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Attempts to provide least-squares estimates of all 31 independent thrid-order nonlinear
electromechanical constants of alpha quartz using the resonator method produce parameters
containing third-order elastic constants linearly combined with the remaining three types of
electromechanical nonlinearities: electroelastic, electrostrictive and dielectric.

To maximize the yield of the resonator method in terms of these latter three types of
nonlinear constants, the third-order elastic constants must be “imported” from an external
source. They can be introduced, with the same effect, before or after the least-squares process is
executed. Their reliability is crucial for the quality of the electroelastic constants and apparent-
ly (considering the size of their respective standard errors) less important for the electrostric-
tive and third-order dielectric constants.

A comparison with the results of others, yielding in most cases an excellent agreement, is
facilitated by introducing uniformity into the values of the linear constants used for their
determination. This produces changes in the calculated nonlinear parameters but does not
remove the few differences which were noted.

1. Introduction

Interactions between the dc electric field and alpha quartz provide valuable
information about its material nonlinearities. One of the methods exploiting this
principle is the resonator method. It is based on observations of the changes in the
resonance frequency of quartz resonators induced by a dc electric field acting on the
crystal material.

The current set of the experimental data provided by the resonator method has
been used before (in part) e.g. by HRUsKA [7] and by HRuskA and BRENDEL or (in total)
by HRuska [8]. The last work resulted in the determination of the complete set
electroelastic constants of quartz, several electrostrictive constants, some isolated and
others in combination among themselves or with the (only) third-order permittivity of
quartz.

In the process of all above applications of the resonator method the third-order
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elastic constants of quartz were employed which were determined much earlier by
THURSTON, McSKiMMIN and ANDREATCH [18]. This was done so because the main
thrust of the past work was directed towards the determination of other third-order
material constants regarded as unknown or unverified. The third-order elastic cons-
tants were employed with little thought for whether or not it was actually necessary.
The consequencies of this decision, in either case, have not been considered. To do so is
the main objective of this work.

In the course of the work an attempt must be made to determine all four
third-order electromechanical nonlinearities in quartz from the resonator method
data. This produces results which are completely independent of all other nonlinear
material constants determined earlier and invites a comparison with the results of
others. In the past such comparisons were made without the benefit of assured
independence of the compared quantities and,disregarding the fact that different
authors use different sets of the linear material constants for their computation. In the
comparisons made here this past omission is rectified.

The numerical values of all quantities (generated or referenced) in this paper are
stated for right-hand quartz and its basic frame of reference according to the IEEE
Standard 176 of 1978 [20].

2. Experimental data

The study of quartz nonlinearities made in this paper is done using the resonator
method. It is based on observations of the linear coefficient L of the dependence of the
resonance frequency f of quartz resonators on the dc electric field E applied to their
body. This phenomenon has also been known as the polarizing effect or the electroelas-
tic effect. The linear coefficient of the frequency—dc field dependence is defined as
L = (1) (df/dE)g-o.

The observations of the linear coefficient L used in this paper are the 184 values
listed in [9]. They have been accumulated over a period of twenty years and originate
from HrRuskA and KHOGALI [12], KINIGADNER [21], HRUSKA, MERIGOUX and KUCERA
[13] and from HruskA and BRENDEL [11].

The observations of L were obtained for a variety of doubly rotated rectangular rods
vibrating in length and plates vibrating in thickness. To describe their orientation an
orthogonal frame of reference is used whose axes X', X’ and X’ are fixedly connected
with each resonator and parallel to its thickness ¢, width w and length [, respectively. This
reference frame is related to the basic frame of reference X, X, and X, (denoted
respectively X, ¥, and Z in [20]) through the following matrix of the direction cosines

X, X, X,

Xl oy @y 043
X5| 0y 0y O3
X3| a3y 03p %33,
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The orientation of both the rods and the plates relative to the basic frame of
reference is also stated in [9] and given using the IEEE rotational symbol
(XZIwt)y/$/0 [20]. The values of the corresponding direction cosines «,, which are
needed later are fully calculable from the orientation angles y, ¢ and 6. The dc electric
field E acting on the resonators is always in the direction of X, (resonator thickness)
related to the basic reference frame by the direction cosines o, ,, o, 3.

