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THE ENERGY DISTRIBUTION IN THE FAR FIELD
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The theory of an arbitrary axi-symmetric Bessel mode in a circular wave-guide is reviewed
and applied to the analysis of the energy distribution in the far field outside the duct. The duct
is assumed to be semi-infinite and perfectly rigid, and the diffraction phenomena occurring at
the open end are taken into account.

The intensity directivity function as well as the power—gain function for every mode appearing
in the duct, with the diffraction parameter ka changing within the limits 0-15, has been discussed.

The formulae for the intensity directivity function were derived by applying the saddle point
method to the exact expression for the acoustic velocity potential. The first and second approxi-
mations are developed and the results of computed numerical characteristics are discussed.

List of symbols

a  wave-guide radius
A;  amplitude of l-mode
¢y speed of sound at an ambient condition
di(?)  directivity function in the first approximation
Dy(R,¥) directivity function in the second approximation
fi(z)  jump of potential at the wave-guide surface
Fi(w)  Fourier transform of fi(z)
Gi(a, ?) integrand in Eq. (6)
I() intensity of radiation
H Ll)( )  n order Hankel function of the first kind
Jn()  n order Bessel function
k  wave number
ka  diffraction parameter
K :”( )  power directivity function defined by Wajnshtejn
Iin Bessel mode numbers
N index of Bessel mode producing cut-off at a fixed diffraction parameter
p()  acoustic pressure
Py  power radiated by a spherical wave
P™ " power propagated with the I incident mode

(rad)
" 1

power radiated outside
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Rin complex reflection coefficient
Tin power reflection coefficient
T total reflection coefficient
sy pressure directivity function
SP)()  pressure directivity function defined by Morfey
stI)()  relative power directivity function
Sty intensity directivity function defined by Eq. (18)
v radial wave number
UR radial velocity
w  partial wave number
Wi(?)  second order contribution to directivity factor
!Pi,“‘( ) velocity potential of incident [ mode
@;()  velocity potential of I mode
1 partial wave number of [ Bessel mode
1 lrootof Jy
Cn  specific impedance of the environment
po  medium density
G()  power—gain function
*  complex conjugate

Other symbols used in the text are standard ones and are not listed here.

1. Introduction

Ducts, pipes and tubes in which sound propagates are called wave-guides for the reason
that they carry the acoustic energy so efficiently that it does not decay according to the
inverse square-distance law. These phenomena have been known for a long time, at least
as long ago as when man made use of his hands as a horn to be heard at a long distance.

Some experiments showing the propagation of energy in tubes were described a hun-
dred years ago by J. TYNDALL [1]. The observations were carried out by the famous
physicist, Biot, who noticed that the lowest whispear had been heard at the other end of
a 950-meter—long water pipe and that the firing of a pistol had put out the candle at the
outlet.

The efficiency of transmitting sound by pipes causes sometimes an undesirable noise
outside the outlet, even far away from it. The necessity often arises to damp this unwanted
noise for ecological, human-health, technological or other reasons. In everyday life these
problems appear in connection with road traffic and aircraft transportation, the last being
the most harmful nowadays. This is why there has been so much additional interest.

For this reason too, the investigations of the distribution of acoustic energy, radiated
out of the duct into the free space, is of great importance, not only theoretical but also
practical.

The problem of sound propagating in the circular duct and radiating outside has been
considered in a few different aspects:

~ the phenomena occurring at the open end — impedance of the outlet, reflection
coefficients, appearance of higher order modes in the reflected wave (WAINSHTEIN [2]),
ERIKKSON [3], LEVINE and SCHWINGER [4], SNAKOWSKA and WYRZYKOWSKI [5, 6]),

— ther acoustical properties of circular ducts with some additional geometry features
like nonuniform area, certain wall thickness, finite length (ALFREDSON [7], LUNDQVIST
and BOSTROM [8], HUDDE [9], ANDO [10], JOHNSTON and OGIMOTO [11, 12],
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- the propagation of sound in ducts with flow (JOHNSTON and OGIMOTO [11, 12],
CARIER [13], MORFEY [14], LANSING et al. [15]),

- the attenuation of sound in a duct with impedance-type boundary conditions
(RAWLINS [16, 17], TESTER [18]).

In the present paper we develop the intensity directivity characteristics for any axis-
symmetric Bessel mode which propagates to the open and where it is partly reflected and
partly radiated outside. We consider the far field taking into account all the diffraction
phenomena at the outlet. The method involved is the saddle point method called also the
steepest descent method.

