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This paper considers propagation of a surface acoustic wave (SAW) along a multi-
periodic system of electrodes (note: a multiperiodic system is a system with a group of
several equidistant electrodes with equal width occuring periodically with a certain period)
distributed on the surface of a piezoelectric half-space. The boundary problem with
homogeneous mechanical and mixed electric boundary conditions was solved on the basis
of properties of the effective surface permittivity and Floquet’s theorem for periodic
structures. New functions satisfying adequate conditions in an assumed multiperiodic
system were formulated. A dispersion relation for the velocity of a SAW guided along
electrodes was derived.

The presented theory was applied in numerical analysis of SAW velocity dispersion in
a Av/v single and two-electrode waveguide, assuming an adequately long repetition period
of groups of electrodes. Velocities and field decay distributions for two modes — symmetric
and asymmetric are given for a two-electrode waveguide. The coupling coefficient between
both electrodes of a coupler constructed on the basis of such a waveguide was calculated.

1. Introduction

Most modern SAW devices apply a wide beam of surface waves. The
application of such a beam involves certain undesirable effects: beam spreading which
accompanies its propagation, difficulties with changes of direction of propagation
and inefficient use of the piezoelectric substrates surface. The application of
waveguides eliminates all these problems, because a previously excited SAW can be
guided. However, there are certain difficulties with the general application of such
solutions in SAW technology: high losses and ineffective excitation (small aperture of
waveguides) [10, 20, 21, 24]. Nevertheless they are used mainly in constructions of:
— long delay lines, storing analog or digital signals [1].

— convolvers, performing nonlinear operations on signals e.g. Fourier transfor-
mation [11, 19],

— monolithic amplifiers on a semiconductor substrate [7, 8, 10]

— filters with high quality factor (a pair of coupled waveguides) [23].

* This work was partly supported from CPBP 01.08 and CPBP 02.02
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There are many methods of guiding a wave within a certain separated region.
The guiding region has lower velocity of wave propagation in relation to the rest of
the surface [6, 20, 22, 24]. Deposition of a thin conducting film on the surface of the
piezoelectric substrate is one of the simplest methods in the SAW technology. A local
electric field shorting constitutes a SAW guide, because as we know [10, 18] SAW
velocity under a shorted surface, V, is lower than SAW velocity on a free (adjoining
vacuum) surface V,.

These types of guides (in a certain specific configuration) called piezoelectric
waveguides or Av/v waveguides, will be the subject of further fullwave analysis. The
method of analysis applied in this paper was previously used in investigations of
perpendicular SAW propagation in relation to the system of electrodes [2, 4, 5, 10,
12] and in the analysis of the guidance of a wave in a periodic electrode system
(including the transition to the “rare” system, i.. single 4v/v waveguide) [10]. This
paper is a generalization of the theory presented in [10, Chapter 3] for the case of
a wave guided in a multiperiodic electrode system, i.e., system of electrodes where not
one but a group of N electrodes repeats periodically (Fig. 1). In such a case the
transition to the “rare” system leads to a desciption of a finite number of coupled
waveguides. A two-electrode guide is discussed in detail.

The following part of this paper presents the boundary problem, simplifying
assumptions and changes in the formulation of the problem suitable for the accepted
method of analysis [2, 4, 5, 10]. The construction of the problem’s solution on the
basis of new special functions, described in the Appendix, is given in Section 3.
Section 4 presents results of numerical analysis of a one- and two-electrode SAW
guide.

2. Formulation of the problem

We are looking for the field of a surface acoustic wave propagating along
a multiperiodical system of metal electrodes with width w, distributed on the surface
of a piezoelectric half-space. A group of a definite number (N) of electrodes repeats
periodically with period A. The distance between electrodes within a group is equal
to 2 p. The structure is unlimited. The cross section of the analysed system is shown
in Fig. 1. The structure is homogeneous in the direction perpendicular to the cross
section (x,).