3. The model of the linear coefﬁcient L

The model linking the observations of the linear coefficient Lto the nonlinear
material tensors of quartzis based on the nonlinear theory of dielectrics. Its most recent
version described in [8] is recorded as follows

L= Amuskr fursxe + Bunis Ianis + Crrs* %mrs + Drsxomn  Cokemn +E. (1)

It relies on the earlier results by BAUMHAUER and TIERSTEN [2], BRENDEL [5], TIERSTEN
and BALLATO [19], KiTTINGER and TicHY [14], HRUsKA and BRENDEL [11], HRUSKA
[7], and HruskA and BreNDEL [10].

The model presents the linear coefficient L as a linear function of four third-order
nonlinear material tensors: ¢y, the third-order elastic stiffness tensor; lvnis, the
total electrostrictive tensor; fy k., the electroelastic tensor; and x,,gs, the third-order
dielectric permittivity tensor. The electrostrictive tensor Iy, is defined according to
NELSON [17] and consists of the relative electrostrictive tensor and the Maxwell
vacuum electric-stress tensor (Eq. (54), [17]). All these tensors are defined in the basic
frame of reference of quartz according to [20]. They are defined for zero strain and zero
electric field in the crystal material.

The coefficients Ayyx7, Byniss Crrrss Prsximn, and the absolute term E in Eq.(1)
are functions of the known second-order (linear) material constants of quartz and of the
resonator orientation and mode of vibration. Their definition given in [8] will be
restated below.

All uppercase indices used above and throughout the paper take on the values of 1,
2,3. The Einstein summation rule is in effect everywhere except where explicitly stated
otherwise.

Two types of resonators and vibrations, thickness modes of plates and the
extensional mode of rods, provide the experimental values of L used in this paper. The
definitions of the coefficients Ay ;yx., Bynis Carrss Drskian. and the absolute term E in
Eq. (1) need to be given for each type of resonator separately. For the rods they are

0 r
Ayvpkr = 5FABSB:SCDalMaAIfxBJaCK’IDL, (2)

BMNIJ’ =0, (3)
Curs =0, 4)
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. !
Dyjkimn = 3 F'yp853¢pd1 R % a1 %8s %ok %L XEM XFN> (3)

1 Ff I ! dl’ r df 6
E i 5 "8533cp(Crpepdar + Crpasdicr)s (6)

where

Fiup = (2034—034038+024028+014018+02401p+014028)54p33/53333,  (7)

S4B33 = 53348 = CAr%Bs %3k X3LSIIKL (8)
: = ®3L8 )
83333 = %3503 %3k X3LSIIKL>

r
dyap = 010450k drsk- (10)

In Eq. (7) the Einstein summation rule is not in effect for the indices A and B on the right
hand side of the definition of F';p.

The expressions for the coefficient Dy yy and for the absolute term E in Egs. (5)
and (6), respectively, do not appear in [8] explicitly. However, they are obtained from
the absolute term C there (Eq. (7), [8]) after it is recorded as a linear function of the
third-order elastic stiffness tensor components cpjxrmn

C = Dijkrmn cuxun +E. (11)

The above definitions (4)(10) contain some material tensor components the
meaning of which has not been defined. They represent: s;;x;, the tensor of the elastic
compliances, and d; g, the piezoelectric strain tensor. They are both related to the basic
frame of reference. d,,; is the Kronecker delta.

