

J3(x)rdx
y[2° = (kna)®] [ X* - (kaa)?]

)

1
N=5fp(r)v(r)d0 8)
which, in the case of axially-symetric velocity (3), leads to
2 -iw
N = 5p0cok® S i f Wl 0YWi( 9)sin 0, ©)
m n 0

When we regard the value of the characteristic function W,,( ) [4] and the relation
(7), the acoustical power has the following form [6]:

N=7poco Y ¥ CmCulmn- 7 (10)

It is possible to reach another form of the formula describing acoustical power. Let
us multiply Eq. (5) by ¢, and the sum by #, then employ Eq. (10). The formula for the
acoustical power of forced vibration takes the form of single series:

_i,OoCo?L' ) k_p% o
N=5 ;[C"(kﬁ—ll ¢ ] (11)

where &, determines the influence of the wave radiated by a membrane on its vibration.
If we assume that the density of the gaseous medium is much smaller than that of the
membrane, £, approaches zero and then we get

2o\
cn=f,.(k—;—1] . (12)

3. The real power for high frequency wave radiation

Considering the linear phenomena sinusoidally dependent on time, the axially-sym-
metric vibration of a circular membrane can be described by Eq. (3a). For that distribu-
tion of velocity, the characteristic function [4] W, (1) for the (0, n) modal is as follows:
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Jo(kasint})
Wnﬂ': onkn-I kn N T L 13
() = vaksal(kaa) 7 a0 3 (13)
Basing on the relation (13) and expression [4]
/2
N, = pocortk® [ Wa()sin 0d0, (14)
0
the real power is expressed by the integral formula
xf2
J3(kasin®)sin ¢d?
N,=xm BPvtat(k.a)2Ti(k, 2 15
Poco (kna)“Ji( a)![(kua)z-(kasinﬁ)z]z (15)

Now, adopting the notations &=sin®, ka = f, O, = k,afka, the new version of the
expression (15) becomes

1
J3 d
e gt Rl (16)
No =5 V1-82(&- 60
The factor
No = 127pocovaa®J i (kya) (17)

specifies the radiated power for the n-th axi-symmetric modal velocity profile at vanish-
ing small wavelengths, viz. k — o [4]. The coefficient d, means a relative real power.
Let us introduce the function of a complex variable

F(z) =Jo(B2)Hy (B2), (18)
selected such that
Re F(&) =J3(BE), (19)
and consider the complex integral
F(z)zdz
(20)
!\/1 ey

instead of Eq. (16).

The contour C (Fig. 1) bypasses the singular point of second order at z = 0,, the branch
point at z = 0 and branch cut, between z = 1 and z = . The integral (20) is equal to zero.
This is the consequence of its single-valued and regular integrans within C. The contour
C consists of several parts; this can be written symbolically as

o 0
fodfefefef-0 @
0 v 1 R. =

The contribution of two integrals vanishes: from the large circular R.. when the radius
grows indefinitely and also the real part of the integral along an imaginary axis, what
results from the relation Re F(it) = 0, 7is real.
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F1G. 1. The integration contour C for pattern (20).

Then there only remains

o0

F(x)xdx F(x)xdx

)+ +
5 \/1-x2(x2-6,2,)2 AETA LR U e o T

J- F(it)itidt 22)
» V1+ 2 (2 +062)
where
F(z)z
F(z)= (23)
VIZ 2+ 5,)°
Taking the real part of the expression (22), we get a value of the integral (16):
Jo(Bx)xdx 4 e (Bx N.;.(ﬂx)xdx
=Re[ 7iF' (6,) ] (24)
f\’l X% (x* - 07)? f\/x—(
because
1 2
F (x xdx Jo( Bx)xdx
Re (24a)
f V1-x? 'or Vi <x il
Finally, the normalized real power radlated by the membrane is given as
2
: O L v S L), (25)

Oy =
( B 6’%)112 ( 6,% 1/2ﬁ3|'2

[n order to determine the last integral in Eq. (24), the method of a constant phase was
used. Besides, the cylindrical functions were presented in an asymptotic form, right in
the high frequency (ka = ) [3]:



438 W. RDZANEK AND P. WITKOWSKI

Jo( Br)No( Bx) = - S2Px) (26)

wPhx

For the case of fixed n and ka = o, i.e. when 0, = k,a/ka = 0 the result is

2

1 k,_,a 1 (kna :
0"_1+2(ka] - (ka)mcos(Zﬁ+ m4). 27
When the mode number  is large (k,a >> 1 and ka = ) what means that 9, is of the
order of unity; in this case, one can used the expression (25).

4. Conclusions

By using a distribution of velocity in a series of eigenfunctions, the acoustic power
radiated by an excited membrane with regard to the influence of a radiated wave on the
vibrations of this membrane has been derived. The solutions obtained have the form of
series (10), (11). Because of the high rate of convergence of series, the first solution (10)
is especially useful for numerical calculations. It results from the character of changes of
mutual impedance, the values of which are strong decreasing together with an increase
of the mode numbers m and n. The second shape of the solution (11), expressed by a
single series, is simpler but slowly convergent. It is the consequence of the small dif-
ference between the values of the cﬁ(kf/kﬁ - 1) and c},f, dependent on summation.

The real part of normalized self impedance obtained for high frequency consists of a
polynomial and oscillatory term. This solution is generalized of the pattern received in [8].
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