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1. Introduction

It is well known that the uniform velocity distribution on a baffled piston results in a
directivity pattern with lateral lobes. To improve that directivity, it is necessary to look
for variable velocity distribution. The first one computed was Gauss curve distribution
[8]. The directivity index has the form of the Hankel transform (zero order) of the
velocity distribution [6]. For that reason the Gauss distribution has no lateral lobes in the
directivity pattern — the transform of Gauss curve is a Gauss curve, too. In the paper
[7] we have computed approximately for that source the directivity pattern R, the real
part of relative impedance 6 and the imaginary part x. We denote by “a” the radius of
a baffled piston. The velocity amplitude distribution u(r) (r — polar coordinate on the
piston) takes then the form

u(r) = uy - "V, (1)
In the above formula “n” denotes a gauge factor. In the paper [7] the approximate
method of computations used was based on the assumption that the contribution to the
value of the integral transform for r > a is negligible. In that situation we can extend the
corresponding integrals to infinity. Of course the accuracy of the approximation is better
when n is greater. In that manner we obtain integrals easy to be computed in a closed
analytical form.
In the present paper we give the accurate computations — we compute the correspond-
ing integrals in the limits from 0 to “a” and compare the results with the appoximate ones.
For that reason we accept the following velocity distribution on the piston

u(r) = {“" ‘# STu9STS 6y )
0 r>a

Nevertheless, to maintain the continuity of our reasoning we begin by reminding the basic

formulae of the approximate theory [7]. This is necessary also from another point of view.

In the paper [7] we did not use the gauge factor n and the corresponding formulae must

now we written in a corrected form. The near field of such a source was computed in [9].
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2. Theoretical basis of computations and summary of the approximate method

According to the paper [6], the directivity pattern of a source with symmetry center
and the velocity distribution u(r) has the form

R(ka - siny) = % j‘u(r) < Jo(kr - siny)-r- dr. (3)
0

In the above formula () denotes the volume output of the source. .Jy() is the Bessel
function of zero order, k the wave number, - the angle between the field point direction
and the “2” axis perpendicular to the piston at its center. The formula (3) represents the
Hankel trans[orm of zero order of the function u(r) [8] in the case when u(r) equals 0
for r > a. In our case (2) the directivity pattern equals

R(ka :siny) = ———— comess; H" f Tk Jo(kr - siny) -7 - dr, 4)

If we take the upper limit of the integral (4) “co” instead of “a”, we get the approxi-
mate value

Z'W‘U()

Q

The source output () equals (for the approximate case)

o <]
R(ka -siny) = f e (%Y Jo(kr - siny) - r . dr. (5)

T nry2
Q=2-7’r-u.,fe'(_a')-r-dr. (6)

0
Computing the elementary integral (6), we get

Q =w-ug (%)2 )

The integral in the formula (3) is given in tables of integrals [2 p. 731] and with Eq. (7)
we get the directivity index (5) in the form

R(ka -siny) = e~ 2, (8)

It is, as we may expect, a Gauss distribution, too.

As we know, by increasing “n” we decrease the error of the approximate method,
but simultaneously we deterloratc the directivity. We will see it exactly, later on, in the
discussion of the results.

Now we begin the computation of the real part @ of the specific impedance of the
above considered source and its imaginary part x. In the case of a uniform velocity
distribution we have [6] '

K-S

O(ka) = e ij(ka-sin 7) - siny - dv, 9)
0

where S denotes the area of the piston. In the case of variable velocity distribution we
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must introduce in the formula (9) a coefficient £ normalizing limy,_ oo 0 to unity. Then

k* -8
2T

O(ka) = K- ij(ka -siny)-siny - dy. (10)
0

It is sufficient to examine the classic reasoning leading to the formula (9) to understand

that it was computed by equating the acoustic power radiated on the source to the entire

power in the far field. In the first case, that power expressed by 6 is proportional to the

mean value of the square of velocity amplitude. In the second case it is proportional to

the square of the output, i.e., to the square of the mean value of the velocity amplitude.
Therefore the coefficient x equals

2
(W),
Sometimes it is possible to compute x immediately from the condition
lim f(ka) = 1. (12)
ka—oo

Of course the formula (10) is a general one and, depending on the substitution — accurate
or approximate value of R(ka sin+), we get the accurate or approximate value of 8(ka).