From the mathematical point of view the problem can be reduced to the
solution of a set of partial differential equations with homogeneous mechanical and

7%
FI1G. 1. Analysed system of electrodes (here:
% N=3)
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mixed electrical boundary conditions. The set of differential equations describing
coupled mechanical-electrical wave processes in a linear and homogeneous medium
has the following form for a case of electrostatic approximation [18] and for
a solution harmonic in time:
C,‘jHU;,;,ﬂ'Fek,'jd)_jk+C02dUi = 0, i,j, k, B 1, 2, 3 1
{emUk';,-—s,-j 4B 0, d — mass density of the substrate ( )

where the vector of unknown quantities U = [U,, U,, U,, ¢] consists of com-
ponents of the displacement vector U and electric potential (E = —F¢), ¢ is the
elastic tensor of the substrate e is the tensor of piezoelectric coefficients and ¢ is the
permittivity tensor. The set of equations (1) has to be satisfied in the top (x, < 0) and
bottom (x, > 0) half-space separately. Boundary conditions on the boundary of
media (x, = 0) are described by the following equations:

a) mechanical

Ty=c*MU 1+ e;p,=0 for x, =0 ()
b) electrical

¢ =0 on the surface of electrodes

AD,=D3; —D; =0 Dbetween electrodes (3)

The following additional idealizing assumptions were accepted:

— the metallization is a perfect conductor

— the thickness of the metallization is infinitely small

— metal electrodes do not load the surface of the piezoelectric otherwise condition
(2) would not be fullfilled.

The problem in such a form is a three-dimensional problem. The method
proposed in [4, 5] and developed in [2, 10, 12, 13, 14] was expanded in order to solve
this problem. The mentioned method allows the problem to be reduced to
a pseudoelectrostatic boundary problem on the boundary surface x, =0 and its
algebraization.

The expansion consist in the introduction of the effective surface permittivity
[10, 18] which implicite contains the fulfilment of wave mechanical properties of
SAW (1) and of the mechanical boundary condition (2). Therefore, the set of mixed

-electrical boundary conditions on the surface remains to be included.

The effective surface permittivity in the problem under consideration sufficiently
characterizes the substrate. It is determined by the AD /E, relation where 4D, is the
electric charge density on the substrate surface (it can be the charge on electrodes
located on the surface), equal to the difference between the component of the electric
displacement vector perpendicular to the surface x, =0 considered from the
substrate side (x, =07") and from the vacuum side (x, =07); E; is the electric
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strength field on the substrate surface. In further text 4D, and E); denote complex
amplitudes of equivalent harmonic waves:

expj(wt—k-x) 4)

where @ — angular wave frequency assumed in the paper as definite; factor exp (jwt)
will be neglected further on, k — wave vector which assumes values from k, on the
free surface of the piezoelectric adjoining vacuum to k, on the metallized surface. In
the considered case we assume that k, and k, are real numbers and k, > k,,
ko = o/Vy, k = w/V,, where V, and V, are corresponding SAW velocities and the
generally used in the SAW theory Av/v factor ‘is defined as dvfv = (V,— V)V,

In an approximation resulting from the neglect of acoustic bulk waves the
relation between amplitudes 4D, and E) of harmonic waves in form (4) is expressed
by [10, 18] (for k > 0)

AD k*—k2?
) = —j T = oty g3, 5
E” 0 sz_k(z) ! ( )

where k = |k| = ,/ki+k3, ¢, — permittivity of the vacuum.

As we know, a wave propagating in a periodicaly non-homogenous system can
be described with the sum of harmonic components related to the period of the
system, A. Consistently, in accordance to Floquet’s theorem electric field E ) and
surface charge density 4D, on a the piezoelectric surface X,x; with a periodic
electrode system have the folowing form

E = i E,exp(—j(k+nK)-x) (6a)

n=-oo

D, = ¥ D,exp(—j(k+nK)x) (6b)

n=—mo

where x = [x;, x;], K — wave vector for considered system of electrodes with one
component K = [0, K], K = 27/4; and k = [k,, k,] is the wave vector of SAW
propagation, e.g. of guiding SAW along electrodes k, = 0 (Fig. 1) in the considered
case.