It is undoubtful whether the energy relations in the acoustic wave radiating outside
are of great interest. Some authors working on the problem restrict their investigations
to the plane wave, maintaining the opinion that the latter represents the behaviour of the
system well enough. It is true as long as the diffraction parameter fulfills the condition
ka < 3.83 (the value of the first root of the Bessel function J;) when only the plane
wave can propagate along the duct without damping. Otherwise the principal mode
approximation can lead to important errors, as will be demonstrated in this paper.

In Section 2 the outline of the saddle point method is presented as well as the first
and second approximation formulas for the acoustical potential. In Section 3 the intensity
directivity function and the power—gain function are introduced, while Section 4 contains
the results of numerical calculations and conclusions.

2. Formulation of the problem. The saddle point method approximation

Let us consider the rigid semi-infinite cylindrical wave-guide of radius “a” stretching
from z = 0 to oo, with the z-axis being its axis of symmetry Fig. 1.
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FI1G. 1. Geometry of the problem.

We will only consider the axi-symmetric excitations whose time dependence is ex-
pressed by the factor exp(—iwt), w being the determined frequency of vibrations. We
assume that the single Bessel mode of a potential [19]

Jo(up/a)
Jo(u)
where 7, is the partial wave number related to the wave number £ by the following

PP(p,2) = Ay exp(—i12), (1)

relationship 7; = |/ k2 — p?/a?, p is the [ root of the Bessel function J;(.), is incident.
The wave equation solution which satisfies the hard wall boundary conditions (i.e., the
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decay of the radial vibration velocity on the wave-guide wall [19]) has the form [2, 5]

H(vp) Jy(va)

p>a
Hl(l)(,)a) J(]('Up) } X ds}nc(Ps 2)3 (2) ;

(H' +00
Pi(p, 2) = £ f dw exp(iwz)vF;(w){
—00 p<a
where w, v are partial and radial wave numbers, respectively, and w? + v? = k?, Fj(w)
is the Fourier transform of the jump of the potential :

fiz) = &i(p, Z)Ip—'M - Di(p, Z)|p—~a—' (3)
Detailed considerations are reported in [2, 5].

The next step is to apply the saddle point method to the expression (2). The method
was analysed step by step in our previous paper [20], so only an outline will be presented
here.

The expression for the potential (2) is different in two partts of space p > a and p < a,
as the potential must fulfill Sommerfeld’s radiation and finiteness conditions. The saddle
point method must be applied to the upper and lower form of expression (2) separately.
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Fii. 2. Contour of integration €' in a complex plane.

I — cut lines of the two value function beginning at the branch points.

The saddle point method is a well known approximate method of calculating the
contour integrals of the type

Iy = [ Gz)yexp(dg(2))dz, @)

where (G(z) and g(z) are analytic functions, A being the real parameter. To make this
method applicable to our problem, we have to assume that the wave number £ has a
small imaginary part. This assumption allows us to consider the integrand in Eq. (2) as an
analytic function and to adjust its form to the formula (3) that is, first of all, to eliminate
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the exponential function. For that reason we introduce the new complex variable a as
follows:

w = ksina, (5)

and apply the asymptotic form of the Hankel function H((,”(fvp) or Jy(vp) [21], depending
on what part of space we are considering. For further calculations it will be convenient
to introduce the polar coordinates (R, ?) so that p = Rsind, z = Rcos?. After these
steps we obtain the potential in the form

D)(R,J) = cexp (%) f Gi(a, ?) exp(ik R sin(a + 9))y/cosa da, (6)
Cy

the contour (' being plotted in Fig. 2. The explicit form of the constant ¢ and G(a, ¥)
for p > a and p < a were presented in [20]. The form of the above expression makes it
possible to deduce the next step, i.e., to choose such a contour of integration which passes
through the saddle point and on which the exponential function diminishes the fastest.
For who has some experience in applying this method the substitution of the form

sin(a + 9) = 1 + iz?, (7
is obvious, as the exponential function in Eq. (6) takes the form exp(ikR) exp(—k R2?)
the second term representing the function decaying exponentially with z2. For |[kR| > 1
and real k the major contribution to the integral comes from the neighbourhood of z = 0,
which corresponds to oy = 7/2 — 9.

In both parts of space p > a and p > a we finally obtain the same expression for the
velocity potential. In the first approximation the G';(«, 9) function has been replaced by
its value at the saddle point.

According to [20] in the first approximation we obtain the formula

B(R,9) = dy() 22D, ®

i.e., the spherical wave multiplied by the directivity function d;(17).