The definitions of the coefficients A5k, Buniss Curss Drsxmn, and of the
absolute term E in Eq. (1) for the three thickness modes of vibration of plates are

Ampxr = (1/2 Doyt lylg—2roy yo g lidree), (12)
Bynts = (1/2 A)ggttmoyn(2roy sl — 12 oy rdrys), (13)
Cicns . == 207 oty ntlis; (14)
Dyykimn = (1/2 oy pos oy glylgdrpns (15)

E = (1/24) [ory 101 (o1 OkmOrn + 01 LNl
+ o1 10wl demncroxe + 0150 L (2rog plydrix — o1 x) ekl (16)

where

r = ookl ers/( 4% 8E 4B)- (17)

The expressions for the coefficient D ;g ) and for the absolute term‘ E in Egs.(15)
and (16), respectively, are obtained from the absolute term C (Eq. (11), [8]) after it is
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recorded as a linear function of the third-order elastic stiffness tensor components
cryxmn s done previously for the rods (Eq. (11)).

Again, all quantities on the right-hand side of Eqgs. (12)-{17) are defined in the basic
frame of reference. Those that have not yet appeared in this paper are explained now.
They are: ¢k, the elastic stiffness tensor, ey, the piezoelectric stress tensor; and &y,
the dielectric permittivity tensor. The constant g, is the permittivity of free space.

The quantity 4 and the amplitude vector (1,, I,, [5) of the plate vibrations in Egs.
(12)(17) are the respective eigenvalue and eigenvector of the matrix

where (I'1x),
ik = oty g% 1Crakn + %% g0 m% Lenrsemir/(%1 401 BEaB)-

The three generally existing eigenvalue-eigenvector pairs of the above matrix corres-
pond to the three thickness modes of vibrations of the plates under consideration.

4. Calculation of the nonlinearities

Returning to Eq. (1) and its preparation for the calculation of the third-order
material constants of quartz, the upper case tensor indices there have been contracted
to their lower case matrix form. The interchange symmetry among the uppercase
indices and the symmetry of quartz have been taken into account and the conventional
choice of the independent material constants made. Eq. (1) has taken on the form

Li=ai finn+an firs+ais fiia+aia fiaz
+ s f12a+ 86 f13a+ Qi7" fraa+ais fa1s
+byliy b lia+bis-lis+big-lia
+bis l31+big la3+big-lyg+big lag
+¢ i1 :
+diy ey tdip criatdiz ezt diacyratdistegas
+dis* Cr2a+diz  Cr33+dig* Cr3a+dio Craa+diyo Cyss
+diyy - Craa+dina 333 +diss  Caga+disa Cagat+E,, (18)

where
flllsfl139fl14vf1225f1245f1349.f1445f315 (19)

are the eight independent €lectroelastic constants, and
Liis Lizs Ligs Dias Lgs D3as Lags Laa (20)

are the eight independent electrostrictive constants, and

%111 (21)
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is the (only) independerit third-order permittivity constant of quartz, and
Ci11s> €112> €113> C1145 €1235 €124, €133

C134; C144 €155, €222, €333, €344, Caa4 (22)
are the third-order elastic constants of quartz.

The conversion of Eq. (1) to Eq. (18) is straightforward but tedious and, for these
reasons, its details are not given in this paper. The index i has been added to various
quantities in Eq. (18) in preparation for its application to all 184 observations of the
linear coefficient denoted now L, i=1, 2, ..., 184.

All thirty-one material constants (19)—(22) are the fundamental material constants
of quartz related to its basic reference frame. In agreement with the tensors in Eq. (1)
they are defined for zero strain and zero electric field in the crystal material.

Aiming at the determination of the nonlinear constants (19)-(22) Eq. (14) was
applied to all observations of the linear coefficient L, Due to random errors in the
experimental values of L, this led to an overdetermined linear system

Li—E; = a;; fi11 ¥ 62 fiiz+ a3 fi1a+aiaf122

+ ;5 f12a+ Gis " f134+ i7" fraa+ s f315

+bilii b i+ bis-lis+bialis

+bis I3 +big I3+ big Loy +biglaa

+C;" %111

+diyrci+dip e tdiz ez tdin criatdis Ciaa

+dig 124+ din €133+ dig Craa+dio  CraatdigoCiss

+diyy €22+ dina c333+dina C3aat+diza Casas (23)

wherei=1,2, ..., 184.