It can be easily checked that even when a wave propagates along electrodes,
spatial harmonics into which the wave was decomposed have generally slant
directions to the electrode system what, is expressed by the following

E||= Z Enenexp(_jxnén)

n=-—ow

AD, = ¥ Dyexp(=jut), ™

n=s —w

where %, = |k+nK| = ,/k} +(nK)?, &, coordinate measured along the wave vector
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%, in such a manner that
x,t, = (k+nK)x (see Fig. 1) (8)

and e, is a versor in the direction of the wave vector e, = (k+ nK)/x,. Equivalent
components of the potential have the following form:

d)nexp(_jxnén)’ where ¢n o= _jEu/xn’ (9)

whereas amplitudes E, and D, are related to each other when the effective surface
permittivity is introduced for every n separately, as follows

D, = je,E,, (10)
where
&, = &(x,). ‘ (11)

The boundary problem presented at the beginning can now be formulated as
follows:

find amplitudes of the electric field E, and wave number k, for given frequency
w, so that:
— electric field E is zero on electrodes

E =0 on electrodes (12)
— distribution of surface charge density 4D, vanishes between electrodes

AD, = 0 between electrodes. (13)

3. Dispersion equations

We obtain the following conditions from (6a) for component e, and from (6b)

=0} g e "Kx3 — (0 on electrodes
. x n

LR o n

(14)
P Z ¢,E,e /" = (0 between electrodes

n=-—

We should notice that ¢, — &, = g4, for [n| - oo what more ¢, = ¢_ is fulfilled
beginning from even small n for wave numbers K not too small in comparison to
ko,,. Similarly, nK/x, — +1 for n— + 0.

Conditions (14) ensure vanishing on the electrodes of one component of the
electric field-component E, perpendicular to electrodes. These conditions should be
suplemented with an additional relationship, namely vanishing condition for the
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second component of the field along the electrodes in an arbitrary point of the
electrodes. It is convenient to relate this condition to the axis of electrodes [10]. In
accordance with (6a) we obtain
e :
¥ s vk BgnMKrNolmaly i Jdsil| 20505 NG : (15)
n=—a n

There are as many conditions as there are electrodes in a group.

The set of equations (14) will be solved jointly in the first place, and afterwards
condition (15) will be satisfied. ,

As we know [2, 3], the set of two functions

g(0) = i S,P,(cos A)e ™"

(16)
£ = i P, (cosA)e~ "

n=-—aw

where 4 = Kw/2, 0 = Kx,, S, = n/|n| is the function of sign n and P, are Legendre’s
polynomials, satisfies the following conditions

0, 0<lol<4
= 0 .
9(0) —j@?”e’m(cosd—cos@)‘”z, d<l|fl<n

_ (17)
2112¢i%2 (cosf—cosd)™ 2, 0< |0 < 4

f(9)={0, A<ifl<n

Indeed, functions g(f) and f(0) are solutions to a corresponding electrostatic
problem for a dielectric (i.e. for k, = k, in expression (5)). However, we have k, = k,
for piezoelectrics and expression (5) differs significantly from a similar expression for
a dielectric in a narrow range of wave numbers ke [k,, k,]. This has been noticed
and utilized in [2, 4, 5, 10] to construct a solution to the boundary problem (12), (13)
for a piezoelectric substrate (k, # k,) with a periodic system of electrodes.

Following a similar procedure as in [2, 12, 13, 14], functions which are
analogical to (16) solutions to an electrostatic problem for the considered system of
groups of electrodes from Fig. 1 are introduced

Gul0; B) =) o Bk ue ™
Hang (18)
Fy(@ya) == )0 Xe™™,

n=-—aw

where parameter related to the distance between electrodes in a group « = Kp, while
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conditions

Gy(0;0) =0 on electrodes
(19)
Fy(0;0) =0 between electrodes

are satisfied. Forms and properties of these functions are given in the Appendix.
Applying method [2, 10] quantities E and D were expressed by functions X, as
follows

E= Y o Gu(Kx,: Kple ™

(20)
D=j Y B.FyKxs Kp)e ime=
In this case boundary conditions (14) are reduced to:
M
S
xn m=M;
(21)