The second approximation formula has been obtained by expanding the integrand
G (e, V) and /cos a into series in the neighbourhood of the saddle point and by restrict-
ing our considerations to the terms containing the second power of variable z at the most.
This leads to the result

#i(R, 9) = D(R, 9) 22T ©)
where .
Dy(R, 9) = di(9) + WD), (10)

so in the expression for the directivity function the term depending on the distance R
appears. Its contribution to the field potential decreases with the distance R, but for
some values of £ neglecting this term would affect the results considerably, what will be
shown in the next section. It is clear that we can obtain the first approximation in the
limit £ — oo, so it is also called the “infinite distance approximation”. Because of the
rather complicated form of expressions for the above introduced quantities Fj(w), d;(¥),
Dy(R, ), we do not present their explicit forms in this paper. Readers are referred to
our previous paper [20] containing all the details.
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We should not forget about the limits applicability of the presented method. For the
real wave number k, the results obtained are valid for kR sin?? > 1, this condition
occurring as a result of applying asymptotic formulas.

3. Evaluation of physical quantities. Power directivity and power—gain function

Among many physical quantities useful in analysing the problem of acoustic far field
outside the pipe, the pressure directivity, the power directivity, and the power-gain func-
tions should be listed.

The pressure directivity function can be defined as a ratio of the pressure in the given
direction (1, ) and the pressure of an isotropically radiating point source of equal power
output:

sPU(R, 1, ¢) = |B(R, D, 9)|R. (11)
JOHNSTON and OGIMOTO [12] define the pressure directivity as
: R
S(P)(R,ﬂ, @) = Ip( 17-97‘19)|R’ (12)
PoCo

so using the well-known dependence between the velocity potential and acoustic pressure
it is easy to notice that
SO(R, 9, ¢) = ksP(R, 9, ¢). (13)
For the potential given by the formulas (8) or (9) the pressure directivity function (11)
is equal to |d;(9)| and | D;(9)], respectively, the index ! referring to a number of Bessel
mode propagating along the pipe and radiating outside. This quantity has been considered
for the diffraction parameter ka changing within the limits of (0-15), so now we will
concentrate on the quantities connected with energy distribution in the far field.
WAINSHTEIN [2] defines the power directivity function as the power radiated into a
unit solid angle in the direction connected with the velocity potential in the way

1
KD, ) = -Z-p',cnkzliﬂsz. (14)

R — 0. As Py = 1/2pycyk? is the power radiated into a unit solid angle by a spherical
wave of a potential ® = (1/R) exp(ik R), we can write the last expression in the form

KED(R,9,¢) = Py|®|*R?, (15)
and define the related power directivity function

c(I)
S(”(R, 9, ) = u}.ﬁM (16)
0

According to that definition, in the case of axis symmetric excitation, we obtain in the first
approximation as follows:

It is easy to find out that tfl; above is valid only in the infinite distance approximation

s{"(9) = |di(D)P”. )
MORFEY in his work [14] introduced the intensity directivity function, applied later by
JOHNSTON and OGIMOTO [12]

SD(R, V9, ¢) = pocol (R, D, p)R?, (18)
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where I(R,, ¢) is the power radiated into the unit solid angle in the direction (17, )

I(Rsﬂﬂ’) N (p(Raﬂ,(P)’U;I(R!'g! So))h (19)

vg being the radial velocity and ( ); denoting the time average of bracketed quantity. In
the first approximation, in accordance with Eq. (8) and pressure and velocity definitions,
we obtain for the / — Bessel mode propagating to the open end

Li(d, ) = %Pucnkzldjilza (20)

and
SR, 0,) = S(pocok 102, )
s0 comparing the last expression with the one proposed by WAINSHTEIN [14] we see that
S{P(R, 9, 0) = GK{"(R, 9, ), (22)

Co = pocy, being the specific impedance of the environment.
We extend Wajnshtejn’s definition so that it should be adequate not only in the
kR — oo approximation, writing simply that

K{"(R,9,9) = I(R, 9, p) R? (23)

In the second approximation the intensity calculated according to Eq. (9) is equal to

IR, 9) = { KpocoDy(R, 9)[ DR, 9) + Layw) 24)
R !

what gives the following intensity directivity formula:

SR, ) = Sk D, 0) [ttt 9+ )] @3)

It is easy to notice that the last expression differs from the one we would have obtained
using Wajnshtejn’s formula (14) which would be proportional to | Di(R, 9)|. The differ-
ence appears as a consequence of the phase-shift between the pressure and velocity, the
difference disappearing as the distance R — oo. The Wajnshtejn definition is valid only
in the infinite distance approximation, otherwise we use the formula for the potential (9),
in which the directivity coefficient D;(R,¥) depends on the distance R neglecting at the
same time the phase-shift between pressure and velocity.