The thirty-one material constants (19)+(22) were sought by a least-squares fit to
this system. Prior to this a brief analysis of the system matrix and of the random errors
of its left hand sides was necessary.

The matrix of linear system (23), to be referred to as M, consists of four concatenated
matrices, a;, (j=1,2,...,8), by, (k=1,2,...,8), ¢, and dy, (I=1, 2, ..., 14). Ap-
plicability of the least-squares procedure requires that the elements of matrix M be
known with total accuracy. As they are functions of the linear material constants of
quartz as well as of the resonator orientations this requires a concession that they all be
regarded as known without errors. This concession naturally extends to the absolute
term E; in Eq. (23) which is a function of the same quantities (Eqgs. (6) and (16)).

The experimental values in the observed coefficients L, are thus regarded to be the
only source of random errors of the left hand sides of system (23). Subsequent analysis
suggested that the measure of random errors in L; are the variations in this quantity
among resonators of identical orientation rather than the standard deviations of obser-
vations made for individual resonator units. It was not possible to estimate these
variations for about one third of the observations of L; in system (23) as some of the
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resonators were specimens of orientations dissimilar from other resonator used for this
project. For this reason the least-squares procedure was executed using equal weighting
of the left hand sides of system (23). :

Two of the columns of matrix M, d;; and d,, ,, were found to be identically equal to
zero. An additional fourteen columns, b;y, big, and d, [ = 1, 2, ..., 0,8;9-10. 11, 13, 14,
were found to be linearly dependent on the remaining columns of matrix M. As a result
the least-squares fit did not yield the values of all thirty-one sought constants (19)+22) but
rather only of fifteen parameters, most of them being linear combinations of these
constants rather than their pure values. sl

The quality of the least-squares fit attained can be seen from the statistical indicators
obtained during the least-squares process (MENDENHALL and SINCICH [22]): the sample
multiple coefficient of determination R? = 0.9976 or the analysis of variance F test
value = 4,707.

The values of the calculated parameters and their standard errors are placed in
Table 1 and marked Solution 1. The definitions of the parameters in terms of the
fundamental third-order material constants (19)22) are presented in Table 2.

Table 1. Third-order nonlinear material parameters and fundamental material
constants of alpha quartz determined by the resonator method

Solution 1 Solution 2
nonlinear parameters nonlinear constants

this work according to [8]
R 2354005 T 2.16+0.05
K54 0.28 +0.07 EiRE —0.43+0.07
Kiis 0.60+0.04 257! 0.16+0.04
Rida —0.73+£0.03 iz —1.12+0.03
<5 1.3740.02 Sioi 0.74 +£0.02
Biag 1.72+0.03 Fisi 1.65+0.03
Kiia —0.04+0.03 Tia) 0.01 +£0.03
Kiis —0.78+0.03 91 —0.78+0.03
Ko =30 £09 i =31 109
%i3 =87 26 l,;+2.0001,, —-9.1 +26
) —24 +06 Ly —-23 106
kyy —11.24+3.0 l,,+2.0001,, —11.243.0
kys =17 169 L3 —1.7 +6.9
ki —-4.7 +0.7 ki —4.7 $0.7
8iiy (—24425)-1072 %,,,—2045:10"23],, (—24425)-1072"