M
enEn = Z ﬁmxf—m’
m=M,

where infinite summation according o m is substituted with summation with in the
range M, <m < M,. This corresponds to the cut-off of an equivalent infinite set of
equations, what in this case is possible [2, 10, 14], because nK/x, as well as ¢, quickly
achieve constant values for n — + 0. «,, are determined from a comparison between
left and right sides of (21) for N, < n < N, (we will discuss the choice of such limits
below; but it is generally known that all terms for which nK/x, as well as g, differ
significantly from their fixed values for n — + cohave to be taken into account).
Expressions (21) should have the form of a compatible set of equations for n < N,
and n > N, for u,, calculated as described above. This determinates the choice of M,
and M,, depending on N, and N,. Additionally [2, 10, 14] the compatibility
condition of this set of equations imposes the method of selecting N, and N, namely
forn < N, and n > N, terms on the left side in equation (21) have to have practically
constant values (approximately equal to values for |n| — <0).

We should notice that the number of variables o, within range M, <m < M,
has to exceed the number N,—N,+1 (ie. number of equations resulting from
a comparison between the right and left side of (21), because N more equations (15)
resulting from field vanishing along the axis of electrodes remain to be satisfied.

Let us recapitulate. A comparison between the pair of equations (21) for
N, <n < N, results in the following expression

M K
s ("—-aef—s,,_ms,,)amx,,".m =0, 22)

m=M; n
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which has to be fulfilled for every ne[N,, N,], N, <0, N, > 0.
Additionally from (15) and (21) we obtain

M S : s e g :
n—mn—m — jinK(2l-N—-1)p LIXE =0 93
m-_-ZMz o (n;0 nkK + i & "') . ( )
where le[1, N].
M, and M, have to be chosen after N, and N , are determined. They are chosen

as shown below in order to secure an equal number of unknown quantities and
equations

M, =N,—int(N/2) (N, <0)
(24)
M, = N,+int((N +1)/2).

‘The total number of equations and unknowns is equal to N 2—N;+N+1 in such
a case. The condition for the existance of a solution to the set of equations (22) and
(23), i.e. when the equivalent characteristic determinant A(k,) is equal to zero, gives
the sought for dispersion relation

A(k) =0 (25)

where k is the value of wave number k, which determines the guiding velocity of
SAW in the waveguide under consideration

' V= wjk. (26)
4. Numerical results

This Section presents numerical results of the analysis of SAW guidance along
a system of electrodes deposited on a LINbO, YZ. A propagation constant k was
sought which would fulfill the following condition

K ek ko (27)

There are many solutions for the wave number in a periodic system, but it was
accepted that k is a solution of an equivalent dispersion equation (25) from
Brillouin’s T zone [10]. K is large enough (4 small) in numerically analysed
structures that there is only one n which fulfills condition (27).

Presented below results have been divided into two groups according to the size
of the parameters:

a) the distance between groups of electrodes greatly exceeds the distance
between electrodes with in a group and the width of electrodes

A>»>w,p
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b) mentioned above distances are comparable
A=W, p

(a) type cases have an easy physical interpretation and practical application.
Condition A > w, p means that approximately there is no interaction between
electrodes belonging to neighbouring groups of electrodes. Therefore, results
obtained for such parameters can be accepted as propagation constants of
waveguides with SAW (4dv/v waveguide for N =1, pair of coupled waveguides
— SAW waveguide coupler for N = 2). It should be noted that a method of the
fullwave analysis of an isolated waveguide with SAW does not exist; whereas when
we assume A > w, p, then such an analysis is possible with certain approximation
within the framework of the theory of periodic systems.

(b) type cases do not have a simple physical interpretation, because it is
a problem of guiding a wave along a coupled infinite number of groups of electrodes.
However, chosen relationships have been described here in order to make this
elaboration complete.

a) SAW waveguides
The case of a one-electrode insulated approximately waveguide has been
already analysed in papers [9, 10, 17, 23, 24]. A system of two coupled electrodes is
considered below. The width of electrodes was accepted at w =0.015 mm and
repetition period of the pair of electrodes was accepted at A = 3 mm, considered as
sufficiently large. Figure 2 presents the 1/V (w) dependence (V wave propagation
velocity, ¥ = w/k) in enlarged scale for A =3 and 6 mm, and N =1 in order to
ilustrate the influence of neighbouring groups of electrodes.
When the distance between neighbouring electrodes is doubled the velocity of
a wave propagating in the structure changes by about 0.09%. The distance of 3 mm
between electrodes with width equal to w = 0.015 mm was considered as sufficiently