After these remarks we can extend the definition of sSn(ﬂ) for the points in finite
distance from the outlet writing

SR, 9) = DR, 0) D, )+ i) @)
It is useful to compare the power radiated outside with the power transmitted by the

incident [ Bessel mode. To calculate these quantities we will remind the formula for the
potential inside the pipe [2, 21]:

Jo(up/a) . e Jo(npfa) .
F A Watod.rshlis i s 2 B Moo i nZ),s
Di(p, 2) I To(i1) exp(—iv;2) + ,,-URJ A Toin) exp(iyn2) 27
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where Ry, is the complex reflection coefficient being the ratio of the complex amplitude
of the n Bessel mode which appears in the duct due to diffraction and the amplitude [
of the incident [ mode, N is the index of the highest mode which can propagate without
damping along the duct at a fixed diffraction parameter ka(uy < ka < piy4+1). That lets
us calculate the power propagated with the incident mode [2, 19]

; 1
lec = EWGZP"C()]W}'”A[F, (28)

where ma? is the outlet surface.
Another quantity to be discussed is the power radiated outside [2].

P‘rad - I)linc [1 i (i |R1n|27—1:)] . (29)

n={) 7
the expression under the sum sign representing the residue part of energy in the wave
guide.
Introducing the power reflection coefficient as

g f
Pin = |Rln|2—£$ (30)
T
and total reflection coefficient as
N
= tin, (31)
n=0
we can express the power radiated from the pipe outlet [2] as
PP = P(1 - ). (32)

The power directivity function integrated over the total solid angle should be equal to
the quantity of power radiated outside:

2 T
[dg [ K@, p)sin9dd = PP, (33)
0 0

s0, having in mind the axis-symmetric excitation, we obtain

m
2n [ K{"(@)sin9 dd = P (34)
0
The quantity
K@)
G()= 35
G(?) Pfad/lh'r’ (35)

called the power-gain function indicates what part of outside radiated energy has been
shaped in a unit solid angle and it is obvious that

f G(V9)sind di = 2. (36)
0
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4. Results of numerical calculations. Conclusions

In the previous Section some of the features of the considered quantities have been
presented theoretically. The results obtained allowed doctor J. Jurkiewicz from the Noise-
Lab to derive the numerical programme to calculate the intensity directivity function and
the power—gain function and to analyse the results obtained with dependence on the mode
number, diffraction parameter and the distance from the output.

=180

06 03 03 06
T 1

=0
1’:]w4 2 Y 0 2 ; &
Fic 3. Intensity directivity Re ¢, 7’3 for ko = 7 04 and various values of
kR : kR = co (continuous line), kR = 7 (dashed line) and k12 = 21 (dotted line).
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FiG. 4. Intensity directivity pattern Re 35” for ka = 15 and various values of
kR : kR = oo (continuous line), kR = 30 (dashed line) and kR = 45 (dotted line).
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The assumption was made that the single Bessel mode allowed for the fixed diffraction
parameter, propagates towards the open end. The diffraction phenomena at the output
was taken into account. In all the considered cases we assumed the unit amplitude of the
incident mode.

Some of these graphs are not drawn for the angles near the axis as the saddle-point
method condition kR sin® ¥ >> 1 is not fulfilled there.

In Fig. 3 we present the intensity directivity patterns Re SSI)(R, ) for the principal
mode (plane wave) and the two succeeding modes which can propagate along the duct
without damping at the diffraction parameter ka = 7.04 (for kR — oo the intensity
directivity function becomes real). Analysing them we notice that the amount of energy
radiated outside is the greatest for the principal mode incident. Comparing the graphs
representing the infinite distance approximation we see that the maximum values of the
intensity decrease with the mode number and in the analysed case they are related one
to another as 1 : 107! : 1072, respectively. But we have to remember that the ratios of
energy carried by the incident modes are k : ; : 7, that is 1 : 0.68 : 0.058.

For the first approximation (k E — oc) the maximum bends aside the axis, the stronger
the higher mode is considered staying always on the axis for the plane wave.