Parameters k;; and electroelastic constants fi5 are in N/(V.m), parameters
k, and electrostrictive constants l;; are dimensionless, parameter q,,, and
third-order permittivity constant x,,, are in F/V. The numerical coefficient
2.045-10"**atl,, isalso in F/V. Theerrors are standard errors. Given for room
temperature, right-hand quartz and the frame of reference according to [20].
Solution 1 can be converted into Solution 2 using Table 2 and the third-order
elastic constants according to [18]. Both solutions are calculated using the
linear material constants of quartz taken from [3].
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Table 2. Definition of third-order nonlinear material parameters of alpha quartz calculable by

the resonator method
kyyy =i +2310-1072¢,  —2310-10712¢,,, —0.727-10" e,
kyy 3 =115 +2310:1072¢; , ~2310-107 3¢, ~0.727:107 ¢, 5
ki = £ ,4+2310; 10~ '%2¢,,,—2.310-10" b2 a0 2% 10520l
kysy =f12g +2.310-107 2¢, | +2310-107 3¢, |, +0.727-107 e,
+1.454-10712¢,,, —4.620- 10" '%c,,,
kiyy=f124+2310-107 e 1. +6.930 10~ 2%¢,,,—0.727- i
ky3q =1 34+4620 1(]"2c134~0.7'2';'-10’125344
Kiad =f144+2.3]0-10’12c144—2.310-10"20‘55—0.727-10“%444
kyis =Ta1s
ky, =1, +1205-10"'%¢c,, —0603-10"'2¢,,,—0379-10"}?¢,,
+0.3’1‘9-1()“20”4-#().060-1‘!)"2cm440.603-10*‘26222
ky, =1, +2001, +1.205-10712¢, , —1.205-107 3¢,
—0.759-10" "2, +0.060- 107 12¢,
ky, =1, 2411107 2¢,; —0379-107"%¢,,, +0379-107 ¢,
+0.060-10"*%¢,,,
ks, =1y +2.001,,
kyy =1y,
kcu =
41, = u“l—-2.045-10‘23‘112 —2.464- 10'35c1“+1.233-10’3sc112

+0.777-107%%¢, , —2.326-10 ¢ ,,—0367-10" ¢ ,,
+0.244-10735¢,  +1.232:10735¢,,, +0.038- 10" ¢,

The parameters are combinations of the third-order nonlinear material constants of quartz
including electroelastic constants fl.jk, third-order elastic constants ¢, electrostrictive con-
stants /;; and third-order permittivity , . The first eight parameters (k;;,) are in N/(V.m), the
next six (k;;) are dimensionless, the last parameter (¢, ,,) is in F/V. The numerical coefficients at
¢, in parameters k,, k; and g,,, are in m?/V, m?/N and Fm?/NV, respectively. The
numerical coefficient at [, in gq,,, is in F/V. The remaining numerical coefficients are
dimensionless. The number and choice of indices of k;;, k;; and ¢, correspond to the first
material constant in their definition.

The experimental values of the linear coefficient L and the linear material constants
of quartz — the latter taken from BECHMANN [3] — needed in the above calculation are
a mixture of quantities determined at 20 or 25°C. Consequently, the values of the
nonlinear parameters in Table 1 are understood as valid for room temperature. Con-
sidering their existing accuracy (standard errors in Table 1) and their estimated tem-
perature dependence [ 6] the temperature inconsistency of several degress Celsius is of no
practical consequence. Similarly disregarded is the somewhat uncertain and probably
nonuniform thermodynamic character of these quantitites which is not necessarily purely
adiabatic. :

A detailed numerical inspection of the solved system (23) has indicated that the
standard errors in the individual parameters are commensurate with the standard errors
in the experimental values of L (typically +0.26- 10~ '? m/V). Large relative errors occur
in the case of those parameters whose contribution to the measured quantity L is
relatively small.
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The above comments concerning the thermodynamic character of the results and
their standard errors apply to the entire contents of Table 1 with the meaning of Solution
2 yet to be explained.