N=1
i
[s/kml]
02925 |
02920 F A=3mm
02915 __’,_/
02910 |
W, f—————_——_—_—_—— e — — — ——
02905 +
1 1 1 1 L
Lot 005 o0 015 020 025 wimml

FiG. 2. Comparison of SAW guidance under the electrode in terms of W for different A.
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N=2 A=3mm w=005mm

v
[s/km]

0294

0293

0292

0291 |
BV Too i@ O S i N s e W o

0290, 05 10 5 20 25 FIMHz]

FiG. 3. SAW velocity dispersion in a two-electrode guide for two modes

to satisfy the condition of insulation of the waveguide from neighbouring electrodes.

In the case of a two-electrode waveguide, there are two, orthogonal with respect
to each other modes with different SAW propagation velocities. Figure 3 presents
dispersion characteristics 1/V(f) for both modes even, symmetric + + and odd,
antisymmetric + — for p = 0.04 and 0.125 mm. Figure 4 illustrates the influence of
the distance between electrodes 2 p on 1/V changes for f = 1 MHz. The odd mode for
2p close to w should be cutt-off just as the first higher mode with odd charge
distribution in a one-electrode waveguide [17]. The curve in F ig. 4 only approaches
the cut-off value 1/V,. In order to closely investigate the characteristic near the
cut-off, the complex value of the SAW wave number with damping should be
permitted.

Taking advantage of the difference of wave velocity a SAW coupler can be

N=2 A=3mm w=0015mm

17V
[s/km]

0294

0293

0292 r

0291 + ——//_

P T T T el e e PR e R e L e

42995 a7 02 03 04 20 Tmml

FiG. 4. SAW velocity in terms of distance between coupled electrodes
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constructed, because of the existance of two modes with different velocities in

a two-electrode waveguide. Power transmission from one port to the other of an
ideal coupler is expressed by:

7 = sin? (é-(ke—ko)z) (28)
where t — power transmission factor, k, — value of even mode wave vector,
k, — value of odd mode wave vector, | — length of coupler.

Figure 5 presents the required length of couplers 3 dB and 10 dB in terms of

N=2 A=3mm w=0015mm

[mmlf p=0.04

1200

200 p:N

0 05 10 15 20 f [MHz]

10dB

FiG. 5. Required lengths of SAW couplers — 3 dB and 10 dB for various frequencies

N=2 A=3mm w=0015mm

04

a2

0 05 10 15 20 25 flMHz]

FiG. 6. Frequency characteristics of couplers with central frequency of 1.6 MHz (¢ = 0.5, 1)
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frequency for p = 0.04 and p = 0.125 mm. For comparison the wavelength of a SAW
is equal to about 3.4 mm for f=1 MHz. A frequency coupling characteristic of
couplers designed for frequency f = 1.6 MHz are shown in Fig. 6 for t = 1 full power
transmission from one port to the other and 7 =0.5 (3 dB coupler).

Toillustrate the decay rate of the electric field around the electrodes, E, in terms-
of x;/A was plotted for the following systems:

Fig. 7 N=1, w=0015 mm, A =3 mm

Fig. 8 N=2, w=0015 mm, p=0.04 mm

A =3 mm both modes
N=1

i L

ooz ez a0 0 ] AL T

FiG. 7. Electric field decay of SAW guided under the electrode

1 1 1 il
-003 -002 -001 0 001 x3/ATL 1

-60

Fic. 8. Electric field decay of SAW guided under coupled electrodes



FULLWAVE THEORY... 261

b) SAW propagation along a multiperiodic electrode system
Two more dependences are presented to make the elaboration complete:
Fig. 9 k/2n (Kw/2) for N=1, f=1 MHz, A =1, 3, 6 mm
Fig. 10 k/2n (Kp) for N=2, f=1 MHz, A =3 mm, w = A/4, A/8

When the metallized surface is increased the value of the wave vector
approximates k,. Curves in Fig. 10 are symmetrical in respect to Kp = n/2, because