We know two methods of computing the imaginary part from the real part . The first
one consists in computing the Hilbert transform of the real part:

+m6
x@a)=%—j‘x52a-d$ (13)

The second one, developed by RDZANEK [5] consists in substituting, in the formula (10)
cosh 1 instead of sin and integrating from 0 to oc.

x(ka) = % . [‘TRZ(ka - cosh ) - cosh ¥ dip. (14)

The formulae (13) and (14) give us an accurate or approximate value depending on the
accepted value of R. Returning to the approximate method, we confine our computations
to the results given in the paper [7]. We have the coefficient computed from the formula
(11) in the form :
K= % (15)
n
The following formulae are simpler if we introduce the so-called diffraction parameter w

w =

(16)

ST

We write, according to (7)

0@0:2-%-D(%) (17)

where the so-called Dawson integral or Dawson formula [1] is given in the form

L]

12

D@)=e= [ .. at (18)
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The imaginary part of the specific impedance was computed in [7] by means of the Hilbert
transform (13) and has the form
2

X:ﬁ.%.e—(% (19)

The calculated values of R, 6 and y (for the approximated method) will be shown in
corresponding figures together with the accurate ones. An interesting result is obtained
by equating Eq. (19) to (14); of course we must substitute in the last one the value (16)
for k. Writing z instead of ¥, we get

o0
f et o’ T L cosha - de = "\/tj dal a
0

The formula (20) gives a new definite integral, until now not computed and not given in
any tables.

3. Accurate method — directivity index

Our starting point is now the formula (4) where we have the source output . That
output must be computed exactly ie., instead of the formula (6) we write the analogous
integral but in the limits from “0” to “a”. We obtain in that way

a
Q=21 -w f e~ . r . dr (21)
0
The integral in (21) is an elementary one and owing to that output () takes the form
a\? 2
@=r () -0-c) @)
n
Substituting Eq. (22) to the formula (4) for the directivity index, we get it in the form
{ 2y (E)Z i —(mry? !
R(ka siny) = —— f e~ &) . Jy(kr -siny)-r-dr (23)
1—e™"

0
In the formula (23) we introduce a new variable
z=-, (24)
a
and get
2-n?

e~

1

fe_“z'xz ~Jo(ka -siny -z) -z - dx (25)*
0

The r.h.s. of the formula (25) may be integrated. To simplify the integration we denote

ka -siny = b. (26)

R(ka -siny) = :

and

:c=%-y. 27

* The author is grateful to dr J. Janczar for analytical integration of (25).
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Then:
2.n? b =n? 2
B = o L ¥ T Tt . (28)
0
We use the integration by parts and obtain:
G s el
R@)=eﬂ__lz%ﬂn% e b;ﬁ). (29)

One must check whether the directivity pattern equals “one” for siny = 0. In that case
we have b = 0 and [2]:

ti Jm+2(b) s 1 (30)
b—oo hm+l (n + 1)!.2m+1’
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FIG. 1. Directivity index for ka = 3 versus v degrees for n = 1;2;3.
Accurate solution (solid line) and approximate solution — (dashed line).

The directivity pattern equals then:

1 &0ty 1 2
= = "1 =1 31
ki e ngl m! en? — l(e ) &8
Of course we have for b < 1

R(b) ~ 1. (32)

For b > 1 and b > 2n? we have approximately:

2

prip & BT (33)

eMagr b7



548 PROPERTIES OF A SOUND SOURCE. . .

10
£ Pt

E \\\\\
o \ \\
o 08 L3 N, X \\
- \ =™
;'_;‘ \\ \ \\\ \"‘\____‘___
¥ o6 — h§\h\

b

: \\ \ \
.- I~
x 04 N \ x...,__..._______
"c‘)’ \‘ — =
B N \
P Mg
: -
T 02 = =
e [ ~
3 : “'L._‘_._ \L‘\‘—

BT Rt s e o b S .J,‘a‘.‘.“;—,_"TT'.—."-,—..—.—‘

0 20 40 60 80
y [degreel

Fi1G. 2. Directivity index for ka = 4 versus v degrees for n = 1;2;3.
Accurate solution (solid line) and approximate solution (dashed line).
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FiG. 3. Directivity index for ka = 6 versus v degrees for n = 1;2;3.
Accurate solution (solid line) and approximate solution (dashed line).
or finally:

2n?  Jy(kasiny)
n* _1  kasiny
Of course, for convenience we may always write formally:

R>(ka - sinvy)

1—e "

R(kasin7y) =
: €

R(kasiny) = - Fi(n, ka - sinvy),

(34)

(35)
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Fic. 4. Directivity index for ka = 12 versus v degrees for n = 1;2;3.
Accurate solution (solid line) and approximate solution (dashed line).
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FiG. 5. Directivity index for ka = 20 versus v degrees for n = 1;2;3.
Accurate solution (solid line) and approximate solution (dashed line).

where R°°(ka - siny) denotes the approximate value.