5. Discussion

One of the principal ideas which inspired this work was a desire to produce values of
the third-order nonlinear material constants of quartz exclusively by means of the
resonator method and completely independent of any other third-order constants
determined earlier or by other methods. It was hoped that among the result would also be
the third-order elastic constants. They were intended for an independent verification of
their old and only existing values [ 18] which were never tested in a similar direct manner.
However, in spite of abundance of experimental data, the linear system (23) failed to
produce a single isolated value of these material constants. It appears that the third-order
elastic constants will not be put to test using the present data provided by the resonator
method. ‘ '

The same linear system (23) was solved once before [8]. At that time the values of
the third-order elastic constants were substituted into it from [18] and the least-squares
procedure applied only to the remaining third-order constants. The solution obtained
there is restated in the second part of Table 1 and marked Solution 2.

It is a direct consequence of the multicolinearity detected in the system matrix
M that the two solutions in Table 1 are very simply interrelated. Solution 2 can be
obtained from Solution 1 if the latter is stripped of the contribution of the third-order
elastic constants defined in Table 2 using the values of the third-order elastic constants
[18].

When Solution 2 was computed with the aid of the third-order elastic constants
taken from [18] it was clear that it would depend, for its quality, on the reliability of the
old third-order elastic constants [ 18]. The existing relationship between Solution 1 and
Solution 2 makes it possible to estimate their potential distortive effect. As a function of
these constants, the distortion would be a portion of the difference between the
corresponding parts of Solution 1 and Solution 2; in relative terms it would be probably
larger for the electroelastic constants f,,; or f;,4 and smaller for the electrostrictive
constants [y, or /,,, and definitely zero for the constants fa1s, l33, 14; and for the
combination /3, +2l,4. At the same time, however, it is appropriate to say that there
seems to be no evidence available indicating that the existing values of the third-order
elastic constants are in any way compromised.

At the time when Solution 1 was sought, the principal objective was the deter-
mination of the electroelastic constants of quartz. The decision to use the “imported”
values of the third-order elastic constants in the process was a natural one — these
constants were already available — and the matter was not given much further
thought,

However, had the linear system (23) been able to provide its own values for the
third-order elastic constants, then Solution 1 would not have been so simply related to
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(i.e. not directly convertible into) Solution 2. Depending on the difference between the
imported third-order elastic constants and those provided by system (23) itself, the two
solutions could have been in serious conflict and the question of using the values of
third-order elastic constants external to the system (23) would have deserved much
more attention.

Itis only the result of this paper, namely the detected multicolinearity of the system
matrix M, which provides a belated but vital reason to conclude that in trying to find
the material constants determined in [8] it is impossible to do without the imported
third-order elastic constants and that their use creates no conflict. In this sense this
work validates the procedure adopted in [8].

Comparing Solution 1 and 2 further on, it is no coincidence that the standard
errors for the two sets of quantitites are identical. Their interpretation requires an brief
remark. First and foremost the stated standard errors apply to Solution 1, ie. to the
determined parameters ky;; etc. Only if it is assumed that the third-order elastic
constants from [18] are absolutely accurate, then the standard errors may be viewed as
truly pertaining to quantites forming Solution 2, i.e. to the material constants f; ,, etc.

The results of this work are completely independent of all nonlinear material
constants of quartz determined earlier or by other means. As such they are eminently
suitable for comparisons with the results from other sources. This is of considerable
interest not only for the sake of mutual verification of their immediate values but
possibly also as a consistency test of the related applications of the nonlinear theory.

The comparison is made with a recent set of nonlinear constants listed by ADawm,
TicHy and KITTINGER [1], whose values are taken over or derived from the work of
Besson and GAGNEPAIN [4], KITTINGER, TicHY and FRIEDEL [15] and THURSTON,
McSkiMmiN and ANDREATCH [18]. In preparation for the comparison, the values from
[1] were substituted into the definitions of the parameters in Table 2. Substituting for
the electroelastic constants f;; there, the third-order piezoelectric constants e;; from
[1] were appropriately used with a reversed sign (f; = —e;u). The results of the
substitution were placed next to the results of this work into the last column of Table 3.