0298 f=1MHz N=1 A=13.6 [mml
k,/2 1

0296

0294

k7201 [1/mml

0292

k, /21

0290

0 0% 050 0% 100 7

Fi1G. 9. Values of wave vectors for propagation along a one-periodic structure

0298 f=1[MHz] A=3[mml] N=2

k/2m

0296

0294

k721 [1/mm]

0292

k, /21

0290 1 1 1 A 1 1

FiG. 10. Values of wave vectors for propagation along a two-periodic structure
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for greater p electrodes interact with outer electrodes from the neighbouring group,
i.e. k(Kp)=k(r—Kp). As it can be seen for a case of SAW propagation along
a multiperiodic electrode system there is a strong interaction between all electrodes
for such parameters. There are p values for which velocities of both types i.e.: + +
++ ++ etc. and + - + — 4 — etc. are equal

5. Final remarks

Numerical results presented for two fundamental, applied SAW guiding
structures have been obtained from a programme with an algorithm based on the
discussed above rigorous field theory of SAW propagation along a multiperiodical
electrode system (an assumption that A > p, w was made).

This approach has an advantage. It is possible to cut-off the infinite set of
equations (14) in a controllable manner and it is not necessary to assume an
approximate charge distribution on electrodes, as it happens in other variation or
Galerkin methods [9].

The author would like to thank Prof. E. DaNIcKI for his valuable remarks.
concerning the elaboration of this problem.

Appendix

The set of functions g(0) and f (6), described with equations (16) and given in [3,
16] is a solution of a canonical electrostatic problem with mixed boundary
conditions for a dielectric with a system of metal electrodes with period 27,
distributed on its surface (N = 1 should be assumed in the multiperiodic system
presented in this paper). New functions satisfying similar conditions in a case of
separate electrodes were constructed in [2]. A set of equations was given there

G,(0; o) = %-g(ﬂ—a}g(ﬂﬂx}e‘f” =0 on electrodes
(29)
F,(0; a) = -;-'[f(B—oc)g(9+a) +f(0+0)g(@—a)]e ® =0 between electrodes

where quantity o is determined by the distance between electrodes « = Kp, while
variable 0 = Kx,.
Their expansions into Fourier series in slightly changed notation are as follows:

o0

G,(0;00= Y X3S,e™ F,0;0)= Y XZe (30)

n=-o n=-ow
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where

n—1
X23=0; X2= Y P,(cosd) P,_m-1(cosd)cos2m—n+1l)a
m=0
X2, =—X2} +a= +Kp are centres of electrodes.

Taking advantage of results of (29) and (30) a generalized set of functions was
constructed below. It fulfills analogic mixed boundary conditions in a system with
a group of an arbitrary number (N) of electrodes repeated with a 2z period (in
variable 6). Functions Gy and F, can be noted in recurrence as follows

Gy(0; @) = G,(0; (N—1)): Gy —2(6; @) o
Fy(0; ) = F,(0; (N —1)a)-Gy_ 2(0; @)+ G,(0; (N—1)2)- Fy_,(0; a),

where it was assumed that centres of successive electrodes are located at points
0, = (2I—N—1)a, [ varies from 1 to N (2a — distance between electrodes within
a group) and naturally 4 < o < (7r—4)/(N — 1), where 4 is related to the electrodes
width 4 = Kw/2.

The set of functions (31) satisfies the following conditions for an N — electrode
group:

Gy(0; @) = 0 on electrodes

(32)
Fy(0; ) = 0 between electrodes \

After recurrence formulas (31) are noted differently, functions Fy and G, will
- have the following form

1 : N
GN(B’ tx) — —2im(Nl2_).e‘lrll(Nf1.)0 H g(g_gl)
i

i (33)
1 = N N
Fy(0; 0) = zim(Nm'e m:(le)a.lZlf(g_g!) ‘ lzlﬂg(g_gj),
= i

where 6, = (2i— N —1), int-denotes the integer part.