In the presented Fig. 3 the value of the diffraction parameter ka was chosen to be
close to the cut-off frequency of mode two (I = 2). We have also analysed (Fig. 4)
the date obtained for the diffraction parameter close to the cut-on frequency of the next
mode, i.e., ka = 10 (the above mentioned cut-off and cut-on frequencies are equal to
7.02 and 10.14, respectively).

The graphs presented in Fig. 4 indicate how the modes, up to [ = 4, radiate outside.
In the infinite distance approximation the maximum value varies from about 14 (for [ = 0)
to 0.14 (for [ = 4), being for [ = 2 equal to 1.01 that is about thirty times more than
for ka = 7.04 (Fig. 3). The incident plane wave intensity maximum value for ka = 7.04
does not differ much from the one obtained for the first mode | = 1 and ka = 15, the
last one being shifted at about 15 degrees from the axis.

From the above presented figures (Figs. 3 and 4) we conclude that the correction
obtained in the second approximation is valid especially for the higher modes and larger
values of the diffraction parameter. In the second approximation (dashed and dotted
lines) more loops in the directivity patterns appear.

As it had been mentioned before, the maximum value bends aside the axis with the
mode number increase, so the occurrence of the higher order modes in the incident wave
can strongly influence the radiation patterns, especially for angles off the first loop of the
plane wave radiation.

Figures 5 and 6 present the intensity directivity patterns for kR — oo and different
values of the diffraction parameter. The results obtained for ka = 1 are in good agree-
ment with these obtained by G. W. JOHNSTON and K. OGIMOTO [12] as a limiting case
in considering radiation out of the finite length duct. The graphs in Fig. 6 show how
the power—gain function changes if the diffraction parameter ka increases from the value
close to the cut-off frequency of mode 1 (3.83) to the value close to the cut-on frequency
of the next mode (7.016). The principal mode has always its maximum in the forward
direction (¥ = 180°), while the maximum of the first mode bends towards the axis with
the increase of ka.

In the next two figures (Figs. 7 and 8) we present the power—gain function for different
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Fic. 5. Intensity directivity function sgf ) for various values of diffraction parameter:
ka = 0.5 (continuous line), ka = 1 (dashed line) and ka = 1.5 (dotted line).
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FiG. 6. Power—gain function for modes (-2 and various values of diffraction parameter:
ka = 3.85 (continuos line), ka = 5.5 (dashed line) and ka = 7.0 (dotted line).

[537]
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L ekl = ¥=0
224 12 a 12 224

FiG. 7. Power—gain function for modes () — —2 and various values of diffraction parameter:
ka = 10.0 (continuous line), ka = 12.0 (dashed line) and ka = 15.0 (dotted line)

modes and different values of ka. The directivity patterns have always one narrow loop
which shifts from the axis with the mode number increase, but for the same mode (n = 0)
its maximum bends towards the axis for larger ka.

The next figures show how the power—gain function of the fixed angle changes with
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FIG. 8. Power—gain function tfor mode 3 and various valucs of ditfraction parameter: ka = 12.0
(continuous line), ka = 15.0 (dashed line) and ka = 17.0 (dotted line) and for mode 4
and two last values of ka.

the diffraction parameter ka. Figure 9 presents the power—gain function of the principal
mode for ¥ = =« (radiation forward) in the range of ka (0-15). In the range of ka
when only the plane wave propagate, it is in good agreement with the results obtained by
H. LEVINE and J. SCHWINGER [4] who assumed that ka < 3.83.

In Figs. 10 and 11 we can observe tha backward radiation (¥ = 1 rad) as well as
the radiation in the outlet plane (Y = 7 /2). A regularity connected with the succeeding
mode appearance is observed. At the cut-on frequency the power—gain function of the
respective mode achieves its maximum value, which is for all the others modes equal to 0.

Figure 12 presents the power—gain function for ¥ = 57/6 and we see that in that
direction neglecting the higher order modes can change the results considerably.

In fact many more graphs have been analysed and that has led us to the following
conclusions:

— the directivity patterns of acoustic pressure, intensity and power-gain function depend
strongly on the number of the Bessel mode incident

— the maximum values bend aside the axis with the mode number increase

— the correction obtained in the second approximation is valid especially for the higher
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FiG. 1.2. Power-gain function for different modes and 9 = 57 /6.

modes and larger values of the diffraction parameter

— a regularity connected with the succeeding mode appearance is observed.

From the above presented results it is undoubtful that in many analyses of the energy
distribution the plane wave approximation can yield significant errors.
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To some extent, this paper was presented on the 28th Open Seminar on Acoustics and

was honoured by the M. Kwiek price of the second degree.
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