In most of the cases the differences between the tesults in Table 3 are comparable
with the stated standard errors. This also seems to be the case with parameter.qg;;
however, the calculated standard error there is fairly large and the disaggmagt.iﬂ sign
is disturbing. On the other hand, there are parameters such as k3, ka;, and, to a lesser
degree, possibly others, which appear to be in conflict. Going just by the magnitude of
their disagreement it is hard to classify it as insignificant.

On the whole the agreement in parameters k;; which are solely combinations of
the third-order elastic and electroelastic constan&@ppears to be better than that
attained for the remaining parameters involving (apart from the third-order elastic
constants) also electrostriction and third-order permittivitf" This seems to agree well
with the source of the current values of the electrostrictive constants [15] whose
authors consider only one of their values as fairly reliable and advise caution regarding
the rest of them. ‘

Numerous comparisons between the nonlinear constants or their combinations
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Table 3. Comparison of third-order nonlinear material parameters of alpha
quartz obtained from independent sources

Nonlinear Resonator method Other methods
parameter this work according to [1]
K4 2.3840.05 2.37

pres 0.2940.07 0.21

ASH 0.63+0.04 0.72

K153 —0.74+0.03 —0.71

K ina 1.38+0.02 1.41

kisq 1.71£0.03 1.70

B 2 —0.034+0.03 0.00

e —0.7940.03 —0.90

i —-32 +£09 —4.7

K5 —8.6 +2.6 13.2

ki —24 £0.5 —22

i —124430 34

e — 84468 -39

Ky —44 0.7 —4.1

dyyy (=29 +24)-107% 06-10°21

Both parameter sets are calculated using the linear elastic constants according
to [16] and the linear piezoelectric and dielectric constants according to [3].
Other relevant remarks are the same as for Table 1.

originating from various sources have been done before. As a rule the compared
nonlinear constants were calculated using different sets of linear constants. This
omission is rectified here. To achieve consistency with [ 1] the results of this work were
recomputed using the elastic constants from MCSKIMMIN, ANDEREATCH, and
THURSTON [16] before they were entered into Table 3.

Given that a different set of elastic constants is used to make the comparison, the
numerical coefficients in Table 2, depending on the linear material constants, have also
changed. Their change is, however, very small, beyond the number of displayed decimal
digits. As a result, no new version of Table 2 needs to be included in this paper. This
entire comment is made only to assure the reader that such a possibility has been taken
into account.

The effect of the linear constants on the nonlinear ones may be an interesting one
but, at the same time, one that has been paid very little attention to. The comparison
between the results of this work in Table 1 and 3 offer a qualitative preview of what can
be expected.

6. Conclusion

This paper represents an attempt to determine simultaneously all four elec-
tromechanical nonlinearities existing in quartz: the third-order elasticity, the elec-
troelasticity, the electrostriction and the third-order permittivity.



118 C.K. HRUSKA

Fifteen parameters, for the main part linear combinations of the independent
material constants describing these phenomena in quartz, have been determined using
the least-square fit to one hundred and eighty- four experimental data provided by the
resonator method.

The main reason for the number of determined parameters to be limited to 15
instead of the full number of 31 fundamental constants is a numerical one. The same
numerical phenomenon provides a valuable insight into the function of the third-order
elastic constants in the process of determination of the remaining nonlinearities
(electroelasticity, electrostriction, third-order permittivity) by means of the resonator
method. In particular, it shows that in order to determine these latter nonlinearities the
use of third-order elastic constants from an external source cannot be avoided.

The work is a classical example of an independent verification process. The
comparisons made with the nonlinearities determined separately by different authors
and methods show an encouragingly high degree of agreement. At the same time,
however, a few instances were noted with differences which may be statistically
significant.

This study is based on a substantially larger number of observations (184) than is
the total number of data (59) which have produced the values of the third-order
electromechanical constants of quartz [1] external to this work. As such the present
results carry some statistical weight. Any cases of disagreement between them and [1]
are thus difficult to dismiss without an appropriate explanation which is yet to be
found.
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