THEOREM

Expansion into Fourier serieses of functions G, and F,, analogical to (16) and
(30), are as follows

Gylt; )= Y S XJlew™ Fui0;a0)= ¥ Xie ™, (34)

n= - B= =
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while for n >0
X} = P,(cosd)

n—1

Xi=Y PP, pm-yicos[@m—n+1)a]; X3 =0

RTINS B (35)
Xf:v =2 Z X3;|(N—1)¢Xﬁ—_j
m=1
where X2|; means that X2 are expansion coefficients of function F,(0; f)
For n < —1 the following symmetry relations are fulfilled
XN._i=XY forodd N
(36)

XN, = —X" for even N

Relationships (35) and (36) require an explanation. Below they are proved on the
basis of principles of mathematical induction.

PRrROOF.

1) For N =1, (35) is trivial

2) For N =2, (35) was proved in [2], different notation.

3) Assuming that the expansion for N =2 (30) and for N—2 is given
Gn-20;0)= Y XN“25,e™ Fy ,0;0)= Y XV-2%m (3

while X3~ 2 fulfills relationships (35-36).

4) It should be proved that coefficients X% in expansions (34) fulfill the last equation

(35) and relation (36). Taking advantage of (31) and substituting (30) and (37), for G,

as first, we obtain

o0

Gy= Y Y SS,XiXY 2etmi_ Y [ ¥ of. S X2XN-2],- s

n=—oom=-=o n=—-w m=-—o (38)
Comparing (34) with (38) we have
S,,Xf = Z S,,“,,,SMX,",’,X,,N__,,?, (39)
what for different n can be noted as
S. X} ='—€,+2 PoxENN2 for n>0
m=0
53 XY = C for n= -1 (40)

=1
Sy w040 % CXEREEE e AL =2

m=n+1
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where

are coefficients of Fourier series expansion of the function

FiFy-a= Y [ X XaXiZz]le™™,

AW =0 I =0

equal identically to zero [2].

When we take advantage of equation X% =0 in (40), we have

n
S, X5 w230 XA K0 for n>1

m=1
S. XN =0 for n=0, —1
-1
S XF=2 B XEXIS  for Az 2.
m=n+1
Similarly for Fy, from (31), (30) and (37) we have

Fy= ) L (SXQRCHS X\ X e 0t

B==o M= =00

= T[S SN IXE 4 XNZ2XD)]e M,

A= =00 M=

Comparing (44) with (34)

Xp= Y Su(Xu’Xi-mt+XaZaXn),

m=—o

what for different ranges of n results in:
forn>0

=3

0 m=-w

o0

I L R corp R MY e RS ) b
= ¥ (XE2X2_ 4 XP2X2)— ¥ (XE2X2_ .4 XPS2X2) =
m=0

m=n+1

= Y (X22X3 XX = 28, ) XLT2X2 =28, ¥

: m=0 m=0 m=
for n= —1

w

XaXua
0
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(41)

(42)

(43)

(44)

(45)

Xiom i) SR X+ XN2uXD » Y o XL XB 12,54+ spain) D

m=— m=-o
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forme =2
a0 =i
Xy = Ko X ot X0X0< ¥ @2X +X 00 -

=0 mw==o

m
n =1
= ) QR XV 3XD- ) (XX L+ XX =

m=-o m=-x

=1

=1
el WP Cabe LTS cip L DR S OB Gl B

m=n+1 m=n+1
or finally
K¥=28;00 XAKW3: it cndi
m=0
X¥=0 for n=-1,0 (46)

=1
XY wm @By X2 X2 for < w2
m=n+1
Obtained relations (43), and (46), prove that expansions (34) with coefficients
X, defined by (35) are correct. Symmetry relations (36) remain to be proved:
If n< —2(k = —n), then from (46) we have

it |
Xy 28 sV L ixNC 47)

m=-k+1

when the index is changed, m = p—k, we have

k=1 k
X%= =23 X3, X"2 = =2 § X2,X%;2, (@8)
p=1 p=1
For even N (X} % = —XY~? from assumption (3)) we have
k k
X4 =2 ¥ XLa-pXyT= =2 ¥ X2 XY (49)
p=1 p=

A comparison between this expression and first equation (46) results in:
X%, = —XV (50)

For edd N (XY, = XY-2) we have
k k o k=1
XN =2y X X125 Xh X020 X2, X" aX)

p=1 p=1 m=0
and by analogy
sk, (51)

what brings to the end the proof for the correctness of expansions (34) with (35) and
(36).
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