The enclosed figures (Fig. 1-5) represent the directivity index versus the angle vy for
different values of ka. The continuous line represents the ,,accurate” values, the dashed
line the approximated ones. It is easily seen that the difference between both values is
considerable for n = 1, still observable, but small for n = 2 and practically does not exist
for n = 3. We notice also that that difference decreases when ka increases. We see,
therefore, that for n = 2 and ka > 6 it is possible to use approximate formulae instead
of accurate ones.
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4, Specific impedance of the source computed from the accurate formulae

The real part of the specific inpedance is computed from the formula (10) substituting
for R(kasinv) its value (25). In the formula (10) the coefficient x appears and express
itself by the formula (11). We thus begin with the computation of that coefficient. We
have in turn: the mean velocity amplitude on the piston

u . ‘zfd ju(? dr 2% | -5 L dy 36
B am— i = ce— € a . . 1
0 0 0
Performing elementary integration, we get
Um = i (l—e") 37
n

The mean value of the square of the velocity amplitude equals
s U2 = a2
2y, sedmsti) “2AZE)Y .
(") m o “,f e r-dr (38)

The integral (38) is an elementary one, too and we get
2
u

2 0
U=
(W )m 2.-n?

Substituting Eqs. (37) and (39) into Eq. (11), we obtain

-(1-e™) (39)

2 iR —n?\2
ettt QLo T (40)

In the so-called “approximate” case we integrate both formulae (36) and (40) from 0
to infinity and get, of course, the value (16) computed by means of another method.
Returning to the formula (10), we write it now in the form

ka , (1- e~y

O(ka) = (?) ij(ka -sin7y) - siny - dy (41)

(1-e2?)
By means of the formula (35) we can write Eq. (41) in the form

m

. f Tt Lo F*(n,ka -sinvy) - siny - dvy (42)
0

ka., 1
(ka) = (F) Lo
We are here computing the imaginary part of the specific impedance ka by means of the
formula (14), i.e., by substituting in Eq. (42) cosh ) instead of siny and integrating from
0 to infinity

-fe‘%(w)z-Fz(n,ka-coshw,b)-coshif)‘dgb (43)

ka 1
¢ IEIR kit L
x(ka (n) : u

— e—n?

The numerical evaluation of (43) is difficult owing to the infinite limit of the integral, and
strongly increasing function cosh . To avoid this difficulty we may apply the following
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substitution [5]:

1
coshtp = —— (44)
sin @
Of course we have:
sint - dip = ——C_OSZ(P ~dep (45)
sin“ @

a,x n=1
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F1G. 6. The real ¢ and imaginary part y of the specific impedance versus
ka for n = 1. Accurate solution (solid line) and approximate solution (dashed line).
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FiG. 7. The real @ and imaginary part x of the specific impedance versus ka for n = 2.
Accurate solution (solid line) and approximate solution (dashed line).
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FiG. 8. The real  and imaginary part x of the specific impedance versus ka for n = 3.
Accurate solution (solid line) and approximate solution (dashed line).

From the formula (45) we get:

_ cos 1
dp = - ‘; ot ~de (46)
sin? @
or:
s e #7)
sin ¢
We get also:
cosh - dip = — siifcp (48)

The adequate limits of integration now are:

(e
Y = e

(49)

Reversing the limits of integration and changing the sign we obtain finally:

™

iy B 2
R S W O S R N

— p—2n?
1—e - sing/ sin®

Figures 6-8 illustrate the dependence f(ka) and y(ka) for both accurate (solid line)
and approximate (dashed line) solutions for the values of n = 1;2;3. We see that for
n = 2 we have practically the same results for approximate and accurate solutions — for
n = 3 there are no differences. We see also that for ka > 6 and n = 2 the computed
source has very good directivity qualities.
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